mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-09 07:00:27 +08:00
nearly complete page 6 / linear algebra + examples
fix the previous/next links
This commit is contained in:
parent
b1741c1dc6
commit
4d4a23cd3e
@ -1,6 +1,6 @@
|
||||
namespace Eigen {
|
||||
|
||||
/** \page TutorialArrayClass Tutorial page 3 - The Array Class
|
||||
/** \page TutorialArrayClass Tutorial page 3 - The %Array class
|
||||
\ingroup Tutorial
|
||||
|
||||
\li \b Previous: \ref TutorialMatrixArithmetic
|
||||
@ -238,6 +238,7 @@ array3 = array1.abs2();
|
||||
</table>
|
||||
</td></tr></table>
|
||||
|
||||
\li \b Next: \ref TutorialBlockOperations
|
||||
|
||||
**/
|
||||
}
|
||||
|
@ -1,10 +1,10 @@
|
||||
namespace Eigen {
|
||||
|
||||
/** \page TutorialBlockOperations Tutorial page 4 - Block operations
|
||||
/** \page TutorialBlockOperations Tutorial page 4 - %Block operations
|
||||
\ingroup Tutorial
|
||||
|
||||
\li \b Previous: \ref TutorialArrayClass
|
||||
\li \b Next: (not yet written)
|
||||
\li \b Next: \ref TutorialAdvancedInitialization
|
||||
|
||||
This tutorial explains the essentials of Block operations together with many examples.
|
||||
|
||||
@ -288,6 +288,7 @@ Output:
|
||||
\include Tutorial_BlockOperations_vector.out
|
||||
</td></tr></table>
|
||||
|
||||
\li \b Next: \ref TutorialAdvancedInitialization
|
||||
|
||||
*/
|
||||
|
||||
|
@ -1,8 +1,11 @@
|
||||
namespace Eigen {
|
||||
|
||||
/** \page TutorialAdvancedInitialization Tutorial - Advanced initialization
|
||||
/** \page TutorialAdvancedInitialization Tutorial page 5 - Advanced initialization
|
||||
\ingroup Tutorial
|
||||
|
||||
\li \b Previous: \ref TutorialBlockOperations
|
||||
\li \b Next: \ref TutorialLinearAlgebra
|
||||
|
||||
\section TutorialMatrixArithmCommaInitializer Comma initializer
|
||||
|
||||
Eigen offers a comma initializer syntax which allows to set all the coefficients
|
||||
@ -24,6 +27,8 @@ TODO mention using the comma initializer to fill a block xpr like m.row(i) << 1,
|
||||
|
||||
TODO add more sections about Identity(), Zero(), Constant(), Random(), LinSpaced().
|
||||
|
||||
\li \b Next: \ref TutorialLinearAlgebra
|
||||
|
||||
*/
|
||||
|
||||
}
|
||||
|
@ -3,14 +3,14 @@ namespace Eigen {
|
||||
/** \page TutorialLinearAlgebra Tutorial page 6 - Linear algebra and decompositions
|
||||
\ingroup Tutorial
|
||||
|
||||
\li \b Previous: TODO
|
||||
\li \b Previous: \ref TutorialAdvancedInitialization
|
||||
\li \b Next: TODO
|
||||
|
||||
This tutorial explains how to solve linear systems, compute various decompositions such as LU,
|
||||
QR, SVD, eigendecompositions... for more advanced topics, don't miss our special page on
|
||||
QR, %SVD, eigendecompositions... for more advanced topics, don't miss our special page on
|
||||
\ref TopicLinearAlgebraDecompositions "this topic".
|
||||
|
||||
\section TutorialLinAlgBasicSolve How do I solve a system of linear equations?
|
||||
\section TutorialLinAlgBasicSolve Basic linear solving
|
||||
|
||||
\b The \b problem: You have a system of equations, that you have written as a single matrix equation
|
||||
\f[ Ax \: = \: b \f]
|
||||
@ -26,10 +26,10 @@ and is a good compromise:
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
In this example, the colPivHouseholderQr() method returns an object of class ColPivHouseholderQR. This line could
|
||||
have been replaced by:
|
||||
In this example, the colPivHouseholderQr() method returns an object of class ColPivHouseholderQR. Since here the
|
||||
matrix is of type Matrix3f, this line could have been replaced by:
|
||||
\code
|
||||
ColPivHouseholderQR dec(A);
|
||||
ColPivHouseholderQR<Matrix3f> dec(A);
|
||||
Vector3f x = dec.solve(b);
|
||||
\endcode
|
||||
|
||||
@ -107,11 +107,138 @@ depending on your matrix and the trade-off you want to make:
|
||||
|
||||
All of these decompositions offer a solve() method that works as in the above example.
|
||||
|
||||
For a much more complete table comparing all decompositions supported by Eigen (notice that Eigen
|
||||
For example, if your matrix is positive definite, the above table says that a very good
|
||||
choice is then the LDLT decomposition. Here's an example, also demonstrating that using a general
|
||||
matrix (not a vector) as right hand side is possible.
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgExSolveLDLT.cpp </td>
|
||||
<td>output: \verbinclude TutorialLinAlgExSolveLDLT.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
For a \ref TopicLinearAlgebraDecompositions "much more complete table" comparing all decompositions supported by Eigen (notice that Eigen
|
||||
supports many other decompositions), see our special page on
|
||||
\ref TopicLinearAlgebraDecompositions "this topic".
|
||||
|
||||
\section TutorialLinAlgSolutionExists Checking if a solution really exists
|
||||
|
||||
Only you know what error margin you want to allow for a solution to be considered valid.
|
||||
So Eigen lets you do this computation for yourself, if you want to, as in this example:
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgExComputeSolveError.cpp </td>
|
||||
<td>output: \verbinclude TutorialLinAlgExComputeSolveError.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
\section TutorialLinAlgEigensolving Computing eigenvalues and eigenvectors
|
||||
|
||||
You need an eigendecomposition here, see available such decompositions on \ref TopicLinearAlgebraDecompositions "this page".
|
||||
Make sure to check if your matrix is self-adjoint, as is often the case in these problems. Here's an example using
|
||||
SelfAdjointEigenSolver, it could easily be adapted to general matrices using EigenSolver or ComplexEigenSolver.
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgSelfAdjointEigenSolver.cpp </td>
|
||||
<td>output: \verbinclude TutorialLinAlgSelfAdjointEigenSolver.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
\section TutorialLinAlgEigensolving Computing inverse and determinant
|
||||
|
||||
First of all, make sure that you really want this. While inverse and determinant are fundamental mathematical concepts,
|
||||
in \em numerical linear algebra they are not as popular as in pure mathematics. Inverse computations are often
|
||||
advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix
|
||||
is invertible.
|
||||
|
||||
However, for \em very \em small matrices, the above is not true, and inverse and determinant can be very useful.
|
||||
|
||||
While certain decompositions, such as PartialPivLU and FullPivLU, offer inverse() and determinant() methods, you can also
|
||||
call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) this
|
||||
allows Eigen to avoid performing a LU decomposition, and instead use formulas that are more efficient on such small matrices.
|
||||
|
||||
Here is an example:
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgInverseDeterminant.cpp </td>
|
||||
<td>output: \verbinclude TutorialLinAlgInverseDeterminant.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
\section TutorialLinAlgLeastsquares Least squares solving
|
||||
|
||||
Eigen doesn't currently provide built-in linear least squares solving functions, but you can easily compute that yourself
|
||||
from Eigen's decompositions. The most reliable way is to use a SVD (or better yet, JacobiSVD), and in the future
|
||||
these classes will offer methods for least squares solving. Another, potentially faster way, is to use a LLT decomposition
|
||||
of the normal matrix. In any case, just read any reference text on least squares, and it will be very easy for you
|
||||
to implement any linear least squares computation on top of Eigen.
|
||||
|
||||
\section TutorialLinAlgSeparateComputation Separating the computation from the construction
|
||||
|
||||
In the above examples, the decomposition was computed at the same time that the decomposition object was constructed.
|
||||
There are however situations where you might want to separate these two things, for example if you don't know,
|
||||
at the time of the construction, the matrix that you will want to decompose; or if you want to reuse an existing
|
||||
decomposition object.
|
||||
|
||||
What makes this possible is that:
|
||||
\li all decompositions have a default constructor,
|
||||
\li all decompositions have a compute(matrix) method that does the computation, and that may be called again
|
||||
on an already-computed decomposition, reinitializing it.
|
||||
|
||||
For example:
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgComputeTwice.cpp </td>
|
||||
<td>output: \verbinclude TutorialLinAlgComputeTwice.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
Finally, you can tell the decomposition constructor to preallocate storage for decomposing matrices of a given size,
|
||||
so that when you subsequently decompose such matrices, no dynamic memory allocation is performed (of course, if you
|
||||
are using fixed-size matrices, no dynamic memory allocation happens at all). This is done by just
|
||||
passing the size to the decomposition constructor, as in this example:
|
||||
\code
|
||||
HouseholderQR<MatrixXf> qr(50,50);
|
||||
MatrixXf A = MatrixXf::Random(50,50);
|
||||
qr.compute(A); // no dynamic memory allocation
|
||||
\endcode
|
||||
|
||||
\section TutorialLinAlgRankRevealing Rank-revealing decompositions
|
||||
|
||||
Certain decompositions are rank-revealing, i.e. are able to compute the rank of a matrix. These are typically
|
||||
also the decompositions that behave best in the face of a non-full-rank matrix (which in the square case means a
|
||||
singular matrix). On \ref TopicLinearAlgebraDecompositions "this table" you can see for all our decompositions
|
||||
whether they are rank-revealing or not.
|
||||
|
||||
Rank-revealing decompositions offer at least a rank() method. They can also offer convenience methods such as isInvertible(),
|
||||
and some are also providing methods to compute the kernel (null-space) and image (column-space) of the matrix, as is the
|
||||
case with FullPivLU:
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgRankRevealing.cpp </td>
|
||||
<td>output: \verbinclude TutorialLinAlgRankRevealing.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
Of course, any rank computation depends on the choice of an arbitrary threshold, since practically no
|
||||
floating-point matrix is \em exactly rank-deficient. Eigen picks a sensible default threshold, which depends
|
||||
on the decomposition but is typically the diagonal size times machine epsilon. While this is the best default we
|
||||
could pick, only you know what is the right threshold for your application. You can set this by calling setThreshold()
|
||||
on your decomposition object before calling compute(), as in this example:
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgSetThreshold.cpp </td>
|
||||
<td>output: \verbinclude TutorialLinAlgSetThreshold.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
\li \b Next: TODO
|
||||
|
||||
*/
|
||||
|
||||
|
23
doc/examples/TutorialLinAlgComputeTwice.cpp
Normal file
23
doc/examples/TutorialLinAlgComputeTwice.cpp
Normal file
@ -0,0 +1,23 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
Matrix2f A, b;
|
||||
LLT<Matrix2f> llt;
|
||||
A << 2, -1, -1, 3;
|
||||
b << 1, 2, 3, 1;
|
||||
cout << "Here is the matrix A:\n" << A << endl;
|
||||
cout << "Here is the right hand side b:\n" << b << endl;
|
||||
cout << "Computing LLT decomposition..." << endl;
|
||||
llt.compute(A);
|
||||
cout << "The solution is:\n" << llt.solve(b) << endl;
|
||||
A(1,1)++;
|
||||
cout << "The matrix A is now:\n" << A << endl;
|
||||
cout << "Computing LLT decomposition..." << endl;
|
||||
llt.compute(A);
|
||||
cout << "The solution is now:\n" << llt.solve(b) << endl;
|
||||
}
|
14
doc/examples/TutorialLinAlgExComputeSolveError.cpp
Normal file
14
doc/examples/TutorialLinAlgExComputeSolveError.cpp
Normal file
@ -0,0 +1,14 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
MatrixXd A = MatrixXd::Random(100,100);
|
||||
MatrixXd b = MatrixXd::Random(100,50);
|
||||
MatrixXd x = A.fullPivLu().solve(b);
|
||||
double relative_error = (A*x - b).norm() / b.norm(); // norm() is L2 norm
|
||||
cout << "The relative error is:\n" << relative_error << endl;
|
||||
}
|
@ -10,8 +10,8 @@ int main()
|
||||
Vector3f b;
|
||||
A << 1,2,3, 4,5,6, 7,8,10;
|
||||
b << 3, 3, 4;
|
||||
cout << "Here is the matrix A:" << endl << A << endl;
|
||||
cout << "Here is the vector b:" << endl << b << endl;
|
||||
cout << "Here is the matrix A:\n" << A << endl;
|
||||
cout << "Here is the vector b:\n" << b << endl;
|
||||
Vector3f x = A.colPivHouseholderQr().solve(b);
|
||||
cout << "The solution is:" << endl << x << endl;
|
||||
cout << "The solution is:\n" << x << endl;
|
||||
}
|
||||
|
16
doc/examples/TutorialLinAlgExSolveLDLT.cpp
Normal file
16
doc/examples/TutorialLinAlgExSolveLDLT.cpp
Normal file
@ -0,0 +1,16 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
Matrix2f A, b;
|
||||
A << 2, -1, -1, 3;
|
||||
b << 1, 2, 3, 1;
|
||||
cout << "Here is the matrix A:\n" << A << endl;
|
||||
cout << "Here is the right hand side b:\n" << b << endl;
|
||||
Matrix2f x = A.ldlt().solve(b);
|
||||
cout << "The solution is:\n" << x << endl;
|
||||
}
|
16
doc/examples/TutorialLinAlgInverseDeterminant.cpp
Normal file
16
doc/examples/TutorialLinAlgInverseDeterminant.cpp
Normal file
@ -0,0 +1,16 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
Matrix3f A;
|
||||
A << 1, 2, 1,
|
||||
2, 1, 0,
|
||||
-1, 1, 2;
|
||||
cout << "Here is the matrix A:\n" << A << endl;
|
||||
cout << "The determinant of A is " << A.determinant() << endl;
|
||||
cout << "The inverse of A is:\n" << A.inverse() << endl;
|
||||
}
|
20
doc/examples/TutorialLinAlgRankRevealing.cpp
Normal file
20
doc/examples/TutorialLinAlgRankRevealing.cpp
Normal file
@ -0,0 +1,20 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
Matrix3f A;
|
||||
A << 1, 2, 5,
|
||||
2, 1, 4,
|
||||
3, 0, 3;
|
||||
cout << "Here is the matrix A:\n" << A << endl;
|
||||
FullPivLU<Matrix3f> lu_decomp(A);
|
||||
cout << "The rank of A is " << lu_decomp.rank() << endl;
|
||||
cout << "Here is a matrix whose columns form a basis of the null-space of A:\n"
|
||||
<< lu_decomp.kernel() << endl;
|
||||
cout << "Here is a matrix whose columns form a basis of the column-space of A:\n"
|
||||
<< lu_decomp.image(A) << endl; // yes, have to pass the original A
|
||||
}
|
17
doc/examples/TutorialLinAlgSelfAdjointEigenSolver.cpp
Normal file
17
doc/examples/TutorialLinAlgSelfAdjointEigenSolver.cpp
Normal file
@ -0,0 +1,17 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
Matrix2f A;
|
||||
A << 1, 2, 2, 3;
|
||||
cout << "Here is the matrix A:\n" << A << endl;
|
||||
SelfAdjointEigenSolver<Matrix2f> eigensolver(A);
|
||||
cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl;
|
||||
cout << "Here's a matrix whose columns are eigenvectors of A "
|
||||
<< "corresponding to these eigenvalues:\n"
|
||||
<< eigensolver.eigenvectors() << endl;
|
||||
}
|
19
doc/examples/TutorialLinAlgSetThreshold.cpp
Normal file
19
doc/examples/TutorialLinAlgSetThreshold.cpp
Normal file
@ -0,0 +1,19 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
Matrix2d A;
|
||||
FullPivLU<Matrix2d> lu;
|
||||
A << 2, 1,
|
||||
2, 0.9999999999;
|
||||
lu.compute(A);
|
||||
cout << "By default, the rank of A is found to be " << lu.rank() << endl;
|
||||
cout << "Now recomputing the LU decomposition with threshold 1e-5" << endl;
|
||||
lu.setThreshold(1e-5);
|
||||
lu.compute(A);
|
||||
cout << "The rank of A is found to be " << lu.rank() << endl;
|
||||
}
|
Loading…
Reference in New Issue
Block a user