RealQZ: improve computeNorms speed, improve shift accuracy (better to do a/b than a*(1/b)),

update API to set the maximum number of iterations
This commit is contained in:
Gael Guennebaud 2012-07-26 18:03:10 +02:00
parent 7518201de8
commit 4e60e2cdf6

View File

@ -62,7 +62,8 @@ namespace Eigen {
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
*/ */
template<typename _MatrixType> class RealQZ { template<typename _MatrixType> class RealQZ
{
public: public:
typedef _MatrixType MatrixType; typedef _MatrixType MatrixType;
enum { enum {
@ -96,6 +97,7 @@ namespace Eigen {
m_Q(size, size), m_Q(size, size),
m_Z(size, size), m_Z(size, size),
m_workspace(size*2), m_workspace(size*2),
m_maxIters(400),
m_isInitialized(false) m_isInitialized(false)
{ } { }
@ -113,6 +115,7 @@ namespace Eigen {
m_Q(A.rows(),A.cols()), m_Q(A.rows(),A.cols()),
m_Z(A.rows(),A.cols()), m_Z(A.rows(),A.cols()),
m_workspace(A.rows()*2), m_workspace(A.rows()*2),
m_maxIters(400),
m_isInitialized(false) { m_isInitialized(false) {
compute(A, B, computeQZ); compute(A, B, computeQZ);
} }
@ -182,17 +185,20 @@ namespace Eigen {
return m_global_iter; return m_global_iter;
} }
/** \brief Maximum number of iterations. /** Sets the maximal number of iterations allowed.
*
* Maximum number of iterations allowed for an eigenvalue to converge.
*/ */
static const Index m_max_iter = 400; RealQZ& setMaxIterations(Index maxIters)
{
m_maxIters = maxIters;
return *this;
}
private: private:
MatrixType m_S, m_T, m_Q, m_Z; MatrixType m_S, m_T, m_Q, m_Z;
Matrix<Scalar,Dynamic,1> m_workspace; Matrix<Scalar,Dynamic,1> m_workspace;
ComputationInfo m_info; ComputationInfo m_info;
Index m_maxIters;
bool m_isInitialized; bool m_isInitialized;
bool m_computeQZ; bool m_computeQZ;
Scalar m_normOfT, m_normOfS; Scalar m_normOfT, m_normOfS;
@ -215,7 +221,8 @@ namespace Eigen {
/** \internal Reduces S and T to upper Hessenberg - triangular form */ /** \internal Reduces S and T to upper Hessenberg - triangular form */
template<typename MatrixType> template<typename MatrixType>
void RealQZ<MatrixType>::hessenbergTriangular() { void RealQZ<MatrixType>::hessenbergTriangular()
{
const Index dim = m_S.cols(); const Index dim = m_S.cols();
@ -236,8 +243,7 @@ namespace Eigen {
// kill S(i,j) // kill S(i,j)
if(m_S.coeff(i,j) != 0) if(m_S.coeff(i,j) != 0)
{ {
Scalar tmp = m_S(i-1,j); G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
G.makeGivens(tmp, m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
m_S.coeffRef(i,j) = Scalar(0.0); m_S.coeffRef(i,j) = Scalar(0.0);
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint()); m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint()); m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
@ -248,8 +254,7 @@ namespace Eigen {
// kill T(i,i-1) // kill T(i,i-1)
if(m_T.coeff(i,i-1)!=Scalar(0)) if(m_T.coeff(i,i-1)!=Scalar(0))
{ {
Scalar tmp = m_T.coeff(i,i); G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
G.makeGivens(tmp, m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
m_T.coeffRef(i,i-1) = Scalar(0.0); m_T.coeffRef(i,i-1) = Scalar(0.0);
m_S.applyOnTheRight(i,i-1,G); m_S.applyOnTheRight(i,i-1,G);
m_T.topRows(i).applyOnTheRight(i,i-1,G); m_T.topRows(i).applyOnTheRight(i,i-1,G);
@ -263,13 +268,14 @@ namespace Eigen {
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */ /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
template<typename MatrixType> template<typename MatrixType>
inline void RealQZ<MatrixType>::computeNorms() { inline void RealQZ<MatrixType>::computeNorms()
{
const Index size = m_S.cols(); const Index size = m_S.cols();
m_normOfS = Scalar(0.0); m_normOfS = Scalar(0.0);
m_normOfT = Scalar(0.0); m_normOfT = Scalar(0.0);
for (Index j = 0; j < size; ++j) { for (Index j = 0; j < size; ++j)
Index row_start = (std::max)(j-1,Index(0)); {
m_normOfS += m_S.row(j).segment(row_start, size - row_start).cwiseAbs().sum(); m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum(); m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
} }
} }
@ -277,9 +283,11 @@ namespace Eigen {
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */ /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
template<typename MatrixType> template<typename MatrixType>
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu) { inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
{
Index res = iu; Index res = iu;
while (res > 0) { while (res > 0)
{
Scalar s = internal::abs(m_S.coeff(res-1,res-1)) + internal::abs(m_S.coeff(res,res)); Scalar s = internal::abs(m_S.coeff(res-1,res-1)) + internal::abs(m_S.coeff(res,res));
if (s == Scalar(0.0)) if (s == Scalar(0.0))
s = m_normOfS; s = m_normOfS;
@ -292,7 +300,8 @@ namespace Eigen {
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */ /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
template<typename MatrixType> template<typename MatrixType>
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l) { inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
{
Index res = l; Index res = l;
while (res >= f) { while (res >= f) {
if (internal::abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT) if (internal::abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
@ -302,14 +311,16 @@ namespace Eigen {
return res; return res;
} }
/** \internal decouple 2x2 diagonal block in rows iu, iu+1 if eigenvalues are real */ /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
template<typename MatrixType> template<typename MatrixType>
inline void RealQZ<MatrixType>::splitOffTwoRows(Index i) { inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
{
const Index dim=m_S.cols(); const Index dim=m_S.cols();
if (internal::abs(m_S.coeff(i+1,i)==Scalar(0))) if (internal::abs(m_S.coeff(i+1,i)==Scalar(0)))
return; return;
Index z = findSmallDiagEntry(i,i+1); Index z = findSmallDiagEntry(i,i+1);
if (z==i-1) { if (z==i-1)
{
// block of (S T^{-1}) // block of (S T^{-1})
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>(). Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
template solve<OnTheRight>(m_S.template block<2,2>(i,i)); template solve<OnTheRight>(m_S.template block<2,2>(i,i));
@ -339,17 +350,21 @@ namespace Eigen {
m_S.coeffRef(i+1,i) = Scalar(0.0); m_S.coeffRef(i+1,i) = Scalar(0.0);
m_T.coeffRef(i+1,i) = Scalar(0.0); m_T.coeffRef(i+1,i) = Scalar(0.0);
} }
} else { }
else
{
pushDownZero(z,i,i+1); pushDownZero(z,i,i+1);
} }
} }
/** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */ /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
template<typename MatrixType> template<typename MatrixType>
inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l) { inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
{
JRs G; JRs G;
const Index dim = m_S.cols(); const Index dim = m_S.cols();
for (Index zz=z; zz<l; zz++) { for (Index zz=z; zz<l; zz++)
{
// push 0 down // push 0 down
Index firstColS = zz>f ? (zz-1) : zz; Index firstColS = zz>f ? (zz-1) : zz;
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1)); G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
@ -360,7 +375,8 @@ namespace Eigen {
if (m_computeQZ) if (m_computeQZ)
m_Q.applyOnTheRight(zz,zz+1,G); m_Q.applyOnTheRight(zz,zz+1,G);
// kill S(zz+1, zz-1) // kill S(zz+1, zz-1)
if (zz>f) { if (zz>f)
{
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1)); G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G); m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G); m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
@ -387,7 +403,8 @@ namespace Eigen {
// x, y, z // x, y, z
Scalar x, y, z; Scalar x, y, z;
if (iter==10) { if (iter==10)
{
// Wilkinson ad hoc shift // Wilkinson ad hoc shift
const Scalar const Scalar
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1), a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
@ -407,44 +424,60 @@ namespace Eigen {
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
- a21*a21*b12*b11i*b11i*b22i; - a21*a21*b12*b11i*b11i*b22i;
z = a21*a32*b11i*b22i; z = a21*a32*b11i*b22i;
} else if (iter==16) { }
else if (iter==16)
{
// another exceptional shift // another exceptional shift
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) / x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l)); (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
y = m_S.coeff(f+1,f)/m_T.coeff(f,f); y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
z = 0; z = 0;
} else if (iter>23 && !(iter%8)) { }
else if (iter>23 && !(iter%8))
{
// extremely exceptional shift // extremely exceptional shift
x = internal::random<Scalar>(-1.0,1.0); x = internal::random<Scalar>(-1.0,1.0);
y = internal::random<Scalar>(-1.0,1.0); y = internal::random<Scalar>(-1.0,1.0);
z = internal::random<Scalar>(-1.0,1.0); z = internal::random<Scalar>(-1.0,1.0);
} else { }
else
{
// Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
// where l1 and l2 are the eigenvalues of the 2x2 bottom right sub matrix M of AB^-1. Thus:
// = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
// = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
// Since we are only interested in having x, y, z with a correct ratio, we have:
const Scalar const Scalar
a11=m_S.coeff(f,f), a12=m_S.coeff(f,f+1), a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
a21=m_S.coeff(f+1,f), a22=m_S.coeff(f+1,f+1), a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
a32=m_S.coeff(f+2,f+1), a32 = m_S.coeff(f+2,f+1),
a88=m_S.coeff(l-1,l-1), a89=m_S.coeff(l-1,l),
a98=m_S.coeff(l,l-1), a99=m_S.coeff(l,l), a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
b11=m_T.coeff(f,f), b11i=1.0/b11, b12=m_T.coeff(f,f+1), a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
b88i=Scalar(1.0)/m_T.coeff(l-1,l-1), b89=m_T.coeff(l-1,l), b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
b99i=Scalar(1.0)/m_T.coeff(l,l); b22 = m_T.coeff(f+1,f+1),
x = ( (a88*b88i - a11*b11i)*(a99*b99i - a11*b11i) - (a89*b99i)*(a98*b88i) + (a98*b88i)*(b89*b99i)*(a11*b11i) ) * (b11/a21)
+ a12*b22i - (a11*b11i)*(b12*b22i); b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
y = (a22*b22i-a11*b11i) - (a21*b11i)*(b12*b22i) - (a88*b88i-a11*b11i) - (a99*b99i-a11*b11i) + (a98*b88i)*(b89*b99i); b99 = m_T.coeff(l,l);
z = a32*b22i;
x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
+ a12/b22 - (a11/b11)*(b12/b22);
y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
z = a32/b22;
} }
JRs G; JRs G;
for (Index k=f; k<=l-2; k++) { for (Index k=f; k<=l-2; k++)
{
// variables for Householder reflections // variables for Householder reflections
Vector2s essential2; Vector2s essential2;
Scalar tau, beta; Scalar tau, beta;
Vector3s hr(x,y,z); Vector3s hr(x,y,z);
// Q_k // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
hr.makeHouseholderInPlace(tau, beta); hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>(); essential2 = hr.template bottomRows<2>();
Index fc=(std::max)(k-1,Index(0)); // first col to update Index fc=(std::max)(k-1,Index(0)); // first col to update
@ -452,12 +485,10 @@ namespace Eigen {
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
if (m_computeQZ) if (m_computeQZ)
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data()); m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
if (k>f) { if (k>f)
m_S.coeffRef(k+1,k-1) = Scalar(0.0); m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
m_S.coeffRef(k+2,k-1) = Scalar(0.0);
}
// Z_{k1} // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1); hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
hr.makeHouseholderInPlace(tau, beta); hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>(); essential2 = hr.template bottomRows<2>();
@ -475,7 +506,8 @@ namespace Eigen {
m_T.col(k+2).head(lr) -= tau*tmp; m_T.col(k+2).head(lr) -= tau*tmp;
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
} }
if (m_computeQZ) { if (m_computeQZ)
{
// Z // Z
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim); Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k)); tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
@ -483,10 +515,9 @@ namespace Eigen {
m_Z.row(k+2) -= tau*tmp; m_Z.row(k+2) -= tau*tmp;
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp); m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
} }
m_T.coeffRef(k+2,k) = Scalar(0.0); m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
m_T.coeffRef(k+2,k+1) = Scalar(0.0);
// Z_{k2} // Z_{k2} to annihilate T(k+1,k)
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k)); G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
m_S.applyOnTheRight(k+1,k,G); m_S.applyOnTheRight(k+1,k,G);
m_T.applyOnTheRight(k+1,k,G); m_T.applyOnTheRight(k+1,k,G);
@ -502,7 +533,7 @@ namespace Eigen {
z = m_S.coeff(k+3,k); z = m_S.coeff(k+3,k);
} // loop over k } // loop over k
// Q_{n-1} // Q_{n-1} to annihilate y = S(l,l-2)
G.makeGivens(x,y); G.makeGivens(x,y);
m_S.applyOnTheLeft(l-1,l,G.adjoint()); m_S.applyOnTheLeft(l-1,l,G.adjoint());
m_T.applyOnTheLeft(l-1,l,G.adjoint()); m_T.applyOnTheLeft(l-1,l,G.adjoint());
@ -510,19 +541,19 @@ namespace Eigen {
m_Q.applyOnTheRight(l-1,l,G); m_Q.applyOnTheRight(l-1,l,G);
m_S.coeffRef(l,l-2) = Scalar(0.0); m_S.coeffRef(l,l-2) = Scalar(0.0);
// Z_{n-1} // Z_{n-1} to annihilate T(l,l-1)
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1)); G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
m_S.applyOnTheRight(l,l-1,G); m_S.applyOnTheRight(l,l-1,G);
m_T.applyOnTheRight(l,l-1,G); m_T.applyOnTheRight(l,l-1,G);
if (m_computeQZ) if (m_computeQZ)
m_Z.applyOnTheLeft(l,l-1,G.adjoint()); m_Z.applyOnTheLeft(l,l-1,G.adjoint());
m_T.coeffRef(l,l-1) = Scalar(0.0); m_T.coeffRef(l,l-1) = Scalar(0.0);
} }
template<typename MatrixType> template<typename MatrixType>
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) { RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
{
const Index dim = A_in.cols(); const Index dim = A_in.cols();
@ -545,22 +576,31 @@ namespace Eigen {
f, f,
local_iter = 0; local_iter = 0;
while (l>0 && local_iter<m_max_iter) { while (l>0 && local_iter<m_maxIters)
{
f = findSmallSubdiagEntry(l); f = findSmallSubdiagEntry(l);
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0); if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
if (f == l) { if (f == l) // One root found
l --; {
l--;
local_iter = 0; local_iter = 0;
} else if (f == l-1) { }
else if (f == l-1) // Two roots found
{
splitOffTwoRows(f); splitOffTwoRows(f);
l -= 2; l -= 2;
local_iter = 0; local_iter = 0;
} else { }
else // No convergence yet
{
Index z = findSmallDiagEntry(f,l); Index z = findSmallDiagEntry(f,l);
if (z>=f) { if (z>=f)
{
// zero found // zero found
pushDownZero(z,f,l); pushDownZero(z,f,l);
} else { }
else
{
// QR-like iteration // QR-like iteration
step(f,l, local_iter); step(f,l, local_iter);
local_iter++; local_iter++;
@ -569,16 +609,10 @@ namespace Eigen {
} }
} }
// check if we converged before reaching iterations limit // check if we converged before reaching iterations limit
if (local_iter<m_max_iter) { m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
m_info = Success;
} else {
m_info = NoConvergence;
}
return *this; return *this;
} // end compute } // end compute
} // end namespace Eigen } // end namespace Eigen
#endif //EIGEN_REAL_QZ #endif //EIGEN_REAL_QZ