merging ei_lmstr() and lmstr_template()

This commit is contained in:
Thomas Capricelli 2009-08-21 03:41:19 +02:00
parent e48b6ad905
commit 524e112ee5
2 changed files with 75 additions and 116 deletions

View File

@ -25,49 +25,6 @@
#ifndef EIGEN_NONLINEAR_MATHFUNCTIONS_H
#define EIGEN_NONLINEAR_MATHFUNCTIONS_H
template<typename Functor, typename Scalar>
int ei_lmstr(
Matrix< Scalar, Dynamic, 1 > &x,
Matrix< Scalar, Dynamic, 1 > &fvec,
int &nfev,
int &njev,
Matrix< Scalar, Dynamic, Dynamic > &fjac,
VectorXi &ipvt,
Matrix< Scalar, Dynamic, 1 > &diag,
int mode=1,
Scalar factor = 100.,
int maxfev = 400,
Scalar ftol = ei_sqrt(epsilon<Scalar>()),
Scalar xtol = ei_sqrt(epsilon<Scalar>()),
Scalar gtol = Scalar(0.),
int nprint=0
)
{
Matrix< Scalar, Dynamic, 1 >
qtf(x.size()),
wa1(x.size()), wa2(x.size()), wa3(x.size()),
wa4(fvec.size());
int ldfjac = fvec.size();
ipvt.resize(x.size());
fjac.resize(ldfjac, x.size());
diag.resize(x.size());
return lmstr_template<Scalar> (
Functor::f, 0,
fvec.size(), x.size(), x.data(), fvec.data(),
fjac.data() , ldfjac,
ftol, xtol, gtol,
maxfev,
diag.data(), mode,
factor,
nprint,
nfev, njev,
ipvt.data(),
qtf.data(),
wa1.data(), wa2.data(), wa3.data(), wa4.data()
);
}
template<typename Functor, typename Scalar>
int ei_lmdif(
Matrix< Scalar, Dynamic, 1 > &x,

View File

@ -1,16 +1,32 @@
template<typename Scalar>
int lmstr_template(minpack_funcderstr_mn fcn, void *p, int m, int n, Scalar *x,
Scalar *fvec, Scalar *fjac, int ldfjac, Scalar ftol,
Scalar xtol, Scalar gtol, int maxfev, Scalar *
diag, int mode, Scalar factor, int nprint,
int &nfev, int &njev, int *ipvt, Scalar *qtf,
Scalar *wa1, Scalar *wa2, Scalar *wa3, Scalar *wa4)
template<typename Functor, typename Scalar>
int ei_lmstr(
Matrix< Scalar, Dynamic, 1 > &x,
Matrix< Scalar, Dynamic, 1 > &fvec,
int &nfev,
int &njev,
Matrix< Scalar, Dynamic, Dynamic > &fjac,
VectorXi &ipvt,
Matrix< Scalar, Dynamic, 1 > &diag,
int mode=1,
Scalar factor = 100.,
int maxfev = 400,
Scalar ftol = ei_sqrt(epsilon<Scalar>()),
Scalar xtol = ei_sqrt(epsilon<Scalar>()),
Scalar gtol = Scalar(0.),
int nprint=0
)
{
/* Initialized data */
const int m = fvec.size(), n = x.size();
Matrix< Scalar, Dynamic, 1 >
qtf(n),
wa1(n), wa2(n), wa3(n),
wa4(m);
int ldfjac = m;
/* System generated locals */
int fjac_offset;
ipvt.resize(n);
fjac.resize(ldfjac, n);
diag.resize(n);
/* Local variables */
int i, j, l;
@ -24,21 +40,7 @@ int lmstr_template(minpack_funcderstr_mn fcn, void *p, int m, int n, Scalar *x,
Scalar fnorm, gnorm, pnorm, xnorm, fnorm1, actred, dirder, prered;
int info;
/* Parameter adjustments */
--wa4;
--fvec;
--wa3;
--wa2;
--wa1;
--qtf;
--ipvt;
--diag;
--x;
fjac_offset = 1 + ldfjac;
fjac -= fjac_offset;
/* Function Body */
info = 0;
iflag = 0;
nfev = 0;
@ -53,7 +55,7 @@ int lmstr_template(minpack_funcderstr_mn fcn, void *p, int m, int n, Scalar *x,
if (mode != 2) {
goto L20;
}
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
if (diag[j] <= 0.) {
goto L340;
}
@ -64,12 +66,12 @@ L20:
/* evaluate the function at the starting point */
/* and calculate its norm. */
iflag = (*fcn)(p, m, n, &x[1], &fvec[1], &wa3[1], 1);
iflag = Functor::f(0, m, n, x.data(), fvec.data(), wa3.data(), 1);
nfev = 1;
if (iflag < 0) {
goto L340;
}
fnorm = ei_enorm<Scalar>(m, &fvec[1]);
fnorm = fvec.stableNorm();;
/* initialize levenberg-marquardt parameter and iteration counter. */
@ -80,14 +82,14 @@ L20:
L30:
/* if requested, call fcn to enable printing of iterates. */
/* if requested, call Functor::f to enable printing of iterates. */
if (nprint <= 0) {
goto L40;
}
iflag = 0;
if ((iter - 1) % nprint == 0) {
iflag = (*fcn)(p, m, n, &x[1], &fvec[1], &wa3[1], 0);
iflag = Functor::f(0, m, n, x.data(), fvec.data(), wa3.data(), 0);
}
if (iflag < 0) {
goto L340;
@ -99,22 +101,21 @@ L40:
/* forming (q transpose)*fvec and storing the first */
/* n components in qtf. */
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
qtf[j] = 0.;
for (i = 1; i <= n; ++i) {
fjac[i + j * ldfjac] = 0.;
for (i = 0; i < n; ++i) {
fjac(i,j) = 0.;
/* L50: */
}
/* L60: */
}
iflag = 2;
for (i = 1; i <= m; ++i) {
if ((*fcn)(p, m, n, &x[1], &fvec[1], &wa3[1], iflag) < 0) {
for (i = 0; i < m; ++i) {
if (Functor::f(0, m, n, x.data(), fvec.data(), wa3.data(), iflag) < 0) {
goto L340;
}
temp = fvec[i];
rwupdt(n, &fjac[fjac_offset], ldfjac, &wa3[1], &qtf[1], &temp, &wa1[
1], &wa2[1]);
rwupdt(n, fjac.data(), ldfjac, wa3.data(), qtf.data(), &temp, wa1.data(), wa2.data());
++iflag;
/* L70: */
}
@ -124,35 +125,36 @@ L40:
/* reorder its columns and update the components of qtf. */
sing = FALSE_;
for (j = 1; j <= n; ++j) {
if (fjac[j + j * ldfjac] == 0.) {
for (j = 0; j < n; ++j) {
if (fjac(j,j) == 0.) {
sing = TRUE_;
}
ipvt[j] = j;
wa2[j] = ei_enorm<Scalar>(j, &fjac[j * ldfjac + 1]);
ipvt[j] = j+1;
wa2[j] = fjac.col(j).start(j).stableNorm();
// wa2[j] = ei_enorm<Scalar>(j, &fjac[j * ldfjac + 1]);
// sum += fjac[i + j * ldfjac] * (qtf[i] / fnorm);
/* L80: */
}
if (! sing) {
goto L130;
}
qrfac(n, n, &fjac[fjac_offset], ldfjac, TRUE_, &ipvt[1], n, &wa1[1], &
wa2[1], &wa3[1]);
for (j = 1; j <= n; ++j) {
if (fjac[j + j * ldfjac] == 0.) {
qrfac(n, n, fjac.data(), ldfjac, TRUE_, ipvt.data(), n, wa1.data(), wa2.data(), wa3.data());
for (j = 0; j < n; ++j) {
if (fjac(j,j) == 0.) {
goto L110;
}
sum = 0.;
for (i = j; i <= n; ++i) {
sum += fjac[i + j * ldfjac] * qtf[i];
for (i = j; i < n; ++i) {
sum += fjac(i,j) * qtf[i];
/* L90: */
}
temp = -sum / fjac[j + j * ldfjac];
for (i = j; i <= n; ++i) {
qtf[i] += fjac[i + j * ldfjac] * temp;
temp = -sum / fjac(j,j);
for (i = j; i < n; ++i) {
qtf[i] += fjac(i,j) * temp;
/* L100: */
}
L110:
fjac[j + j * ldfjac] = wa1[j];
fjac(j,j) = wa1[j];
/* L120: */
}
L130:
@ -166,7 +168,7 @@ L130:
if (mode == 2) {
goto L150;
}
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
diag[j] = wa2[j];
if (wa2[j] == 0.) {
diag[j] = 1.;
@ -178,11 +180,11 @@ L150:
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound delta. */
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
wa3[j] = diag[j] * x[j];
/* L160: */
}
xnorm = ei_enorm<Scalar>(n, &wa3[1]);
xnorm = wa3.stableNorm();
delta = factor * xnorm;
if (delta == 0.) {
delta = factor;
@ -195,14 +197,14 @@ L170:
if (fnorm == 0.) {
goto L210;
}
for (j = 1; j <= n; ++j) {
l = ipvt[j];
for (j = 0; j < n; ++j) {
l = ipvt[j]-1;
if (wa2[l] == 0.) {
goto L190;
}
sum = 0.;
for (i = 1; i <= j; ++i) {
sum += fjac[i + j * ldfjac] * (qtf[i] / fnorm);
for (i = 0; i < j; ++i) {
sum += fjac(i,j) * (qtf[i] / fnorm);
/* L180: */
}
/* Computing MAX */
@ -227,7 +229,7 @@ L210:
if (mode == 2) {
goto L230;
}
for (j = 1; j <= n; ++j) /* Computing MAX */
for (j = 0; j < n; ++j) /* Computing MAX */
diag[j] = max(diag[j], wa2[j]);
L230:
@ -237,18 +239,18 @@ L240:
/* determine the levenberg-marquardt parameter. */
lmpar(n, &fjac[fjac_offset], ldfjac, &ipvt[1], &diag[1], &qtf[1], delta,
&par, &wa1[1], &wa2[1], &wa3[1], &wa4[1]);
lmpar(n, fjac.data(), ldfjac, ipvt.data(), diag.data(), qtf.data(), delta, &par,
wa1.data(), wa2.data(), wa3.data(), wa4.data());
/* store the direction p and x + p. calculate the norm of p. */
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
wa1[j] = -wa1[j];
wa2[j] = x[j] + wa1[j];
wa3[j] = diag[j] * wa1[j];
/* L250: */
}
pnorm = ei_enorm<Scalar>(n, &wa3[1]);
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
@ -258,12 +260,12 @@ L240:
/* evaluate the function at x + p and calculate its norm. */
iflag = (*fcn)(p, m, n, &wa2[1], &wa4[1], &wa3[1], 1);
iflag = Functor::f(0, m, n, wa2.data(), wa4.data(), wa3.data(), 1);
++nfev;
if (iflag < 0) {
goto L340;
}
fnorm1 = ei_enorm<Scalar>(m, &wa4[1]);
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
@ -274,17 +276,17 @@ L240:
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
wa3[j] = 0.;
l = ipvt[j];
l = ipvt[j]-1;
temp = wa1[l];
for (i = 1; i <= j; ++i) {
wa3[i] += fjac[i + j * ldfjac] * temp;
for (i = 0; i <= j; ++i) {
wa3[i] += fjac(i,j) * temp;
/* L260: */
}
/* L270: */
}
temp1 = ei_abs2(ei_enorm<Scalar>(n, &wa3[1]) / fnorm);
temp1 = ei_abs2(wa3.stableNorm() / fnorm);
temp2 = ei_abs2( ei_sqrt(par) * pnorm / fnorm);
/* Computing 2nd power */
prered = temp1 + temp2 / p5;
@ -334,16 +336,16 @@ L300:
/* successful iteration. update x, fvec, and their norms. */
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
x[j] = wa2[j];
wa2[j] = diag[j] * x[j];
/* L310: */
}
for (i = 1; i <= m; ++i) {
for (i = 0; i < m; ++i) {
fvec[i] = wa4[i];
/* L320: */
}
xnorm = ei_enorm<Scalar>(n, &wa2[1]);
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
L330:
@ -400,7 +402,7 @@ L340:
}
iflag = 0;
if (nprint > 0) {
iflag = (*fcn)(p, m, n, &x[1], &fvec[1], &wa3[1], 0);
iflag = Functor::f(0, m, n, x.data(), fvec.data(), wa3.data(), 0);
}
return info;