mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
bugfix in blueNorm
This commit is contained in:
parent
65fc70b750
commit
525da6a464
@ -304,29 +304,6 @@ MatrixBase<Derived>::stableNorm() const
|
||||
return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
|
||||
}
|
||||
|
||||
/** \internal Computes ibeta^iexp by binary expansion of iexp,
|
||||
* exact if ibeta is the machine base */
|
||||
template<typename T> inline T bexp(int ibeta, int iexp)
|
||||
{
|
||||
T tbeta = T(ibeta);
|
||||
T res = 1.0;
|
||||
int n = iexp;
|
||||
if (n<0)
|
||||
{
|
||||
n = - n;
|
||||
tbeta = 1.0/tbeta;
|
||||
}
|
||||
for(;;)
|
||||
{
|
||||
if ((n % 2)==0)
|
||||
res = res * tbeta;
|
||||
n = n/2;
|
||||
if (n==0) return res;
|
||||
tbeta = tbeta*tbeta;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
|
||||
* A Portable Fortran Program to Find the Euclidean Norm of a Vector,
|
||||
* ACM TOMS, Vol 4, Issue 1, 1978.
|
||||
@ -337,7 +314,7 @@ template<typename Derived>
|
||||
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
|
||||
MatrixBase<Derived>::blueNorm() const
|
||||
{
|
||||
static int nmax;
|
||||
static int nmax = -1;
|
||||
static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
|
||||
int n;
|
||||
Scalar ax, abig, amed, asml;
|
||||
@ -355,8 +332,8 @@ MatrixBase<Derived>::blueNorm() const
|
||||
// are used. For any specific computer, each of the assignment
|
||||
// statements can be replaced
|
||||
nbig = std::numeric_limits<int>::max(); // largest integer
|
||||
ibeta = NumTraits<Scalar>::Base; // base for floating-point numbers
|
||||
it = NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
|
||||
ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base; // base for floating-point numbers
|
||||
it = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
|
||||
iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent
|
||||
iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent
|
||||
rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number
|
||||
@ -368,17 +345,17 @@ MatrixBase<Derived>::blueNorm() const
|
||||
ei_assert(false && "the algorithm cannot be guaranteed on this computer");
|
||||
}
|
||||
iexp = -((1-iemin)/2);
|
||||
b1 = bexp<Scalar>(ibeta, iexp); // lower boundary of midrange
|
||||
b1 = std::pow(ibeta, iexp); // lower boundary of midrange
|
||||
iexp = (iemax + 1 - it)/2;
|
||||
b2 = bexp<Scalar>(ibeta,iexp); // upper boundary of midrange
|
||||
b2 = std::pow(ibeta,iexp); // upper boundary of midrange
|
||||
|
||||
iexp = (2-iemin)/2;
|
||||
s1m = bexp<Scalar>(ibeta,iexp); // scaling factor for lower range
|
||||
s1m = std::pow(ibeta,iexp); // scaling factor for lower range
|
||||
iexp = - ((iemax+it)/2);
|
||||
s2m = bexp<Scalar>(ibeta,iexp); // scaling factor for upper range
|
||||
s2m = std::pow(ibeta,iexp); // scaling factor for upper range
|
||||
|
||||
overfl = rbig*s2m; // overfow boundary for abig
|
||||
eps = bexp<Scalar>(ibeta, 1-it);
|
||||
eps = std::pow(ibeta, 1-it);
|
||||
relerr = ei_sqrt(eps); // tolerance for neglecting asml
|
||||
abig = 1.0/eps - 1.0;
|
||||
if (Scalar(nbig)>abig) nmax = abig; // largest safe n
|
||||
|
@ -70,9 +70,7 @@ template<> struct NumTraits<float>
|
||||
HasFloatingPoint = 1,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1,
|
||||
Base = 2,
|
||||
Mantissa = 23
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
@ -85,9 +83,7 @@ template<> struct NumTraits<double>
|
||||
HasFloatingPoint = 1,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1,
|
||||
Base = 2,
|
||||
Mantissa = 52
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
#include <typeinfo>
|
||||
#include <Eigen/Core>
|
||||
#include "BenchTimer.h"
|
||||
using namespace Eigen;
|
||||
@ -58,18 +59,23 @@ EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v)
|
||||
return ei_sqrt(v(0));
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE
|
||||
Packet4f ei_plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); }
|
||||
Packet2d ei_plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); }
|
||||
|
||||
Packet4f ei_pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); }
|
||||
Packet2d ei_pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); }
|
||||
#endif
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
|
||||
{
|
||||
#ifndef EIGEN_VECTORIZE
|
||||
return v.blueNorm();
|
||||
#else
|
||||
typedef typename T::Scalar Scalar;
|
||||
|
||||
static int nmax;
|
||||
static int nmax = 0;
|
||||
static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
|
||||
int n;
|
||||
|
||||
@ -79,8 +85,8 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
|
||||
Scalar abig, eps;
|
||||
|
||||
nbig = std::numeric_limits<int>::max(); // largest integer
|
||||
ibeta = NumTraits<Scalar>::Base; // base for floating-point numbers
|
||||
it = NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
|
||||
ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base; // base for floating-point numbers
|
||||
it = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
|
||||
iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent
|
||||
iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent
|
||||
rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number
|
||||
@ -92,17 +98,17 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
|
||||
ei_assert(false && "the algorithm cannot be guaranteed on this computer");
|
||||
}
|
||||
iexp = -((1-iemin)/2);
|
||||
b1 = bexp<Scalar>(ibeta, iexp); // lower boundary of midrange
|
||||
b1 = std::pow(ibeta, iexp); // lower boundary of midrange
|
||||
iexp = (iemax + 1 - it)/2;
|
||||
b2 = bexp<Scalar>(ibeta,iexp); // upper boundary of midrange
|
||||
b2 = std::pow(ibeta,iexp); // upper boundary of midrange
|
||||
|
||||
iexp = (2-iemin)/2;
|
||||
s1m = bexp<Scalar>(ibeta,iexp); // scaling factor for lower range
|
||||
s1m = std::pow(ibeta,iexp); // scaling factor for lower range
|
||||
iexp = - ((iemax+it)/2);
|
||||
s2m = bexp<Scalar>(ibeta,iexp); // scaling factor for upper range
|
||||
s2m = std::pow(ibeta,iexp); // scaling factor for upper range
|
||||
|
||||
overfl = rbig*s2m; // overfow boundary for abig
|
||||
eps = bexp<Scalar>(ibeta, 1-it);
|
||||
eps = std::pow(ibeta, 1-it);
|
||||
relerr = ei_sqrt(eps); // tolerance for neglecting asml
|
||||
abig = 1.0/eps - 1.0;
|
||||
if (Scalar(nbig)>abig) nmax = abig; // largest safe n
|
||||
@ -173,6 +179,7 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
|
||||
return abig;
|
||||
else
|
||||
return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig));
|
||||
#endif
|
||||
}
|
||||
|
||||
#define BENCH_PERF(NRM) { \
|
||||
@ -205,6 +212,24 @@ void check_accuracy(double basef, double based, int s)
|
||||
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n";
|
||||
}
|
||||
|
||||
void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
|
||||
{
|
||||
VectorXf vf(s);
|
||||
VectorXd vd(s);
|
||||
for (int i=0; i<s; ++i)
|
||||
{
|
||||
vf[i] = ei_abs(ei_random<double>()) * std::pow(double(10), ei_random<int>(ef0,ef1));
|
||||
vd[i] = ei_abs(ei_random<double>()) * std::pow(double(10), ei_random<int>(ed0,ed1));
|
||||
}
|
||||
|
||||
//std::cout << "reference\t" << ei_sqrt(double(s))*yf << "\t" << ei_sqrt(double(s))*yd << "\n";
|
||||
std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n";
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
int tries = 5;
|
||||
@ -212,39 +237,39 @@ int main(int argc, char** argv)
|
||||
double y = 1.1345743233455785456788e12 * ei_random<double>();
|
||||
VectorXf v = VectorXf::Ones(1024) * y;
|
||||
|
||||
// std::cerr << "Performance (out of cache):\n";
|
||||
// {
|
||||
// int iters = 1;
|
||||
// VectorXf vf = VectorXf::Ones(1024*1024*32) * y;
|
||||
// VectorXd vd = VectorXd::Ones(1024*1024*32) * y;
|
||||
// BENCH_PERF(sqsumNorm);
|
||||
// BENCH_PERF(blueNorm);
|
||||
// BENCH_PERF(pblueNorm);
|
||||
// BENCH_PERF(lapackNorm);
|
||||
// BENCH_PERF(hypotNorm);
|
||||
// }
|
||||
//
|
||||
// std::cerr << "\nPerformance (in cache):\n";
|
||||
// {
|
||||
// int iters = 100000;
|
||||
// VectorXf vf = VectorXf::Ones(512) * y;
|
||||
// VectorXd vd = VectorXd::Ones(512) * y;
|
||||
// BENCH_PERF(sqsumNorm);
|
||||
// BENCH_PERF(blueNorm);
|
||||
// BENCH_PERF(pblueNorm);
|
||||
// BENCH_PERF(lapackNorm);
|
||||
// BENCH_PERF(hypotNorm);
|
||||
// }
|
||||
std::cerr << "Performance (out of cache):\n";
|
||||
{
|
||||
int iters = 1;
|
||||
VectorXf vf = VectorXf::Ones(1024*1024*32) * y;
|
||||
VectorXd vd = VectorXd::Ones(1024*1024*32) * y;
|
||||
BENCH_PERF(sqsumNorm);
|
||||
BENCH_PERF(blueNorm);
|
||||
BENCH_PERF(pblueNorm);
|
||||
BENCH_PERF(lapackNorm);
|
||||
BENCH_PERF(hypotNorm);
|
||||
}
|
||||
|
||||
std::cerr << "\nPerformance (in cache):\n";
|
||||
{
|
||||
int iters = 100000;
|
||||
VectorXf vf = VectorXf::Ones(512) * y;
|
||||
VectorXd vd = VectorXd::Ones(512) * y;
|
||||
BENCH_PERF(sqsumNorm);
|
||||
BENCH_PERF(blueNorm);
|
||||
BENCH_PERF(pblueNorm);
|
||||
BENCH_PERF(lapackNorm);
|
||||
BENCH_PERF(hypotNorm);
|
||||
}
|
||||
|
||||
int s = 10000;
|
||||
double basef_ok = 1.1345743233455785456788e12;
|
||||
double based_ok = 1.1345743233455785456788e32;
|
||||
double basef_ok = 1.1345743233455785456788e15;
|
||||
double based_ok = 1.1345743233455785456788e95;
|
||||
|
||||
double basef_under = 1.1345743233455785456788e-23;
|
||||
double based_under = 1.1345743233455785456788e-180;
|
||||
double basef_under = 1.1345743233455785456788e-27;
|
||||
double based_under = 1.1345743233455785456788e-315;
|
||||
|
||||
double basef_over = 1.1345743233455785456788e+27;
|
||||
double based_over = 1.1345743233455785456788e+185;
|
||||
double based_over = 1.1345743233455785456788e+302;
|
||||
|
||||
std::cout.precision(20);
|
||||
|
||||
@ -256,4 +281,11 @@ int main(int argc, char** argv)
|
||||
|
||||
std::cerr << "\nOverflow:\n";
|
||||
check_accuracy(basef_over, based_over, s);
|
||||
|
||||
std::cerr << "\nVarying (over):\n";
|
||||
for (int k=0; k<5; ++k)
|
||||
{
|
||||
check_accuracy_var(20,27,190,302,s);
|
||||
std::cout << "\n";
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user