Avoid integer overflow in EigenMetaKernel indexing

- The current implementation computes `size + total_threads`, which can
  overflow and cause CUDA_ERROR_ILLEGAL_ADDRESS when size is close to
  the maximum representable value.
- The num_blocks calculation can also overflow due to the implementation
  of divup().
- This patch prevents these overflows and allows the kernel to work
  correctly for the full representable range of tensor sizes.
- Also adds relevant tests.
This commit is contained in:
Ben Barsdell 2021-10-18 20:58:14 +11:00
parent 55e3ae02ac
commit 50df8d3d6d
3 changed files with 109 additions and 7 deletions

View File

@ -553,11 +553,59 @@ class TensorExecutor<Expression, GpuDevice, Vectorizable, Tiling> {
};
#if defined(EIGEN_GPUCC)
// Returns 1 if lhs + rhs would overflow, -1 if it would underflow, otherwise 0.
template <typename Index>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int sum_will_overflow(Index lhs,
Index rhs) {
const Index highest = NumTraits<Index>::highest();
const Index lowest = NumTraits<Index>::lowest();
if (lhs > 0 && rhs > 0) {
return lhs > highest - rhs ? 1 : 0;
} else if (lhs < 0 && rhs < 0) {
return lhs < lowest - rhs ? -1 : 0;
} else {
return 0;
}
}
// Returns lhs + rhs, saturating to the highest/lowest representable value on
// overflow/underflow respectively.
template <typename Index>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index saturate_add(Index lhs, Index rhs) {
const Index highest = NumTraits<Index>::highest();
const Index lowest = NumTraits<Index>::lowest();
int overflow = sum_will_overflow(lhs, rhs);
return overflow == 1 ? highest : overflow == -1 ? lowest : lhs + rhs;
}
// A functor that adds step_size to a given index, saturating to avoid
// overflow/underflow. If overflow/underflow is not possible, regular addition
// is used (for efficiency).
template <typename Index>
struct SafeStep {
// lastIdx is one past the end of the possible indexes.
// step_size is the value that will be added to the given index when the
// functor is called.
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SafeStep(Index lastIdx, Index step_size)
: can_overflow_(sum_will_overflow(lastIdx, step_size)),
step_size_(step_size) {}
// Adds step_size to index, saturating on overflow (if overflow is possible).
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index operator()(Index index) const {
return can_overflow_ ? saturate_add(index, step_size_) : index + step_size_;
}
private:
const bool can_overflow_;
const Index step_size_;
};
template <typename Evaluator, typename StorageIndex, bool Vectorizable>
struct EigenMetaKernelEval {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
void run(Evaluator& eval, StorageIndex firstIdx, StorageIndex lastIdx, StorageIndex step_size) {
for (StorageIndex i = firstIdx; i < lastIdx; i += step_size) {
SafeStep<StorageIndex> safe_step(lastIdx, step_size);
for (StorageIndex i = firstIdx; i < lastIdx; i = safe_step(i)) {
eval.evalScalar(i);
}
}
@ -571,12 +619,16 @@ struct EigenMetaKernelEval<Evaluator, StorageIndex, true> {
const StorageIndex vectorized_size = (lastIdx / PacketSize) * PacketSize;
const StorageIndex vectorized_step_size = step_size * PacketSize;
SafeStep<StorageIndex> safe_vectorized_step(vectorized_size,
vectorized_step_size);
// Use the vector path
for (StorageIndex i = firstIdx * PacketSize; i < vectorized_size;
i += vectorized_step_size) {
i = safe_vectorized_step(i)) {
eval.evalPacket(i);
}
for (StorageIndex i = vectorized_size + firstIdx; i < lastIdx; i += step_size) {
SafeStep<StorageIndex> safe_step(lastIdx, step_size);
for (StorageIndex i = saturate_add(vectorized_size, firstIdx); i < lastIdx;
i = safe_step(i)) {
eval.evalScalar(i);
}
}
@ -603,8 +655,11 @@ EIGEN_STRONG_INLINE void TensorExecutor<Expression, GpuDevice, Vectorizable, Til
if (needs_assign) {
const int block_size = device.maxGpuThreadsPerBlock();
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / block_size;
const int max_blocks =
numext::mini<int64_t>(device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor(),
NumTraits<StorageIndex>::highest()) /
block_size;
const StorageIndex size = array_prod(evaluator.dimensions());
// Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);

View File

@ -30,13 +30,15 @@ const T2& choose(Cond<false>, const T1&, const T2& second) {
template <typename T, typename X, typename Y>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T divup(const X x, const Y y) {
return static_cast<T>((x + y - 1) / y);
// Note: This form is used because it cannot overflow.
return static_cast<T>(x == 0 ? 0 : (x - 1) / y + 1);
}
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T divup(const T x, const T y) {
return static_cast<T>((x + y - 1) / y);
// Note: This form is used because it cannot overflow.
return static_cast<T>(x == 0 ? 0 : (x - 1) / y + 1);
}
template <size_t n> struct max_n_1 {

View File

@ -66,6 +66,47 @@ void test_gpu_nullary() {
gpuFree(d_in2);
}
// Tests that there are no indexing overflows when computing tensors with the
// max representable size.
template <typename IndexType,
IndexType N = (std::numeric_limits<IndexType>::max)()>
void test_gpu_nullary_max_size()
{
typedef int8_t DataType;
typedef Tensor<DataType, 1, 0, IndexType> TensorType;
typedef Eigen::array<IndexType, 1> ArrayType;
const IndexType n = N;
TensorType in1((ArrayType(n)));
in1.setZero();
std::size_t in1_bytes = in1.size() * sizeof(DataType);
DataType* d_in1;
gpuMalloc((void**)(&d_in1), in1_bytes);
gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<TensorType> gpu_in1(d_in1, ArrayType(n));
gpu_in1.device(gpu_device) = gpu_in1.constant(123);
TensorType new1((ArrayType(n)));
assert(gpuMemcpyAsync(new1.data(), d_in1, in1_bytes, gpuMemcpyDeviceToHost,
gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
for (IndexType i = 0; i < n; ++i) {
VERIFY_IS_EQUAL(new1(ArrayType(i)), 123);
}
gpuFree(d_in1);
}
void test_gpu_elementwise_small() {
Tensor<float, 1> in1(Eigen::array<Eigen::DenseIndex, 1>(2));
Tensor<float, 1> in2(Eigen::array<Eigen::DenseIndex, 1>(2));
@ -1524,6 +1565,10 @@ void test_gpu_gamma_sample_der_alpha()
EIGEN_DECLARE_TEST(cxx11_tensor_gpu)
{
CALL_SUBTEST_1(test_gpu_nullary());
CALL_SUBTEST_1(test_gpu_nullary_max_size<int16_t>());
CALL_SUBTEST_1(test_gpu_nullary_max_size<int32_t>());
CALL_SUBTEST_1((test_gpu_nullary_max_size<
int64_t, (std::numeric_limits<int32_t>::max)() + 100ll>()));
CALL_SUBTEST_1(test_gpu_elementwise_small());
CALL_SUBTEST_1(test_gpu_elementwise());
CALL_SUBTEST_1(test_gpu_props());