mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-30 17:40:05 +08:00
RealQZ: improve computeNorms speed, improve shift accuracy (better to do a/b than a*(1/b)),
update API to set the maximum number of iterations
This commit is contained in:
parent
7518201de8
commit
4e60e2cdf6
@ -62,7 +62,8 @@ namespace Eigen {
|
|||||||
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
|
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
|
||||||
*/
|
*/
|
||||||
|
|
||||||
template<typename _MatrixType> class RealQZ {
|
template<typename _MatrixType> class RealQZ
|
||||||
|
{
|
||||||
public:
|
public:
|
||||||
typedef _MatrixType MatrixType;
|
typedef _MatrixType MatrixType;
|
||||||
enum {
|
enum {
|
||||||
@ -96,6 +97,7 @@ namespace Eigen {
|
|||||||
m_Q(size, size),
|
m_Q(size, size),
|
||||||
m_Z(size, size),
|
m_Z(size, size),
|
||||||
m_workspace(size*2),
|
m_workspace(size*2),
|
||||||
|
m_maxIters(400),
|
||||||
m_isInitialized(false)
|
m_isInitialized(false)
|
||||||
{ }
|
{ }
|
||||||
|
|
||||||
@ -113,6 +115,7 @@ namespace Eigen {
|
|||||||
m_Q(A.rows(),A.cols()),
|
m_Q(A.rows(),A.cols()),
|
||||||
m_Z(A.rows(),A.cols()),
|
m_Z(A.rows(),A.cols()),
|
||||||
m_workspace(A.rows()*2),
|
m_workspace(A.rows()*2),
|
||||||
|
m_maxIters(400),
|
||||||
m_isInitialized(false) {
|
m_isInitialized(false) {
|
||||||
compute(A, B, computeQZ);
|
compute(A, B, computeQZ);
|
||||||
}
|
}
|
||||||
@ -182,17 +185,20 @@ namespace Eigen {
|
|||||||
return m_global_iter;
|
return m_global_iter;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \brief Maximum number of iterations.
|
/** Sets the maximal number of iterations allowed.
|
||||||
*
|
|
||||||
* Maximum number of iterations allowed for an eigenvalue to converge.
|
|
||||||
*/
|
*/
|
||||||
static const Index m_max_iter = 400;
|
RealQZ& setMaxIterations(Index maxIters)
|
||||||
|
{
|
||||||
|
m_maxIters = maxIters;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
MatrixType m_S, m_T, m_Q, m_Z;
|
MatrixType m_S, m_T, m_Q, m_Z;
|
||||||
Matrix<Scalar,Dynamic,1> m_workspace;
|
Matrix<Scalar,Dynamic,1> m_workspace;
|
||||||
ComputationInfo m_info;
|
ComputationInfo m_info;
|
||||||
|
Index m_maxIters;
|
||||||
bool m_isInitialized;
|
bool m_isInitialized;
|
||||||
bool m_computeQZ;
|
bool m_computeQZ;
|
||||||
Scalar m_normOfT, m_normOfS;
|
Scalar m_normOfT, m_normOfS;
|
||||||
@ -215,7 +221,8 @@ namespace Eigen {
|
|||||||
|
|
||||||
/** \internal Reduces S and T to upper Hessenberg - triangular form */
|
/** \internal Reduces S and T to upper Hessenberg - triangular form */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void RealQZ<MatrixType>::hessenbergTriangular() {
|
void RealQZ<MatrixType>::hessenbergTriangular()
|
||||||
|
{
|
||||||
|
|
||||||
const Index dim = m_S.cols();
|
const Index dim = m_S.cols();
|
||||||
|
|
||||||
@ -236,8 +243,7 @@ namespace Eigen {
|
|||||||
// kill S(i,j)
|
// kill S(i,j)
|
||||||
if(m_S.coeff(i,j) != 0)
|
if(m_S.coeff(i,j) != 0)
|
||||||
{
|
{
|
||||||
Scalar tmp = m_S(i-1,j);
|
G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
|
||||||
G.makeGivens(tmp, m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
|
|
||||||
m_S.coeffRef(i,j) = Scalar(0.0);
|
m_S.coeffRef(i,j) = Scalar(0.0);
|
||||||
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
|
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
|
||||||
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
|
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
|
||||||
@ -248,8 +254,7 @@ namespace Eigen {
|
|||||||
// kill T(i,i-1)
|
// kill T(i,i-1)
|
||||||
if(m_T.coeff(i,i-1)!=Scalar(0))
|
if(m_T.coeff(i,i-1)!=Scalar(0))
|
||||||
{
|
{
|
||||||
Scalar tmp = m_T.coeff(i,i);
|
G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
|
||||||
G.makeGivens(tmp, m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
|
|
||||||
m_T.coeffRef(i,i-1) = Scalar(0.0);
|
m_T.coeffRef(i,i-1) = Scalar(0.0);
|
||||||
m_S.applyOnTheRight(i,i-1,G);
|
m_S.applyOnTheRight(i,i-1,G);
|
||||||
m_T.topRows(i).applyOnTheRight(i,i-1,G);
|
m_T.topRows(i).applyOnTheRight(i,i-1,G);
|
||||||
@ -263,13 +268,14 @@ namespace Eigen {
|
|||||||
|
|
||||||
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
|
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline void RealQZ<MatrixType>::computeNorms() {
|
inline void RealQZ<MatrixType>::computeNorms()
|
||||||
|
{
|
||||||
const Index size = m_S.cols();
|
const Index size = m_S.cols();
|
||||||
m_normOfS = Scalar(0.0);
|
m_normOfS = Scalar(0.0);
|
||||||
m_normOfT = Scalar(0.0);
|
m_normOfT = Scalar(0.0);
|
||||||
for (Index j = 0; j < size; ++j) {
|
for (Index j = 0; j < size; ++j)
|
||||||
Index row_start = (std::max)(j-1,Index(0));
|
{
|
||||||
m_normOfS += m_S.row(j).segment(row_start, size - row_start).cwiseAbs().sum();
|
m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
|
||||||
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
|
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -277,9 +283,11 @@ namespace Eigen {
|
|||||||
|
|
||||||
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
|
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu) {
|
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
|
||||||
|
{
|
||||||
Index res = iu;
|
Index res = iu;
|
||||||
while (res > 0) {
|
while (res > 0)
|
||||||
|
{
|
||||||
Scalar s = internal::abs(m_S.coeff(res-1,res-1)) + internal::abs(m_S.coeff(res,res));
|
Scalar s = internal::abs(m_S.coeff(res-1,res-1)) + internal::abs(m_S.coeff(res,res));
|
||||||
if (s == Scalar(0.0))
|
if (s == Scalar(0.0))
|
||||||
s = m_normOfS;
|
s = m_normOfS;
|
||||||
@ -292,7 +300,8 @@ namespace Eigen {
|
|||||||
|
|
||||||
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
|
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l) {
|
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
|
||||||
|
{
|
||||||
Index res = l;
|
Index res = l;
|
||||||
while (res >= f) {
|
while (res >= f) {
|
||||||
if (internal::abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
|
if (internal::abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
|
||||||
@ -302,14 +311,16 @@ namespace Eigen {
|
|||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \internal decouple 2x2 diagonal block in rows iu, iu+1 if eigenvalues are real */
|
/** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline void RealQZ<MatrixType>::splitOffTwoRows(Index i) {
|
inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
|
||||||
|
{
|
||||||
const Index dim=m_S.cols();
|
const Index dim=m_S.cols();
|
||||||
if (internal::abs(m_S.coeff(i+1,i)==Scalar(0)))
|
if (internal::abs(m_S.coeff(i+1,i)==Scalar(0)))
|
||||||
return;
|
return;
|
||||||
Index z = findSmallDiagEntry(i,i+1);
|
Index z = findSmallDiagEntry(i,i+1);
|
||||||
if (z==i-1) {
|
if (z==i-1)
|
||||||
|
{
|
||||||
// block of (S T^{-1})
|
// block of (S T^{-1})
|
||||||
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
|
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
|
||||||
template solve<OnTheRight>(m_S.template block<2,2>(i,i));
|
template solve<OnTheRight>(m_S.template block<2,2>(i,i));
|
||||||
@ -339,17 +350,21 @@ namespace Eigen {
|
|||||||
m_S.coeffRef(i+1,i) = Scalar(0.0);
|
m_S.coeffRef(i+1,i) = Scalar(0.0);
|
||||||
m_T.coeffRef(i+1,i) = Scalar(0.0);
|
m_T.coeffRef(i+1,i) = Scalar(0.0);
|
||||||
}
|
}
|
||||||
} else {
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
pushDownZero(z,i,i+1);
|
pushDownZero(z,i,i+1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
|
/** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l) {
|
inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
|
||||||
|
{
|
||||||
JRs G;
|
JRs G;
|
||||||
const Index dim = m_S.cols();
|
const Index dim = m_S.cols();
|
||||||
for (Index zz=z; zz<l; zz++) {
|
for (Index zz=z; zz<l; zz++)
|
||||||
|
{
|
||||||
// push 0 down
|
// push 0 down
|
||||||
Index firstColS = zz>f ? (zz-1) : zz;
|
Index firstColS = zz>f ? (zz-1) : zz;
|
||||||
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
|
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
|
||||||
@ -360,7 +375,8 @@ namespace Eigen {
|
|||||||
if (m_computeQZ)
|
if (m_computeQZ)
|
||||||
m_Q.applyOnTheRight(zz,zz+1,G);
|
m_Q.applyOnTheRight(zz,zz+1,G);
|
||||||
// kill S(zz+1, zz-1)
|
// kill S(zz+1, zz-1)
|
||||||
if (zz>f) {
|
if (zz>f)
|
||||||
|
{
|
||||||
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
|
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
|
||||||
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
|
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
|
||||||
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
|
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
|
||||||
@ -387,7 +403,8 @@ namespace Eigen {
|
|||||||
|
|
||||||
// x, y, z
|
// x, y, z
|
||||||
Scalar x, y, z;
|
Scalar x, y, z;
|
||||||
if (iter==10) {
|
if (iter==10)
|
||||||
|
{
|
||||||
// Wilkinson ad hoc shift
|
// Wilkinson ad hoc shift
|
||||||
const Scalar
|
const Scalar
|
||||||
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
|
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
|
||||||
@ -407,44 +424,60 @@ namespace Eigen {
|
|||||||
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
|
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
|
||||||
- a21*a21*b12*b11i*b11i*b22i;
|
- a21*a21*b12*b11i*b11i*b22i;
|
||||||
z = a21*a32*b11i*b22i;
|
z = a21*a32*b11i*b22i;
|
||||||
} else if (iter==16) {
|
}
|
||||||
|
else if (iter==16)
|
||||||
|
{
|
||||||
// another exceptional shift
|
// another exceptional shift
|
||||||
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
|
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
|
||||||
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
|
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
|
||||||
y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
|
y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
|
||||||
z = 0;
|
z = 0;
|
||||||
} else if (iter>23 && !(iter%8)) {
|
}
|
||||||
|
else if (iter>23 && !(iter%8))
|
||||||
|
{
|
||||||
// extremely exceptional shift
|
// extremely exceptional shift
|
||||||
x = internal::random<Scalar>(-1.0,1.0);
|
x = internal::random<Scalar>(-1.0,1.0);
|
||||||
y = internal::random<Scalar>(-1.0,1.0);
|
y = internal::random<Scalar>(-1.0,1.0);
|
||||||
z = internal::random<Scalar>(-1.0,1.0);
|
z = internal::random<Scalar>(-1.0,1.0);
|
||||||
} else {
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
|
||||||
|
// where l1 and l2 are the eigenvalues of the 2x2 bottom right sub matrix M of AB^-1. Thus:
|
||||||
|
// = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
|
||||||
|
// = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
|
||||||
|
// Since we are only interested in having x, y, z with a correct ratio, we have:
|
||||||
const Scalar
|
const Scalar
|
||||||
a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
|
a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
|
||||||
a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
|
a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
|
||||||
a32 = m_S.coeff(f+2,f+1),
|
a32 = m_S.coeff(f+2,f+1),
|
||||||
|
|
||||||
a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
|
a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
|
||||||
a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
|
a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
|
||||||
b11=m_T.coeff(f,f), b11i=1.0/b11, b12=m_T.coeff(f,f+1),
|
|
||||||
b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
|
b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
|
||||||
b88i=Scalar(1.0)/m_T.coeff(l-1,l-1), b89=m_T.coeff(l-1,l),
|
b22 = m_T.coeff(f+1,f+1),
|
||||||
b99i=Scalar(1.0)/m_T.coeff(l,l);
|
|
||||||
x = ( (a88*b88i - a11*b11i)*(a99*b99i - a11*b11i) - (a89*b99i)*(a98*b88i) + (a98*b88i)*(b89*b99i)*(a11*b11i) ) * (b11/a21)
|
b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
|
||||||
+ a12*b22i - (a11*b11i)*(b12*b22i);
|
b99 = m_T.coeff(l,l);
|
||||||
y = (a22*b22i-a11*b11i) - (a21*b11i)*(b12*b22i) - (a88*b88i-a11*b11i) - (a99*b99i-a11*b11i) + (a98*b88i)*(b89*b99i);
|
|
||||||
z = a32*b22i;
|
x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
|
||||||
|
+ a12/b22 - (a11/b11)*(b12/b22);
|
||||||
|
y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
|
||||||
|
z = a32/b22;
|
||||||
}
|
}
|
||||||
|
|
||||||
JRs G;
|
JRs G;
|
||||||
|
|
||||||
for (Index k=f; k<=l-2; k++) {
|
for (Index k=f; k<=l-2; k++)
|
||||||
|
{
|
||||||
// variables for Householder reflections
|
// variables for Householder reflections
|
||||||
Vector2s essential2;
|
Vector2s essential2;
|
||||||
Scalar tau, beta;
|
Scalar tau, beta;
|
||||||
|
|
||||||
Vector3s hr(x,y,z);
|
Vector3s hr(x,y,z);
|
||||||
|
|
||||||
// Q_k
|
// Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
|
||||||
hr.makeHouseholderInPlace(tau, beta);
|
hr.makeHouseholderInPlace(tau, beta);
|
||||||
essential2 = hr.template bottomRows<2>();
|
essential2 = hr.template bottomRows<2>();
|
||||||
Index fc=(std::max)(k-1,Index(0)); // first col to update
|
Index fc=(std::max)(k-1,Index(0)); // first col to update
|
||||||
@ -452,12 +485,10 @@ namespace Eigen {
|
|||||||
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
|
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
|
||||||
if (m_computeQZ)
|
if (m_computeQZ)
|
||||||
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
|
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
|
||||||
if (k>f) {
|
if (k>f)
|
||||||
m_S.coeffRef(k+1,k-1) = Scalar(0.0);
|
m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
|
||||||
m_S.coeffRef(k+2,k-1) = Scalar(0.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Z_{k1}
|
// Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
|
||||||
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
|
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
|
||||||
hr.makeHouseholderInPlace(tau, beta);
|
hr.makeHouseholderInPlace(tau, beta);
|
||||||
essential2 = hr.template bottomRows<2>();
|
essential2 = hr.template bottomRows<2>();
|
||||||
@ -475,7 +506,8 @@ namespace Eigen {
|
|||||||
m_T.col(k+2).head(lr) -= tau*tmp;
|
m_T.col(k+2).head(lr) -= tau*tmp;
|
||||||
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
|
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
|
||||||
}
|
}
|
||||||
if (m_computeQZ) {
|
if (m_computeQZ)
|
||||||
|
{
|
||||||
// Z
|
// Z
|
||||||
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
|
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
|
||||||
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
|
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
|
||||||
@ -483,10 +515,9 @@ namespace Eigen {
|
|||||||
m_Z.row(k+2) -= tau*tmp;
|
m_Z.row(k+2) -= tau*tmp;
|
||||||
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
|
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
|
||||||
}
|
}
|
||||||
m_T.coeffRef(k+2,k) = Scalar(0.0);
|
m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
|
||||||
m_T.coeffRef(k+2,k+1) = Scalar(0.0);
|
|
||||||
|
|
||||||
// Z_{k2}
|
// Z_{k2} to annihilate T(k+1,k)
|
||||||
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
|
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
|
||||||
m_S.applyOnTheRight(k+1,k,G);
|
m_S.applyOnTheRight(k+1,k,G);
|
||||||
m_T.applyOnTheRight(k+1,k,G);
|
m_T.applyOnTheRight(k+1,k,G);
|
||||||
@ -502,7 +533,7 @@ namespace Eigen {
|
|||||||
z = m_S.coeff(k+3,k);
|
z = m_S.coeff(k+3,k);
|
||||||
} // loop over k
|
} // loop over k
|
||||||
|
|
||||||
// Q_{n-1}
|
// Q_{n-1} to annihilate y = S(l,l-2)
|
||||||
G.makeGivens(x,y);
|
G.makeGivens(x,y);
|
||||||
m_S.applyOnTheLeft(l-1,l,G.adjoint());
|
m_S.applyOnTheLeft(l-1,l,G.adjoint());
|
||||||
m_T.applyOnTheLeft(l-1,l,G.adjoint());
|
m_T.applyOnTheLeft(l-1,l,G.adjoint());
|
||||||
@ -510,19 +541,19 @@ namespace Eigen {
|
|||||||
m_Q.applyOnTheRight(l-1,l,G);
|
m_Q.applyOnTheRight(l-1,l,G);
|
||||||
m_S.coeffRef(l,l-2) = Scalar(0.0);
|
m_S.coeffRef(l,l-2) = Scalar(0.0);
|
||||||
|
|
||||||
// Z_{n-1}
|
// Z_{n-1} to annihilate T(l,l-1)
|
||||||
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
|
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
|
||||||
m_S.applyOnTheRight(l,l-1,G);
|
m_S.applyOnTheRight(l,l-1,G);
|
||||||
m_T.applyOnTheRight(l,l-1,G);
|
m_T.applyOnTheRight(l,l-1,G);
|
||||||
if (m_computeQZ)
|
if (m_computeQZ)
|
||||||
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
|
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
|
||||||
m_T.coeffRef(l,l-1) = Scalar(0.0);
|
m_T.coeffRef(l,l-1) = Scalar(0.0);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) {
|
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
|
||||||
|
{
|
||||||
|
|
||||||
const Index dim = A_in.cols();
|
const Index dim = A_in.cols();
|
||||||
|
|
||||||
@ -545,22 +576,31 @@ namespace Eigen {
|
|||||||
f,
|
f,
|
||||||
local_iter = 0;
|
local_iter = 0;
|
||||||
|
|
||||||
while (l>0 && local_iter<m_max_iter) {
|
while (l>0 && local_iter<m_maxIters)
|
||||||
|
{
|
||||||
f = findSmallSubdiagEntry(l);
|
f = findSmallSubdiagEntry(l);
|
||||||
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
|
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
|
||||||
if (f == l) {
|
if (f == l) // One root found
|
||||||
|
{
|
||||||
l--;
|
l--;
|
||||||
local_iter = 0;
|
local_iter = 0;
|
||||||
} else if (f == l-1) {
|
}
|
||||||
|
else if (f == l-1) // Two roots found
|
||||||
|
{
|
||||||
splitOffTwoRows(f);
|
splitOffTwoRows(f);
|
||||||
l -= 2;
|
l -= 2;
|
||||||
local_iter = 0;
|
local_iter = 0;
|
||||||
} else {
|
}
|
||||||
|
else // No convergence yet
|
||||||
|
{
|
||||||
Index z = findSmallDiagEntry(f,l);
|
Index z = findSmallDiagEntry(f,l);
|
||||||
if (z>=f) {
|
if (z>=f)
|
||||||
|
{
|
||||||
// zero found
|
// zero found
|
||||||
pushDownZero(z,f,l);
|
pushDownZero(z,f,l);
|
||||||
} else {
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
// QR-like iteration
|
// QR-like iteration
|
||||||
step(f,l, local_iter);
|
step(f,l, local_iter);
|
||||||
local_iter++;
|
local_iter++;
|
||||||
@ -569,16 +609,10 @@ namespace Eigen {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
// check if we converged before reaching iterations limit
|
// check if we converged before reaching iterations limit
|
||||||
if (local_iter<m_max_iter) {
|
m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
|
||||||
m_info = Success;
|
|
||||||
} else {
|
|
||||||
m_info = NoConvergence;
|
|
||||||
}
|
|
||||||
return *this;
|
return *this;
|
||||||
} // end compute
|
} // end compute
|
||||||
|
|
||||||
|
|
||||||
} // end namespace Eigen
|
} // end namespace Eigen
|
||||||
|
|
||||||
|
|
||||||
#endif //EIGEN_REAL_QZ
|
#endif //EIGEN_REAL_QZ
|
||||||
|
Loading…
Reference in New Issue
Block a user