mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
Sparse matrix insertion:
- automatically turn a SparseMatrix to uncompressed mode when calling insert(i,j). - now coeffRef insert a new element when it does not already exist
This commit is contained in:
parent
f10bae74e8
commit
4ca89f32ed
@ -103,6 +103,7 @@ class SparseMatrix
|
||||
|
||||
public:
|
||||
|
||||
/** \returns whether \c *this is in compressed form. */
|
||||
inline bool compressed() const { return m_innerNonZeros==0; }
|
||||
|
||||
/** \returns the number of rows of the matrix */
|
||||
@ -145,7 +146,9 @@ class SparseMatrix
|
||||
* \warning it returns 0 in compressed mode */
|
||||
inline Index* _innerNonZeroPtr() { return m_innerNonZeros; }
|
||||
|
||||
/** \internal */
|
||||
inline Storage& data() { return m_data; }
|
||||
/** \internal */
|
||||
inline const Storage& data() const { return m_data; }
|
||||
|
||||
/** \returns the value of the matrix at position \a i, \a j
|
||||
@ -159,7 +162,13 @@ class SparseMatrix
|
||||
}
|
||||
|
||||
/** \returns a non-const reference to the value of the matrix at position \a i, \a j
|
||||
* The element \b have to be a non-zero element. */
|
||||
*
|
||||
* If the element does not exist then it is inserted via the insert(Index,Index) function
|
||||
* which itself turns the matrix into a non compressed form if that was not the case.
|
||||
*
|
||||
* This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
|
||||
* function if the element does not already exist.
|
||||
*/
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
const Index outer = IsRowMajor ? row : col;
|
||||
@ -168,10 +177,34 @@ class SparseMatrix
|
||||
Index start = m_outerIndex[outer];
|
||||
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
|
||||
eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
|
||||
eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
|
||||
if(end<=start)
|
||||
return insert(row,col);
|
||||
const Index p = m_data.searchLowerIndex(start,end-1,inner);
|
||||
eigen_assert((p<end) && (m_data.index(p)==inner) && "coeffRef cannot be called on a zero coefficient");
|
||||
return m_data.value(p);
|
||||
if((p<end) && (m_data.index(p)==inner))
|
||||
return m_data.value(p);
|
||||
else
|
||||
return insert(row,col);
|
||||
}
|
||||
|
||||
/** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
|
||||
* The non zero coefficient must \b not already exist.
|
||||
*
|
||||
* If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
|
||||
* mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first
|
||||
* call reserve(const SizesType &) to reserve a more appropriate number of elements per
|
||||
* inner vector that better match your scenario.
|
||||
*
|
||||
* This function performs a sorted insertion in O(1) if the elements of each inner vector are
|
||||
* inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
|
||||
*
|
||||
*/
|
||||
EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
|
||||
{
|
||||
if(compressed())
|
||||
{
|
||||
reserve(VectorXi::Constant(outerSize(), 2));
|
||||
}
|
||||
return insertUncompressed(row,col);
|
||||
}
|
||||
|
||||
public:
|
||||
@ -346,31 +379,8 @@ class SparseMatrix
|
||||
m_outerIndex[outer+1] = m_outerIndex[outer];
|
||||
}
|
||||
|
||||
//---
|
||||
|
||||
/** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
|
||||
* The non zero coefficient must \b not already exist.
|
||||
*
|
||||
* \warning This function can be extremely slow if the non zero coefficients
|
||||
* are not inserted in a coherent order.
|
||||
*
|
||||
* After an insertion session, you should call the finalize() function.
|
||||
*/
|
||||
EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
|
||||
{
|
||||
if(compressed())
|
||||
return insertCompressed(row,col);
|
||||
else
|
||||
return insertUncompressed(row,col);
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar& insertByOuterInner(Index j, Index i)
|
||||
{
|
||||
return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
|
||||
}
|
||||
|
||||
|
||||
/** Must be called after inserting a set of non zero entries.
|
||||
/** \internal
|
||||
* Must be called after inserting a set of non zero entries using the low level compressed API.
|
||||
*/
|
||||
inline void finalize()
|
||||
{
|
||||
@ -390,6 +400,17 @@ class SparseMatrix
|
||||
}
|
||||
}
|
||||
|
||||
//---
|
||||
|
||||
|
||||
|
||||
/** \internal
|
||||
* same as insert(Index,Index) except that the indices are given relative to the storage order */
|
||||
EIGEN_DONT_INLINE Scalar& insertByOuterInner(Index j, Index i)
|
||||
{
|
||||
return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
|
||||
}
|
||||
|
||||
/** Turns the matrix into the \em compressed format.
|
||||
*/
|
||||
void makeCompressed()
|
||||
@ -420,13 +441,13 @@ class SparseMatrix
|
||||
m_data.squeeze();
|
||||
}
|
||||
|
||||
/** Suppress all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
|
||||
/** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
|
||||
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
|
||||
{
|
||||
prune(default_prunning_func(reference,epsilon));
|
||||
}
|
||||
|
||||
/** Suppress all nonzeros which do not satisfy the predicate \a keep.
|
||||
/** Suppresses all nonzeros which do not satisfy the predicate \a keep.
|
||||
* The functor type \a KeepFunc must implement the following function:
|
||||
* \code
|
||||
* bool operator() (const Index& row, const Index& col, const Scalar& value) const;
|
||||
@ -456,7 +477,7 @@ class SparseMatrix
|
||||
m_data.resize(k,0);
|
||||
}
|
||||
|
||||
/** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
|
||||
/** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
|
||||
* \sa resizeNonZeros(Index), reserve(), setZero()
|
||||
*/
|
||||
void resize(Index rows, Index cols)
|
||||
@ -478,11 +499,8 @@ class SparseMatrix
|
||||
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
|
||||
}
|
||||
|
||||
/** \deprecated
|
||||
* \internal
|
||||
* Low level API
|
||||
* Resize the nonzero vector to \a size
|
||||
* */
|
||||
/** \internal
|
||||
* Resize the nonzero vector to \a size */
|
||||
void resizeNonZeros(Index size)
|
||||
{
|
||||
// TODO remove this function
|
||||
@ -511,14 +529,15 @@ class SparseMatrix
|
||||
*this = other.derived();
|
||||
}
|
||||
|
||||
/** Copy constructor */
|
||||
/** Copy constructor (it performs a deep copy) */
|
||||
inline SparseMatrix(const SparseMatrix& other)
|
||||
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
||||
{
|
||||
*this = other.derived();
|
||||
}
|
||||
|
||||
/** Swap the content of two sparse matrices of same type (optimization) */
|
||||
/** Swaps the content of two sparse matrices of the same type.
|
||||
* This is a fast operation that simply swaps the underlying pointers and parameters. */
|
||||
inline void swap(SparseMatrix& other)
|
||||
{
|
||||
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
|
||||
@ -648,8 +667,10 @@ class SparseMatrix
|
||||
delete[] m_innerNonZeros;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Overloaded for performance */
|
||||
Scalar sum() const;
|
||||
#endif
|
||||
|
||||
# ifdef EIGEN_SPARSEMATRIX_PLUGIN
|
||||
# include EIGEN_SPARSEMATRIX_PLUGIN
|
||||
@ -690,7 +711,7 @@ protected:
|
||||
}
|
||||
|
||||
// here we have to handle the tricky case where the outerIndex array
|
||||
// starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
|
||||
// starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
|
||||
// the 2nd inner vector...
|
||||
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
|
||||
&& (size_t(m_outerIndex[outer+1]) == m_data.size());
|
||||
@ -776,6 +797,8 @@ protected:
|
||||
return (m_data.value(p) = 0);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* A vector object that is equal to 0 everywhere but v at the position i */
|
||||
class SingletonVector
|
||||
{
|
||||
Index m_index;
|
||||
|
@ -110,7 +110,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
DenseMatrix m1(rows,cols);
|
||||
m1.setZero();
|
||||
SparseMatrixType m2(rows,cols);
|
||||
m2.reserve(10);
|
||||
if(internal::random<int>()%2)
|
||||
m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
|
||||
for (int j=0; j<cols; ++j)
|
||||
{
|
||||
for (int k=0; k<rows/2; ++k)
|
||||
@ -129,15 +130,21 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
DenseMatrix m1(rows,cols);
|
||||
m1.setZero();
|
||||
SparseMatrixType m2(rows,cols);
|
||||
m2.reserve(10);
|
||||
if(internal::random<int>()%2)
|
||||
m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
|
||||
for (int k=0; k<rows*cols; ++k)
|
||||
{
|
||||
int i = internal::random<int>(0,rows-1);
|
||||
int j = internal::random<int>(0,cols-1);
|
||||
if (m1.coeff(i,j)==Scalar(0))
|
||||
if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
|
||||
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
|
||||
else
|
||||
{
|
||||
Scalar v = internal::random<Scalar>();
|
||||
m2.coeffRef(i,j) += v;
|
||||
m1(i,j) += v;
|
||||
}
|
||||
}
|
||||
m2.finalize();
|
||||
VERIFY_IS_APPROX(m2,m1);
|
||||
}
|
||||
|
||||
@ -158,8 +165,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
if(mode==3)
|
||||
m2.reserve(r);
|
||||
}
|
||||
m2.finalize();
|
||||
m2.makeCompressed();
|
||||
if(internal::random<int>()%2)
|
||||
m2.makeCompressed();
|
||||
VERIFY_IS_APPROX(m2,m1);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user