mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
* fix the QR module to use extract/part instead of the previous triangular stuff
* added qr and eigensolver tests * fix a compilation warning in Matrix copy constructor
This commit is contained in:
parent
5aa00f6870
commit
559233c73e
@ -318,7 +318,7 @@ class Matrix : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Flags, _MaxRows,
|
||||
}
|
||||
/** Copy constructor */
|
||||
inline Matrix(const Matrix& other)
|
||||
: m_storage(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
: Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
{
|
||||
Base::lazyAssign(other);
|
||||
}
|
||||
|
@ -167,7 +167,7 @@ template<typename T> class ei_product_eval_to_column_major
|
||||
template<typename T, int n=1> struct ei_product_nested_rhs
|
||||
{
|
||||
typedef typename ei_meta_if<
|
||||
(ei_traits<T>::Flags & NestByValueBit) && !(ei_traits<T>::Flags & RowMajorBit),
|
||||
(ei_traits<T>::Flags & NestByValueBit) && (!(ei_traits<T>::Flags & RowMajorBit)) && (int(ei_traits<T>::Flags) & DirectAccessBit),
|
||||
T,
|
||||
typename ei_meta_if<
|
||||
((ei_traits<T>::Flags & EvalBeforeNestingBit)
|
||||
@ -183,7 +183,7 @@ template<typename T, int n=1> struct ei_product_nested_rhs
|
||||
template<typename T, int n=1> struct ei_product_nested_lhs
|
||||
{
|
||||
typedef typename ei_meta_if<
|
||||
ei_traits<T>::Flags & NestByValueBit,
|
||||
ei_traits<T>::Flags & NestByValueBit && (int(ei_traits<T>::Flags) & DirectAccessBit),
|
||||
T,
|
||||
typename ei_meta_if<
|
||||
int(ei_traits<T>::Flags) & EvalBeforeNestingBit
|
||||
|
@ -32,7 +32,7 @@
|
||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
||||
* \param IsSelfadjoint tells the input matrix is guaranteed to be selfadjoint (hermitian). In that case the
|
||||
* return type of eigenvalues() is a real vector.
|
||||
*
|
||||
*
|
||||
* Currently it only support real matrices.
|
||||
*
|
||||
* \note this code was adapted from JAMA (public domain)
|
||||
@ -49,6 +49,7 @@ template<typename _MatrixType, bool IsSelfadjoint=false> class EigenSolver
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<typename ei_meta_if<IsSelfadjoint, Scalar, Complex>::ret, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
||||
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
|
||||
|
||||
EigenSolver(const MatrixType& matrix)
|
||||
: m_eivec(matrix.rows(), matrix.cols()),
|
||||
@ -74,7 +75,7 @@ template<typename _MatrixType, bool IsSelfadjoint=false> class EigenSolver
|
||||
void tql2(RealVectorType& eivalr, RealVectorType& eivali);
|
||||
|
||||
void orthes(MatrixType& matH, RealVectorType& ort);
|
||||
void hqr2(MatrixType& matH, RealVectorType& ort);
|
||||
void hqr2(MatrixType& matH);
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
@ -87,7 +88,7 @@ void EigenSolver<MatrixType,IsSelfadjoint>::computeImpl(const MatrixType& matrix
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
|
||||
|
||||
RealVectorType eivali(n);
|
||||
m_eivec = matrix;
|
||||
|
||||
@ -115,25 +116,25 @@ void EigenSolver<MatrixType,IsSelfadjoint>::computeImpl(const MatrixType& matrix
|
||||
RealVectorType eivalr(n);
|
||||
RealVectorType eivali(n);
|
||||
m_eivec = matrix;
|
||||
|
||||
|
||||
// Tridiagonalize.
|
||||
tridiagonalization(eivalr, eivali);
|
||||
|
||||
|
||||
// Diagonalize.
|
||||
tql2(eivalr, eivali);
|
||||
|
||||
|
||||
m_eivalues = eivalr.template cast<Complex>();
|
||||
}
|
||||
else
|
||||
{
|
||||
MatrixType matH = matrix;
|
||||
RealVectorType ort(n);
|
||||
|
||||
|
||||
// Reduce to Hessenberg form.
|
||||
orthes(matH, ort);
|
||||
|
||||
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
hqr2(matH, ort);
|
||||
hqr2(matH);
|
||||
}
|
||||
}
|
||||
|
||||
@ -198,7 +199,7 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tridiagonalization(RealVectorType& e
|
||||
f = (eivali.start(i).transpose() * eivalr.start(i))(0,0);
|
||||
eivali.start(i) = (eivali.start(i) - (f / (h + h)) * eivalr.start(i))/h;
|
||||
|
||||
m_eivec.corner(TopLeft, i, i).lower() -=
|
||||
m_eivec.corner(TopLeft, i, i).template part<Lower>() -=
|
||||
( (eivali.start(i) * eivalr.start(i).transpose()).lazy()
|
||||
+ (eivalr.start(i) * eivali.start(i).transpose()).lazy());
|
||||
|
||||
@ -279,7 +280,7 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tql2(RealVectorType& eivalr, RealVec
|
||||
Scalar dl1 = eivalr[l+1];
|
||||
Scalar h = g - eivalr[l];
|
||||
if (l+2<n)
|
||||
eivalr.end(n-l-2) -= RealVectorType::constant(n-l-2, h);
|
||||
eivalr.end(n-l-2) -= RealVectorTypeX::constant(n-l-2, h);
|
||||
f = f + h;
|
||||
|
||||
// Implicit QL transformation.
|
||||
@ -432,7 +433,7 @@ std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
|
||||
|
||||
// Nonsymmetric reduction from Hessenberg to real Schur form.
|
||||
template<typename MatrixType, bool IsSelfadjoint>
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH, RealVectorType& ort)
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
{
|
||||
// This is derived from the Algol procedure hqr2,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
|
@ -46,7 +46,7 @@ template<typename MatrixType> class QR
|
||||
public:
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> RMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
QR(const MatrixType& matrix)
|
||||
@ -59,7 +59,7 @@ template<typename MatrixType> class QR
|
||||
/** \returns whether or not the matrix is of full rank */
|
||||
bool isFullRank() const { return ei_isMuchSmallerThan(m_norms.cwiseAbs().minCoeff(), Scalar(1)); }
|
||||
|
||||
RMatrixType matrixR(void) const;
|
||||
MatrixTypeR matrixR(void) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
|
||||
@ -108,10 +108,10 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
|
||||
|
||||
/** \returns the matrix R */
|
||||
template<typename MatrixType>
|
||||
typename QR<MatrixType>::RMatrixType QR<MatrixType>::matrixR(void) const
|
||||
typename QR<MatrixType>::MatrixTypeR QR<MatrixType>::matrixR(void) const
|
||||
{
|
||||
int cols = m_qr.cols();
|
||||
RMatrixType res = m_qr.block(0,0,cols,cols).strictlyUpper();
|
||||
MatrixTypeR res = m_qr.block(0,0,cols,cols).template extract<StrictlyUpper>();
|
||||
res.diagonal() = m_norms;
|
||||
return res;
|
||||
}
|
||||
|
@ -75,5 +75,7 @@ EI_ADD_TEST(product)
|
||||
EI_ADD_TEST(triangular)
|
||||
EI_ADD_TEST(cholesky)
|
||||
# EI_ADD_TEST(determinant)
|
||||
EI_ADD_TEST(qr)
|
||||
EI_ADD_TEST(eigensolver)
|
||||
|
||||
ENDIF(BUILD_TESTS)
|
||||
|
61
test/eigensolver.cpp
Normal file
61
test/eigensolver.cpp
Normal file
@ -0,0 +1,61 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/QR>
|
||||
|
||||
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
EigenSolver.h
|
||||
*/
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
MatrixType a = MatrixType::random(rows,cols);
|
||||
MatrixType covMat = a.adjoint() * a;
|
||||
|
||||
EigenSolver<MatrixType,true> eiSymm(covMat);
|
||||
VERIFY_IS_APPROX(covMat * eiSymm.eigenvectors(), eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal());
|
||||
|
||||
EigenSolver<MatrixType,false> eiNotSymmButSymm(covMat);
|
||||
VERIFY_IS_APPROX((covMat.template cast<Complex>()) * (eiNotSymmButSymm.eigenvectors().template cast<Complex>()),
|
||||
(eiNotSymmButSymm.eigenvectors().template cast<Complex>()) * (eiNotSymmButSymm.eigenvalues().asDiagonal()));
|
||||
|
||||
EigenSolver<MatrixType,false> eiNotSymm(a);
|
||||
// VERIFY_IS_APPROX(a.template cast<Complex>() * eiNotSymm.eigenvectors().template cast<Complex>(),
|
||||
// eiNotSymm.eigenvectors().template cast<Complex>() * eiNotSymm.eigenvalues().asDiagonal());
|
||||
|
||||
}
|
||||
|
||||
void test_eigensolver()
|
||||
{
|
||||
for(int i = 0; i < 1; i++) {
|
||||
CALL_SUBTEST( eigensolver(Matrix3f()) );
|
||||
CALL_SUBTEST( eigensolver(Matrix4d()) );
|
||||
CALL_SUBTEST( eigensolver(MatrixXd(7,7)) );
|
||||
}
|
||||
}
|
55
test/qr.cpp
Normal file
55
test/qr.cpp
Normal file
@ -0,0 +1,55 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/QR>
|
||||
|
||||
template<typename MatrixType> void qr(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
QR.h
|
||||
*/
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
MatrixType a = MatrixType::random(rows,cols);
|
||||
QR<MatrixType> qrOfA(a);
|
||||
|
||||
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
|
||||
VERIFY_IS_NOT_APPROX(a+MatrixType::identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
|
||||
}
|
||||
|
||||
void test_qr()
|
||||
{
|
||||
for(int i = 0; i < 1; i++) {
|
||||
CALL_SUBTEST( qr(Matrix2f()) );
|
||||
CALL_SUBTEST( qr(Matrix3d()) );
|
||||
CALL_SUBTEST( qr(MatrixXf(12,8)) );
|
||||
// CALL_SUBTEST( qr(MatrixXcd(17,7)) ); // complex numbers are not supported yet
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user