mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Merged in rmlarsen/eigen (pull request PR-230)
Fix a bug in psqrt for SSE and AVX when EIGEN_FAST_MATH=1
This commit is contained in:
commit
5c366fe1d7
@ -355,30 +355,27 @@ pexp<Packet4d>(const Packet4d& _x) {
|
||||
// Functions for sqrt.
|
||||
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
|
||||
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
|
||||
// exact solution. The main advantage of this approach is not just speed, but
|
||||
// also the fact that it can be inlined and pipelined with other computations,
|
||||
// further reducing its effective latency.
|
||||
// exact solution. It does not handle +inf, or denormalized numbers correctly.
|
||||
// The main advantage of this approach is not just speed, but also the fact that
|
||||
// it can be inlined and pipelined with other computations, further reducing its
|
||||
// effective latency. This is similar to Quake3's fast inverse square root.
|
||||
// For detail see here: http://www.beyond3d.com/content/articles/8/
|
||||
#if EIGEN_FAST_MATH
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
psqrt<Packet8f>(const Packet8f& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
|
||||
|
||||
Packet8f neg_half = pmul(_x, p8f_minus_half);
|
||||
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
Packet8f non_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_GE_OQ);
|
||||
Packet8f x = _mm256_and_ps(non_zero_mask, _mm256_rsqrt_ps(_x));
|
||||
Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
|
||||
Packet8f denormal_mask = _mm256_and_ps(
|
||||
_mm256_cmp_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)()),
|
||||
_CMP_LT_OQ),
|
||||
_mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));
|
||||
|
||||
// Compute approximate reciprocal sqrt.
|
||||
Packet8f x = _mm256_rsqrt_ps(_x);
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
|
||||
|
||||
// Multiply the original _x by it's reciprocal square root to extract the
|
||||
// square root.
|
||||
return pmul(_x, x);
|
||||
x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
|
||||
// Flush results for denormals to zero.
|
||||
return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
|
||||
}
|
||||
#else
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
|
@ -444,20 +444,28 @@ Packet4f pcos<Packet4f>(const Packet4f& _x)
|
||||
|
||||
#if EIGEN_FAST_MATH
|
||||
|
||||
// This is based on Quake3's fast inverse square root.
|
||||
// Functions for sqrt.
|
||||
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
|
||||
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
|
||||
// exact solution. It does not handle +inf, or denormalized numbers correctly.
|
||||
// The main advantage of this approach is not just speed, but also the fact that
|
||||
// it can be inlined and pipelined with other computations, further reducing its
|
||||
// effective latency. This is similar to Quake3's fast inverse square root.
|
||||
// For detail see here: http://www.beyond3d.com/content/articles/8/
|
||||
// It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly.
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f psqrt<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
|
||||
Packet4f denormal_mask = _mm_and_ps(
|
||||
_mm_cmpge_ps(_x, _mm_setzero_ps()),
|
||||
_mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())));
|
||||
|
||||
/* select only the inverse sqrt of non-zero inputs */
|
||||
Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
|
||||
Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
|
||||
|
||||
// Compute approximate reciprocal sqrt.
|
||||
Packet4f x = _mm_rsqrt_ps(_x);
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
|
||||
return pmul(_x,x);
|
||||
// Flush results for denormals to zero.
|
||||
return _mm_andnot_ps(denormal_mask, pmul(_x,x));
|
||||
}
|
||||
|
||||
#else
|
||||
@ -491,7 +499,7 @@ Packet4f prsqrt<Packet4f>(const Packet4f& _x) {
|
||||
Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps());
|
||||
Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask);
|
||||
Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan),
|
||||
_mm_and_ps(zero_mask, p4f_inf));
|
||||
_mm_and_ps(zero_mask, p4f_inf));
|
||||
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five));
|
||||
|
@ -440,12 +440,9 @@ template<typename Scalar> void packetmath_real()
|
||||
data1[0] = Scalar(-1.0f);
|
||||
h.store(data2, internal::plog(h.load(data1)));
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
#if !EIGEN_FAST_MATH
|
||||
h.store(data2, internal::psqrt(h.load(data1)));
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
VERIFY((numext::isnan)(data2[1]));
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user