mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
Add an info() method to the SVDBase class to make it possible to tell the user that the computation failed, possibly due to invalid input.
Make Jacobi and divide-and-conquer fail fast and return info() == InvalidInput if the matrix contains NaN or +/-Inf.
This commit is contained in:
parent
b5a926a0f6
commit
5bbc9cea93
@ -208,6 +208,7 @@ protected:
|
||||
using Base::m_computeThinV;
|
||||
using Base::m_matrixU;
|
||||
using Base::m_matrixV;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_nonzeroSingularValues;
|
||||
|
||||
@ -256,16 +257,25 @@ BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsign
|
||||
{
|
||||
// FIXME this line involves temporaries
|
||||
JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
|
||||
if(computeU()) m_matrixU = jsvd.matrixU();
|
||||
if(computeV()) m_matrixV = jsvd.matrixV();
|
||||
m_singularValues = jsvd.singularValues();
|
||||
m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
|
||||
m_isInitialized = true;
|
||||
m_info = jsvd.info();
|
||||
if (m_info == Success || m_info == NoConvergence) {
|
||||
if(computeU()) m_matrixU = jsvd.matrixU();
|
||||
if(computeV()) m_matrixV = jsvd.matrixV();
|
||||
m_singularValues = jsvd.singularValues();
|
||||
m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
//**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
|
||||
RealScalar scale = matrix.cwiseAbs().maxCoeff();
|
||||
RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
|
||||
if (!(numext::isfinite)(scale)) {
|
||||
m_isInitialized = true;
|
||||
m_info = InvalidInput;
|
||||
return *this;
|
||||
}
|
||||
|
||||
if(scale==Literal(0)) scale = Literal(1);
|
||||
MatrixX copy;
|
||||
if (m_isTranspose) copy = matrix.adjoint()/scale;
|
||||
@ -282,7 +292,11 @@ BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsign
|
||||
m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
|
||||
m_computed.template bottomRows<1>().setZero();
|
||||
divide(0, m_diagSize - 1, 0, 0, 0);
|
||||
|
||||
if (m_info != Success && m_info != NoConvergence) {
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
//**** step 3 - Copy singular values and vectors
|
||||
for (int i=0; i<m_diagSize; i++)
|
||||
{
|
||||
@ -394,7 +408,7 @@ void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, co
|
||||
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
|
||||
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
|
||||
template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::divide (Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
|
||||
void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
|
||||
{
|
||||
// requires rows = cols + 1;
|
||||
using std::pow;
|
||||
@ -414,6 +428,8 @@ void BDCSVD<MatrixType>::divide (Eigen::Index firstCol, Eigen::Index lastCol, Ei
|
||||
{
|
||||
// FIXME this line involves temporaries
|
||||
JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
|
||||
m_info = b.info();
|
||||
if (m_info != Success && m_info != NoConvergence) return;
|
||||
if (m_compU)
|
||||
m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
|
||||
else
|
||||
@ -433,7 +449,9 @@ void BDCSVD<MatrixType>::divide (Eigen::Index firstCol, Eigen::Index lastCol, Ei
|
||||
// and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
|
||||
// right submatrix before the left one.
|
||||
divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
|
||||
if (m_info != Success && m_info != NoConvergence) return;
|
||||
divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
|
||||
if (m_info != Success && m_info != NoConvergence) return;
|
||||
|
||||
if (m_compU)
|
||||
{
|
||||
|
@ -585,6 +585,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
using Base::m_matrixU;
|
||||
using Base::m_matrixV;
|
||||
using Base::m_singularValues;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_isAllocated;
|
||||
using Base::m_usePrescribedThreshold;
|
||||
@ -625,6 +626,7 @@ void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen:
|
||||
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_info = Success;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
@ -674,7 +676,12 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = matrix.cwiseAbs().maxCoeff();
|
||||
RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
|
||||
if (!(numext::isfinite)(scale)) {
|
||||
m_isInitialized = true;
|
||||
m_info = InvalidInput;
|
||||
return *this;
|
||||
}
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
|
||||
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
||||
|
@ -52,7 +52,7 @@ template<typename Derived> struct traits<SVDBase<Derived> >
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
* \sa class BDCSVD, class JacobiSVD
|
||||
*/
|
||||
@ -97,7 +97,7 @@ public:
|
||||
*/
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
_check_compute_assertions();
|
||||
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
||||
return m_matrixU;
|
||||
}
|
||||
@ -113,7 +113,7 @@ public:
|
||||
*/
|
||||
const MatrixVType& matrixV() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
_check_compute_assertions();
|
||||
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
||||
return m_matrixV;
|
||||
}
|
||||
@ -125,14 +125,14 @@ public:
|
||||
*/
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
_check_compute_assertions();
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
/** \returns the number of singular values that are not exactly 0 */
|
||||
Index nonzeroSingularValues() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
_check_compute_assertions();
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
@ -145,7 +145,7 @@ public:
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
_check_compute_assertions();
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
@ -224,6 +224,18 @@ public:
|
||||
solve(const MatrixBase<Rhs>& b) const;
|
||||
#endif
|
||||
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was successful.
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename RhsType, typename DstType>
|
||||
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
||||
@ -233,26 +245,33 @@ public:
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
void _check_compute_assertions() const {
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
eigen_assert(m_info != InvalidInput && "SVD failed due to invalid input.");
|
||||
eigen_assert(m_info != NumericalIssue && "SVD failed due to invalid input.");
|
||||
}
|
||||
|
||||
template<bool Transpose_, typename Rhs>
|
||||
void _check_solve_assertion(const Rhs& b) const {
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(b);
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
_check_compute_assertions();
|
||||
eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice).");
|
||||
eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b");
|
||||
}
|
||||
|
||||
|
||||
// return true if already allocated
|
||||
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
||||
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
@ -265,7 +284,8 @@ protected:
|
||||
* Default constructor of SVDBase
|
||||
*/
|
||||
SVDBase()
|
||||
: m_isInitialized(false),
|
||||
: m_info(Success),
|
||||
m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computeFullU(false),
|
||||
@ -327,6 +347,7 @@ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computat
|
||||
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_info = Success;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
|
@ -298,7 +298,8 @@ EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
|
||||
// workaround aggressive optimization in ICC
|
||||
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
|
||||
|
||||
// all this function does is verify we don't iterate infinitely on nan/inf values
|
||||
// This function verifies we don't iterate infinitely on nan/inf values,
|
||||
// and that info() returns InvalidInput.
|
||||
template<typename SvdType, typename MatrixType>
|
||||
void svd_inf_nan()
|
||||
{
|
||||
@ -307,18 +308,22 @@ void svd_inf_nan()
|
||||
Scalar some_inf = Scalar(1) / zero<Scalar>();
|
||||
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
|
||||
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||
VERIFY(nan != nan);
|
||||
svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
MatrixType m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
// regression test for bug 791
|
||||
m.resize(3,3);
|
||||
@ -326,6 +331,7 @@ void svd_inf_nan()
|
||||
0, -0.5, 0,
|
||||
nan, 0, 0;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
m.resize(4,4);
|
||||
m << 1, 0, 0, 0,
|
||||
@ -333,6 +339,7 @@ void svd_inf_nan()
|
||||
1, 0, 1, nan,
|
||||
0, nan, nan, 0;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
}
|
||||
|
||||
// Regression test for bug 286: JacobiSVD loops indefinitely with some
|
||||
|
Loading…
Reference in New Issue
Block a user