Fix HouseholderSequence::conjugate() and ::adjoint() and add respective unit tests.

This commit is contained in:
Gael Guennebaud 2013-06-17 00:14:42 +02:00
parent 9f11f80db1
commit 55365566b2
8 changed files with 31 additions and 9 deletions

View File

@ -82,7 +82,7 @@ template<typename _MatrixType> class HessenbergDecomposition
typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
/** \brief Return type of matrixQ() */
typedef typename HouseholderSequence<MatrixType,CoeffVectorType>::ConjugateReturnType HouseholderSequenceType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType;

View File

@ -96,7 +96,7 @@ template<typename _MatrixType> class Tridiagonalization
>::type SubDiagonalReturnType;
/** \brief Return type of matrixQ() */
typedef typename HouseholderSequence<MatrixType,CoeffVectorType>::ConjugateReturnType HouseholderSequenceType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
/** \brief Default constructor.
*

View File

@ -125,7 +125,9 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
typedef typename VectorsType::Index Index;
typedef HouseholderSequence<
VectorsType,
typename internal::conditional<NumTraits<Scalar>::IsComplex,
typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
VectorsType>::type,
typename internal::conditional<NumTraits<Scalar>::IsComplex,
typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
CoeffsType>::type,
@ -206,7 +208,7 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
/** \brief Complex conjugate of the Householder sequence. */
ConjugateReturnType conjugate() const
{
return ConjugateReturnType(m_vectors, m_coeffs.conjugate())
return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
.setTrans(m_trans)
.setLength(m_length)
.setShift(m_shift);

View File

@ -55,7 +55,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
private:

View File

@ -57,7 +57,7 @@ template<typename _MatrixType> class HouseholderQR
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
/**
* \brief Default Constructor.

View File

@ -39,7 +39,7 @@ template<typename _MatrixType> class UpperBidiagonalization
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> >
> HouseholderUSequenceType;
typedef HouseholderSequence<
const MatrixType,
const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
Diagonal<const MatrixType,1>,
OnTheRight
> HouseholderVSequenceType;
@ -74,7 +74,7 @@ template<typename _MatrixType> class UpperBidiagonalization
const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
{
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
return HouseholderVSequenceType(m_householder, m_householder.const_derived().template diagonal<1>())
return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
.setLength(m_householder.cols()-1)
.setShift(1);
}

View File

@ -89,12 +89,29 @@ template<typename MatrixType> void householder(const MatrixType& m)
hseq.setLength(hc.size()).setShift(shift);
VERIFY(hseq.length() == hc.size());
VERIFY(hseq.shift() == shift);
MatrixType m5 = m2;
m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero();
VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
m3 = hseq;
VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
SquareMatrixType hseq_mat = hseq;
SquareMatrixType hseq_mat_conj = hseq.conjugate();
SquareMatrixType hseq_mat_adj = hseq.adjoint();
SquareMatrixType hseq_mat_trans = hseq.transpose();
SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj);
VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj);
VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans);
VERIFY_IS_APPROX(hseq_mat * m6, hseq_mat * m6);
VERIFY_IS_APPROX(hseq_mat.adjoint() * m6, hseq_mat_adj * m6);
VERIFY_IS_APPROX(hseq_mat.conjugate() * m6, hseq_mat_conj * m6);
VERIFY_IS_APPROX(hseq_mat.transpose() * m6, hseq_mat_trans * m6);
VERIFY_IS_APPROX(m6 * hseq_mat, m6 * hseq_mat);
VERIFY_IS_APPROX(m6 * hseq_mat.adjoint(), m6 * hseq_mat_adj);
VERIFY_IS_APPROX(m6 * hseq_mat.conjugate(), m6 * hseq_mat_conj);
VERIFY_IS_APPROX(m6 * hseq_mat.transpose(), m6 * hseq_mat_trans);
// test householder sequence on the right with a shift

View File

@ -16,6 +16,7 @@ template<typename MatrixType> void upperbidiag(const MatrixType& m)
const typename MatrixType::Index cols = m.cols();
typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TransposeMatrixType;
MatrixType a = MatrixType::Random(rows,cols);
internal::UpperBidiagonalization<MatrixType> ubd(a);
@ -24,6 +25,8 @@ template<typename MatrixType> void upperbidiag(const MatrixType& m)
b.block(0,0,cols,cols) = ubd.bidiagonal();
MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint();
VERIFY_IS_APPROX(a,c);
TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint();
VERIFY_IS_APPROX(a.adjoint(),d);
}
void test_upperbidiagonalization()