mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-30 17:40:05 +08:00
Fixed wrong line endings.
This commit is contained in:
parent
d7a2a37a4c
commit
5409ce1625
@ -1,149 +1,149 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Claire Maurice
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
#define EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class ComplexEigenSolver
|
||||
*
|
||||
* \brief Eigen values/vectors solver for general complex matrices
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
||||
*
|
||||
* \sa class EigenSolver, class SelfAdjointEigenSolver
|
||||
*/
|
||||
template<typename _MatrixType> class ComplexEigenSolver
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, MatrixType::ColsAtCompileTime,1> EigenvalueType;
|
||||
typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> EigenvectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via ComplexEigenSolver::compute(const MatrixType&).
|
||||
*/
|
||||
ComplexEigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false)
|
||||
{}
|
||||
|
||||
ComplexEigenSolver(const MatrixType& matrix)
|
||||
: m_eivec(matrix.rows(),matrix.cols()),
|
||||
m_eivalues(matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
EigenvectorType eigenvectors(void) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_eivec;
|
||||
}
|
||||
|
||||
EigenvalueType eigenvalues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_eivalues;
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
// this code is inspired from Jampack
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
m_eivec.resize(n,n);
|
||||
|
||||
RealScalar eps = epsilon<RealScalar>();
|
||||
|
||||
// Reduce to complex Schur form
|
||||
ComplexSchur<MatrixType> schur(matrix);
|
||||
|
||||
m_eivalues = schur.matrixT().diagonal();
|
||||
|
||||
m_eivec.setZero();
|
||||
|
||||
Scalar d2, z;
|
||||
RealScalar norm = matrix.norm();
|
||||
|
||||
// compute the (normalized) eigenvectors
|
||||
for(int k=n-1 ; k>=0 ; k--)
|
||||
{
|
||||
d2 = schur.matrixT().coeff(k,k);
|
||||
m_eivec.coeffRef(k,k) = Scalar(1.0,0.0);
|
||||
for(int i=k-1 ; i>=0 ; i--)
|
||||
{
|
||||
m_eivec.coeffRef(i,k) = -schur.matrixT().coeff(i,k);
|
||||
if(k-i-1>0)
|
||||
m_eivec.coeffRef(i,k) -= (schur.matrixT().row(i).segment(i+1,k-i-1) * m_eivec.col(k).segment(i+1,k-i-1)).value();
|
||||
z = schur.matrixT().coeff(i,i) - d2;
|
||||
if(z==Scalar(0))
|
||||
ei_real_ref(z) = eps * norm;
|
||||
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) / z;
|
||||
|
||||
}
|
||||
m_eivec.col(k).normalize();
|
||||
}
|
||||
|
||||
m_eivec = schur.matrixU() * m_eivec;
|
||||
m_isInitialized = true;
|
||||
|
||||
// sort the eigenvalues
|
||||
{
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
int k;
|
||||
m_eivalues.cwise().abs().end(n-i).minCoeff(&k);
|
||||
if (k != 0)
|
||||
{
|
||||
k += i;
|
||||
std::swap(m_eivalues[k],m_eivalues[i]);
|
||||
m_eivec.col(i).swap(m_eivec.col(k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Claire Maurice
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
#define EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class ComplexEigenSolver
|
||||
*
|
||||
* \brief Eigen values/vectors solver for general complex matrices
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
||||
*
|
||||
* \sa class EigenSolver, class SelfAdjointEigenSolver
|
||||
*/
|
||||
template<typename _MatrixType> class ComplexEigenSolver
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, MatrixType::ColsAtCompileTime,1> EigenvalueType;
|
||||
typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> EigenvectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via ComplexEigenSolver::compute(const MatrixType&).
|
||||
*/
|
||||
ComplexEigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false)
|
||||
{}
|
||||
|
||||
ComplexEigenSolver(const MatrixType& matrix)
|
||||
: m_eivec(matrix.rows(),matrix.cols()),
|
||||
m_eivalues(matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
EigenvectorType eigenvectors(void) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_eivec;
|
||||
}
|
||||
|
||||
EigenvalueType eigenvalues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_eivalues;
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
// this code is inspired from Jampack
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
m_eivec.resize(n,n);
|
||||
|
||||
RealScalar eps = epsilon<RealScalar>();
|
||||
|
||||
// Reduce to complex Schur form
|
||||
ComplexSchur<MatrixType> schur(matrix);
|
||||
|
||||
m_eivalues = schur.matrixT().diagonal();
|
||||
|
||||
m_eivec.setZero();
|
||||
|
||||
Scalar d2, z;
|
||||
RealScalar norm = matrix.norm();
|
||||
|
||||
// compute the (normalized) eigenvectors
|
||||
for(int k=n-1 ; k>=0 ; k--)
|
||||
{
|
||||
d2 = schur.matrixT().coeff(k,k);
|
||||
m_eivec.coeffRef(k,k) = Scalar(1.0,0.0);
|
||||
for(int i=k-1 ; i>=0 ; i--)
|
||||
{
|
||||
m_eivec.coeffRef(i,k) = -schur.matrixT().coeff(i,k);
|
||||
if(k-i-1>0)
|
||||
m_eivec.coeffRef(i,k) -= (schur.matrixT().row(i).segment(i+1,k-i-1) * m_eivec.col(k).segment(i+1,k-i-1)).value();
|
||||
z = schur.matrixT().coeff(i,i) - d2;
|
||||
if(z==Scalar(0))
|
||||
ei_real_ref(z) = eps * norm;
|
||||
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) / z;
|
||||
|
||||
}
|
||||
m_eivec.col(k).normalize();
|
||||
}
|
||||
|
||||
m_eivec = schur.matrixU() * m_eivec;
|
||||
m_isInitialized = true;
|
||||
|
||||
// sort the eigenvalues
|
||||
{
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
int k;
|
||||
m_eivalues.cwise().abs().end(n-i).minCoeff(&k);
|
||||
if (k != 0)
|
||||
{
|
||||
k += i;
|
||||
std::swap(m_eivalues[k],m_eivalues[i]);
|
||||
m_eivec.col(i).swap(m_eivec.col(k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
|
Loading…
Reference in New Issue
Block a user