make fixed size matrices and arrays trivially_default_constructible

This commit is contained in:
Charles Schlosser 2024-10-21 17:10:15 +00:00 committed by Rasmus Munk Larsen
parent b396a6fbb2
commit 4e5136d239
14 changed files with 330 additions and 609 deletions

View File

@ -7,6 +7,8 @@ BasedOnStyle: Google
ColumnLimit: 120
StatementMacros:
- EIGEN_STATIC_ASSERT
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
SortIncludes: false
AttributeMacros:
- EIGEN_STRONG_INLINE

View File

@ -117,16 +117,12 @@ class Array : public PlainObjectBase<Array<Scalar_, Rows_, Cols_, Options_, MaxR
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array() : Base() { EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ??
/** \internal */
EIGEN_DEVICE_FUNC Array(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert()){EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED}
#ifdef EIGEN_INITIALIZE_COEFFS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Array() : Base() { EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
#else
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Array() = default;
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Array(Array && other) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Array(Array&&) = default;
EIGEN_DEVICE_FUNC Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) {
Base::operator=(std::move(other));
return *this;
@ -230,7 +226,7 @@ class Array : public PlainObjectBase<Array<Scalar_, Rows_, Cols_, Options_, MaxR
}
/** Copy constructor */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Array(const Array& other) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Array(const Array&) = default;
private:
struct PrivateType {};

View File

@ -27,30 +27,11 @@ namespace Eigen {
namespace internal {
struct constructor_without_unaligned_array_assert {};
template <typename T, int Size>
EIGEN_DEVICE_FUNC constexpr void check_static_allocation_size() {
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
struct check_static_allocation_size {
#if EIGEN_STACK_ALLOCATION_LIMIT
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG)
#endif
}
/** \internal
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
*/
template <typename T, int Size, int MatrixOrArrayOptions,
int Alignment = (MatrixOrArrayOptions & DontAlign) ? 0 : compute_default_alignment<T, Size>::value>
struct plain_array {
T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() { check_static_allocation_size<T, Size>(); }
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
@ -63,93 +44,112 @@ struct plain_array {
" **** READ THIS WEB PAGE !!! ****");
#endif
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 8> {
EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
/** \internal
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
*/
template <typename T, int Size, int MatrixOrArrayOptions,
int Alignment = (MatrixOrArrayOptions & DontAlign) ? 0 : compute_default_alignment<T, Size>::value>
struct plain_array : check_static_allocation_size<T, Size> {
EIGEN_ALIGN_TO_BOUNDARY(Alignment) T array[Size];
#if defined(EIGEN_NO_DEBUG) || defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr plain_array() = default;
#else
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(Alignment - 1); }
#endif
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 16> {
EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 32> {
EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 64> {
EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
struct plain_array<T, Size, MatrixOrArrayOptions, 0> : check_static_allocation_size<T, Size> {
T array[Size];
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr plain_array() = default;
};
template <typename T, int MatrixOrArrayOptions, int Alignment>
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment> {
T array[1];
EIGEN_DEVICE_FUNC constexpr plain_array() {}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr plain_array() = default;
};
struct plain_array_helper {
template <typename T, int Size, int MatrixOrArrayOptions, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void copy(
const plain_array<T, Size, MatrixOrArrayOptions, Alignment>& src, const Eigen::Index size,
plain_array<T, Size, MatrixOrArrayOptions, Alignment>& dst) {
smart_copy(src.array, src.array + size, dst.array);
}
// this class is intended to be inherited by DenseStorage to take advantage of empty base optimization
template <int Rows, int Cols>
struct DenseStorageIndices {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices() = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(Index /*rows*/, Index /*cols*/) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Index rows() const { return Rows; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Index cols() const { return Cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Index size() const { return Rows * Cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void set(Index /*rows*/, Index /*cols*/) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void swap(DenseStorageIndices& /*other*/) noexcept {}
};
template <int Rows>
struct DenseStorageIndices<Rows, Dynamic> {
Index m_cols;
template <typename T, int Size, int MatrixOrArrayOptions, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void swap(plain_array<T, Size, MatrixOrArrayOptions, Alignment>& a,
const Eigen::Index a_size,
plain_array<T, Size, MatrixOrArrayOptions, Alignment>& b,
const Eigen::Index b_size) {
if (a_size < b_size) {
std::swap_ranges(b.array, b.array + a_size, a.array);
smart_move(b.array + a_size, b.array + b_size, a.array + a_size);
} else if (a_size > b_size) {
std::swap_ranges(a.array, a.array + b_size, b.array);
smart_move(a.array + b_size, a.array + a_size, b.array + b_size);
} else {
std::swap_ranges(a.array, a.array + a_size, b.array);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices() : m_cols(0) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseStorageIndices(Index /*rows*/, Index cols) : m_cols(cols) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Index rows() const { return Rows; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return Rows * m_cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void set(Index /*rows*/, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseStorageIndices& other) noexcept {
numext::swap(m_cols, other.m_cols);
}
};
template <int Cols>
struct DenseStorageIndices<Dynamic, Cols> {
Index m_rows;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices() : m_rows(0) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseStorageIndices(Index rows, Index /*cols*/) : m_rows(rows) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_rows; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Index cols() const { return Cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_rows * Cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void set(Index rows, Index /*cols*/) { m_rows = rows; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseStorageIndices& other) noexcept {
numext::swap(m_rows, other.m_rows);
}
};
template <>
struct DenseStorageIndices<Dynamic, Dynamic> {
Index m_rows;
Index m_cols;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices() : m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(const DenseStorageIndices&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorageIndices& operator=(DenseStorageIndices&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseStorageIndices(Index rows, Index cols) : m_rows(rows), m_cols(cols) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_rows; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_rows * m_cols; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void set(Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseStorageIndices& other) noexcept {
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
}
};
template <int Size, int Rows, int Cols>
struct use_trivial_ctors {
static constexpr bool value = (Size >= 0) && (Rows >= 0) && (Cols >= 0) && (Size == Rows * Cols);
};
} // end namespace internal
@ -165,486 +165,202 @@ struct plain_array_helper {
*
* \sa Matrix
*/
template <typename T, int Size, int Rows_, int Cols_, int Options_>
template <typename T, int Size, int Rows, int Cols, int Options,
bool Trivial = internal::use_trivial_ctors<Size, Rows, Cols>::value>
class DenseStorage;
// purely fixed-size matrix
template <typename T, int Size, int Rows_, int Cols_, int Options_>
class DenseStorage {
internal::plain_array<T, Size, Options_> m_data;
// fixed-size storage with fixed dimensions
template <typename T, int Size, int Rows, int Cols, int Options>
class DenseStorage<T, Size, Rows, Cols, Options, true> : internal::DenseStorageIndices<Rows, Cols> {
using Base = internal::DenseStorageIndices<Rows, Cols>;
internal::plain_array<T, Size, Options> m_data;
public:
constexpr EIGEN_DEVICE_FUNC DenseStorage(){EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(
Index size =
Size)} EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
#if defined(EIGEN_DENSE_STORAGE_CTOR_PLUGIN)
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(other.m_data){EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)}
using Base::cols;
using Base::rows;
#ifndef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseStorage() = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(const DenseStorage&) = default;
#else
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseStorage() { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size) }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(const DenseStorage& other)
: Base(other), m_data(other.m_data) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)
}
#endif
EIGEN_DEVICE_FUNC constexpr DenseStorage
&
operator=(const DenseStorage&) = default;
EIGEN_DEVICE_FUNC constexpr DenseStorage(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC constexpr DenseStorage& operator=(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index size, Index rows, Index cols) {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(const DenseStorage&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(Index size, Index rows, Index cols) : Base(rows, cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows == Rows_ && cols == Cols_);
EIGEN_UNUSED_VARIABLE(size);
EIGEN_UNUSED_VARIABLE(rows);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { numext::swap(m_data, other.m_data); }
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC static constexpr Index cols(void) EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// null matrix
template <typename T, int Rows_, int Cols_, int Options_>
class DenseStorage<T, 0, Rows_, Cols_, Options_> {
public:
static_assert(Rows_ * Cols_ == 0, "The fixed number of rows times columns must equal the storage size.");
EIGEN_DEVICE_FUNC constexpr DenseStorage() {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage&) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage& operator=(const DenseStorage&) { return *this; }
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr void swap(DenseStorage&) {}
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC static constexpr Index cols(void) EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return 0; }
EIGEN_DEVICE_FUNC constexpr T* data() { return 0; }
};
// more specializations for null matrices; these are necessary to resolve ambiguities
template <typename T, int Options_>
class DenseStorage<T, 0, Dynamic, Dynamic, Options_> {
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_rows(other.m_rows), m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
m_rows = other.m_rows;
m_cols = other.m_cols;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return nullptr; }
EIGEN_DEVICE_FUNC constexpr T* data() { return nullptr; }
};
template <typename T, int Rows_, int Options_>
class DenseStorage<T, 0, Rows_, Dynamic, Options_> {
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
m_cols = other.m_cols;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { numext::swap(m_cols, other.m_cols); }
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index, Index cols) {
m_cols = cols;
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void resize(Index, Index, Index cols) {
m_cols = cols;
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return nullptr; }
EIGEN_DEVICE_FUNC constexpr T* data() { return nullptr; }
};
template <typename T, int Cols_, int Options_>
class DenseStorage<T, 0, Dynamic, Cols_, Options_> {
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_rows(other.m_rows) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
m_rows = other.m_rows;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { numext::swap(m_rows, other.m_rows); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) {
m_rows = rows;
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) {
m_rows = rows;
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return nullptr; }
EIGEN_DEVICE_FUNC constexpr T* data() { return nullptr; }
};
// dynamic-size matrix with fixed-size storage
template <typename T, int Size, int Options_>
class DenseStorage<T, Size, Dynamic, Dynamic, Options_> {
internal::plain_array<T, Size, Options_> m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows), m_cols(other.m_cols) {
internal::plain_array_helper::copy(other.m_data, m_rows * m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
m_rows = other.m_rows;
m_cols = other.m_cols;
internal::plain_array_helper::copy(other.m_data, m_rows * m_cols, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
internal::plain_array_helper::swap(m_data, m_rows * m_cols, other.m_data, other.m_rows * other.m_cols);
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC constexpr Index rows() const { return m_rows; }
EIGEN_DEVICE_FUNC constexpr Index cols() const { return m_cols; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed width
template <typename T, int Size, int Cols_, int Options_>
class DenseStorage<T, Size, Dynamic, Cols_, Options_> {
internal::plain_array<T, Size, Options_> m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_rows(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows) {
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
m_rows = other.m_rows;
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index rows, Index) : m_rows(rows) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
internal::plain_array_helper::swap(m_data, m_rows * Cols_, other.m_data, other.m_rows * Cols_);
numext::swap(m_rows, other.m_rows);
}
EIGEN_DEVICE_FUNC constexpr Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC constexpr Index cols(void) const EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed height
template <typename T, int Size, int Rows_, int Options_>
class DenseStorage<T, Size, Rows_, Dynamic, Options_> {
internal::plain_array<T, Size, Options_> m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_cols(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(other.m_cols) {
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
m_cols = other.m_cols;
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
internal::plain_array_helper::swap(m_data, Rows_ * m_cols, other.m_data, Rows_ * other.m_cols);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC constexpr Index rows(void) const EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC constexpr Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// purely dynamic matrix.
template <typename T, int Options_>
class DenseStorage<T, Dynamic, Dynamic, Dynamic, Options_> {
T* m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)),
m_rows(rows),
m_cols(cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows >= 0 && cols >= 0);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(other.m_rows * other.m_cols)),
m_rows(other.m_rows),
m_cols(other.m_cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows * m_cols)
internal::smart_copy(other.m_data, other.m_data + other.m_rows * other.m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)),
m_rows(std::move(other.m_rows)),
m_cols(std::move(other.m_cols)) {
other.m_data = nullptr;
other.m_rows = 0;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void swap(DenseStorage& other) {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
Base::swap(other);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void conservativeResize(Index /*size*/, Index rows, Index cols) {
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize(Index /*size*/, Index rows, Index cols) {
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr T* data() { return m_data.array; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const T* data() const { return m_data.array; }
};
// fixed-size storage with dynamic dimensions
template <typename T, int Size, int Rows, int Cols, int Options>
class DenseStorage<T, Size, Rows, Cols, Options, false> : internal::DenseStorageIndices<Rows, Cols> {
using Base = internal::DenseStorageIndices<Rows, Cols>;
internal::plain_array<T, Size, Options> m_data;
public:
using Base::cols;
using Base::rows;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseStorage() = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(const DenseStorage& other) : Base(other), m_data() {
Index size = other.size();
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
internal::smart_copy(other.m_data.array, other.m_data.array + size, m_data.array);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(DenseStorage&& other) : Base(other), m_data() {
Index size = other.size();
internal::smart_move(other.m_data.array, other.m_data.array + size, m_data.array);
other.resize(Size, 0, 0);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(const DenseStorage& other) {
Base::set(other.rows(), other.cols());
Index size = other.size();
internal::smart_copy(other.m_data.array, other.m_data.array + size, m_data.array);
return *this;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(DenseStorage&& other) {
Base::set(other.rows(), other.cols());
Index size = other.size();
internal::smart_move(other.m_data.array, other.m_data.array + size, m_data.array);
other.resize(Size, 0, 0);
return *this;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(Index size, Index rows, Index cols) : Base(rows, cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
EIGEN_UNUSED_VARIABLE(size);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void swap(DenseStorage& other) {
Index thisSize = this->size();
Index otherSize = other.size();
Index commonSize = numext::mini(thisSize, otherSize);
std::swap_ranges(m_data.array, m_data.array + commonSize, other.m_data.array);
if (thisSize > otherSize)
internal::smart_move(m_data.array + commonSize, m_data.array + thisSize, other.m_data.array + commonSize);
else if (otherSize > thisSize)
internal::smart_move(other.m_data.array + commonSize, other.m_data.array + otherSize, m_data.array + commonSize);
Base::swap(other);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void conservativeResize(Index /*size*/, Index rows, Index cols) {
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize(Index /*size*/, Index rows, Index cols) {
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr T* data() { return m_data.array; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const T* data() const { return m_data.array; }
};
// null matrix specialization
template <typename T, int Rows, int Cols, int Options>
class DenseStorage<T, 0, Rows, Cols, Options, true> : internal::DenseStorageIndices<Rows, Cols> {
using Base = internal::DenseStorageIndices<Rows, Cols>;
public:
using Base::cols;
using Base::rows;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage() = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(const DenseStorage&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(const DenseStorage&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(Index /*size*/, Index rows, Index cols)
: Base(rows, cols) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void swap(DenseStorage& other) noexcept { Base::swap(other); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void conservativeResize(Index /*size*/, Index rows, Index cols) {
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize(Index /*size*/, Index rows, Index cols) {
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr T* data() { return nullptr; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const T* data() const { return nullptr; }
};
// dynamic matrix specialization
template <typename T, int Rows, int Cols, int Options>
class DenseStorage<T, Dynamic, Rows, Cols, Options, false> : internal::DenseStorageIndices<Rows, Cols> {
using Base = internal::DenseStorageIndices<Rows, Cols>;
static constexpr int Size = Dynamic;
static constexpr bool Align = (Options & DontAlign) == 0;
T* m_data;
public:
using Base::cols;
using Base::rows;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage() : m_data(nullptr) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(const DenseStorage& other)
: Base(other), m_data(internal::conditional_aligned_new_auto<T, Align>(other.size())) {
Index size = other.size();
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
internal::smart_copy(other.m_data, other.m_data + size, m_data);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(DenseStorage&& other) noexcept
: Base(other), m_data(other.m_data) {
other.set(0, 0);
other.m_data = nullptr;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(const DenseStorage& other) {
Base::set(other.rows(), other.cols());
Index size = other.size();
m_data = internal::conditional_aligned_new_auto<T, Align>(size);
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
internal::smart_copy(other.m_data, other.m_data + size, m_data);
return *this;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage& operator=(DenseStorage&& other) noexcept {
this->swap(other);
return *this;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr DenseStorage(Index size, Index rows, Index cols)
: Base(rows, cols), m_data(internal::conditional_aligned_new_auto<T, Align>(size)) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
EIGEN_DEVICE_FUNC ~DenseStorage() {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, m_rows * m_cols);
Index size = this->size();
internal::conditional_aligned_delete_auto<T, Align>(m_data, size);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void swap(DenseStorage& other) noexcept {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
Base::swap(other);
}
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
void conservativeResize(Index size, Index rows, Index cols) {
m_data =
internal::conditional_aligned_realloc_new_auto<T, (Options_ & DontAlign) == 0>(m_data, size, m_rows * m_cols);
m_rows = rows;
m_cols = cols;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void conservativeResize(Index size, Index rows, Index cols) {
Index oldSize = this->size();
m_data = internal::conditional_aligned_realloc_new_auto<T, Align>(m_data, size, oldSize);
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC void resize(Index size, Index rows, Index cols) {
if (size != m_rows * m_cols) {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, m_rows * m_cols);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize(Index size, Index rows, Index cols) {
Index oldSize = this->size();
if (size != oldSize) {
internal::conditional_aligned_delete_auto<T, Align>(m_data, oldSize);
if (size > 0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
{
m_data = internal::conditional_aligned_new_auto<T, Align>(size);
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
} else
m_data = nullptr;
}
m_rows = rows;
m_cols = cols;
Base::set(rows, cols);
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr T* data() { return m_data; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const T* data() const { return m_data; }
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
template <typename T, int Rows_, int Options_>
class DenseStorage<T, Dynamic, Rows_, Dynamic, Options_> {
T* m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_cols(0) {}
explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)), m_cols(cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows == Rows_ && cols >= 0);
EIGEN_UNUSED_VARIABLE(rows);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(Rows_ * other.m_cols)),
m_cols(other.m_cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols * Rows_)
internal::smart_copy(other.m_data, other.m_data + Rows_ * m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)),
m_cols(std::move(other.m_cols)) {
other.m_data = nullptr;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT {
numext::swap(m_data, other.m_data);
numext::swap(m_cols, other.m_cols);
return *this;
}
EIGEN_DEVICE_FUNC ~DenseStorage() {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Rows_ * m_cols);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data, other.m_data);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols) {
m_data =
internal::conditional_aligned_realloc_new_auto<T, (Options_ & DontAlign) == 0>(m_data, size, Rows_ * m_cols);
m_cols = cols;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols) {
if (size != Rows_ * m_cols) {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Rows_ * m_cols);
if (size > 0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_cols = cols;
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data; }
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
template <typename T, int Cols_, int Options_>
class DenseStorage<T, Dynamic, Dynamic, Cols_, Options_> {
T* m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_rows(0) {}
explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)), m_rows(rows) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows >= 0 && cols == Cols_);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(other.m_rows * Cols_)),
m_rows(other.m_rows) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows * Cols_)
internal::smart_copy(other.m_data, other.m_data + other.m_rows * Cols_, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)),
m_rows(std::move(other.m_rows)) {
other.m_data = nullptr;
other.m_rows = 0;
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
return *this;
}
EIGEN_DEVICE_FUNC ~DenseStorage() {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Cols_ * m_rows);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
}
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC static constexpr Index cols(void) { return Cols_; }
void conservativeResize(Index size, Index rows, Index) {
m_data =
internal::conditional_aligned_realloc_new_auto<T, (Options_ & DontAlign) == 0>(m_data, size, m_rows * Cols_);
m_rows = rows;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index) {
if (size != m_rows * Cols_) {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Cols_ * m_rows);
if (size > 0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_rows = rows;
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data; }
};
} // end namespace Eigen
#endif // EIGEN_MATRIX_H

View File

@ -327,6 +327,7 @@ struct gemv_dense_selector<OnTheRight, ColMajor, true> {
if (!evalToDest) {
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
constexpr int Size = Dest::SizeAtCompileTime;
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
@ -391,6 +392,7 @@ struct gemv_dense_selector<OnTheRight, RowMajor, true> {
if (!DirectlyUseRhs) {
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
constexpr int Size = ActualRhsTypeCleaned::SizeAtCompileTime;
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif

View File

@ -250,15 +250,12 @@ class Matrix : public PlainObjectBase<Matrix<Scalar_, Rows_, Cols_, Options_, Ma
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix()
: Base(){EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED}
// FIXME is it still needed
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr explicit Matrix(
internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert()){EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix(Matrix && other) = default;
#if defined(EIGEN_INITIALIZE_COEFFS)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix() { EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
#else
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix() = default;
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix(Matrix&&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix& operator=(Matrix&& other)
EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) {
Base::operator=(std::move(other));
@ -377,7 +374,7 @@ class Matrix : public PlainObjectBase<Matrix<Scalar_, Rows_, Cols_, Options_, Ma
}
/** \brief Copy constructor */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix(const Matrix& other) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix(const Matrix&) = default;
/** \brief Copy constructor for generic expressions.
* \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)

View File

@ -472,32 +472,17 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
// Prevent user from trying to instantiate PlainObjectBase objects
// by making all its constructor protected. See bug 1074.
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase() : m_storage() {
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ?
/** \internal */
EIGEN_DEVICE_FUNC constexpr explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert)
: m_storage(internal::constructor_without_unaligned_array_assert()) {
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase(PlainObjectBase&& other) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase() = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase(PlainObjectBase&&) = default;
EIGEN_DEVICE_FUNC constexpr PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT {
m_storage = std::move(other.m_storage);
return *this;
}
/** Copy constructor */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase(const PlainObjectBase& other) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase(const PlainObjectBase&) = default;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
: m_storage(size, rows, cols) {
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
: m_storage(size, rows, cols) {}
/** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients.
*

View File

@ -157,7 +157,7 @@ struct tribb_kernel {
gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel1;
gebp_kernel<LhsScalar, RhsScalar, Index, BufferMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel2;
Matrix<ResScalar, BlockSize, BlockSize, ColMajor> buffer((internal::constructor_without_unaligned_array_assert()));
Matrix<ResScalar, BlockSize, BlockSize, ColMajor> buffer;
// let's process the block per panel of actual_mc x BlockSize,
// again, each is split into three parts, etc.

View File

@ -197,6 +197,7 @@ struct selfadjoint_product_impl<Lhs, LhsMode, false, Rhs, 0, true> {
if (!EvalToDest) {
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
constexpr int Size = Dest::SizeAtCompileTime;
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
@ -205,6 +206,7 @@ struct selfadjoint_product_impl<Lhs, LhsMode, false, Rhs, 0, true> {
if (!UseRhs) {
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
constexpr int Size = ActualRhsTypeCleaned::SizeAtCompileTime;
Index size = rhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif

View File

@ -113,13 +113,7 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
// To work around an "error: member reference base type 'Matrix<...>
// (Eigen::internal::constructor_without_unaligned_array_assert (*)())' is
// not a structure or union" compilation error in nvcc (tested V8.0.61),
// create a dummy internal::constructor_without_unaligned_array_assert
// object to pass to the Matrix constructor.
internal::constructor_without_unaligned_array_assert a;
Matrix<Scalar, SmallPanelWidth, SmallPanelWidth, LhsStorageOrder> triangularBuffer(a);
Matrix<Scalar, SmallPanelWidth, SmallPanelWidth, LhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
if ((Mode & ZeroDiag) == ZeroDiag)
triangularBuffer.diagonal().setZero();
@ -245,8 +239,7 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
internal::constructor_without_unaligned_array_assert a;
Matrix<Scalar, SmallPanelWidth, SmallPanelWidth, RhsStorageOrder> triangularBuffer(a);
Matrix<Scalar, SmallPanelWidth, SmallPanelWidth, RhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
if ((Mode & ZeroDiag) == ZeroDiag)
triangularBuffer.diagonal().setZero();

View File

@ -230,6 +230,7 @@ struct trmv_selector<Mode, ColMajor> {
if (!evalToDest) {
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
constexpr int Size = Dest::SizeAtCompileTime;
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
@ -310,6 +311,7 @@ struct trmv_selector<Mode, RowMajor> {
#endif
}
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
constexpr int Size = ActualRhsTypeCleaned::SizeAtCompileTime;
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif

View File

@ -7,13 +7,20 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TESTING_PLAINOBJECT_CTOR
#ifndef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#define EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#define EIGEN_TEST_REENABLE_UNALIGNED_ARRAY_ASSERT
#endif
#include "main.h"
#include "AnnoyingScalar.h"
#include "SafeScalar.h"
#include <Eigen/Core>
using DenseStorageD3x3 = Eigen::DenseStorage<double, 3, 3, 3, 3>;
using DenseStorageD3x3 = Eigen::DenseStorage<double, 9, 3, 3, 0>;
static_assert(std::is_trivially_move_constructible<DenseStorageD3x3>::value,
"DenseStorage not trivially_move_constructible");
static_assert(std::is_trivially_move_assignable<DenseStorageD3x3>::value, "DenseStorage not trivially_move_assignable");
@ -24,6 +31,14 @@ static_assert(std::is_trivially_copy_assignable<DenseStorageD3x3>::value, "Dense
static_assert(std::is_trivially_copyable<DenseStorageD3x3>::value, "DenseStorage not trivially_copyable");
#endif
static_assert(std::is_trivially_move_constructible<Matrix4f>::value, "Matrix4f not trivially_move_constructible");
#if !defined(EIGEN_DENSE_STORAGE_CTOR_PLUGIN)
static_assert(std::is_trivially_copy_constructible<Matrix4f>::value, "Matrix4f not trivially_copy_constructible");
#endif
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
static_assert(std::is_trivially_default_constructible<Matrix4f>::value, "Matrix4f not trivially_default_constructible");
#endif
template <typename T, int Size, int Rows, int Cols>
void dense_storage_copy(int rows, int cols) {
typedef DenseStorage<T, Size, Rows, Cols, 0> DenseStorageType;
@ -180,3 +195,9 @@ EIGEN_DECLARE_TEST(dense_storage) {
dense_storage_tests<SafeScalar<float> >();
dense_storage_tests<AnnoyingScalar>();
}
#undef EIGEN_TESTING_PLAINOBJECT_CTOR
#ifdef EIGEN_TEST_REENABLE_UNALIGNED_ARRAY_ASSERT
#undef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#undef EIGEN_TEST_REENABLE_UNALIGNED_ARRAY_ASSERT
#endif

View File

@ -142,14 +142,20 @@ struct imag {};
static long int nb_temporaries;
static long int nb_temporaries_on_assert = -1;
inline void on_temporary_creation(long int size) {
#ifdef TEST_IGNORE_STACK_ALLOCATED_TEMPORARY
inline void on_temporary_creation(long int size, int SizeAtCompileTime) {
// ignore stack-allocated temporaries
if (SizeAtCompileTime != -1) return;
#else
inline void on_temporary_creation(long int size, int) {
#endif
// here's a great place to set a breakpoint when debugging failures in this test!
if (size != 0) nb_temporaries++;
if (nb_temporaries_on_assert > 0) assert(nb_temporaries < nb_temporaries_on_assert);
}
#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN \
{ on_temporary_creation(size); }
{ on_temporary_creation(size, Size); }
#define VERIFY_EVALUATION_COUNT(XPR, N) \
{ \
@ -333,7 +339,7 @@ static std::vector<std::string> eigen_assert_list;
#endif // EIGEN_NO_ASSERTION_CHECKING
#ifndef EIGEN_TESTING_CONSTEXPR
#if !defined(EIGEN_TESTING_CONSTEXPR) && !defined(EIGEN_TESTING_PLAINOBJECT_CTOR)
#define EIGEN_INTERNAL_DEBUGGING
#endif
#include <Eigen/QR> // required for createRandomPIMatrixOfRank and generateRandomMatrixSvs

View File

@ -8,6 +8,7 @@
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define TEST_ENABLE_TEMPORARY_TRACKING
#define TEST_IGNORE_STACK_ALLOCATED_TEMPORARY
#include "main.h"

View File

@ -71,8 +71,6 @@ class TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_> {
m_data = internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(1);
}
}
EIGEN_DEVICE_FUNC TensorStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_dimensions(internal::template repeat<NumIndices_, Index>(0)) {}
EIGEN_DEVICE_FUNC TensorStorage(Index size, const array<Index, NumIndices_>& dimensions)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)), m_dimensions(dimensions) {
EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN