Avoid leading underscore followed by cap in template identifiers

This commit is contained in:
Alexander Karatarakis 2021-08-04 22:41:52 +00:00 committed by Rasmus Munk Larsen
parent 5ad8b9bfe2
commit 4ba872bd75
129 changed files with 1481 additions and 1480 deletions

View File

@ -16,8 +16,8 @@
namespace Eigen {
namespace internal {
template<typename _MatrixType, int _UpLo> struct traits<LDLT<_MatrixType, _UpLo> >
: traits<_MatrixType>
template<typename MatrixType_, int UpLo_> struct traits<LDLT<MatrixType_, UpLo_> >
: traits<MatrixType_>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
@ -37,8 +37,8 @@ namespace internal {
*
* \brief Robust Cholesky decomposition of a matrix with pivoting
*
* \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* \tparam MatrixType_ the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper.
* The other triangular part won't be read.
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
@ -56,11 +56,11 @@ namespace internal {
*
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
*/
template<typename _MatrixType, int _UpLo> class LDLT
: public SolverBase<LDLT<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_> class LDLT
: public SolverBase<LDLT<MatrixType_, UpLo_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<LDLT> Base;
friend class SolverBase<LDLT>;
@ -68,7 +68,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
UpLo = UpLo_
};
typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
@ -494,9 +494,9 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType, int _UpLo>
template<typename MatrixType, int UpLo_>
template<typename InputType>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a)
{
check_template_parameters();
@ -510,7 +510,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputTyp
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
if (UpLo_ == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
@ -534,9 +534,9 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputTyp
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
* \sa setZero()
*/
template<typename MatrixType, int _UpLo>
template<typename MatrixType, int UpLo_>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,UpLo_>::RealScalar& sigma)
{
typedef typename TranspositionType::StorageIndex IndexType;
const Index size = w.rows();
@ -562,16 +562,16 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType, int _UpLo>
template<typename MatrixType_, int UpLo_>
template<typename RhsType, typename DstType>
void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
void LDLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
_solve_impl_transposed<true>(rhs, dst);
}
template<typename _MatrixType,int _UpLo>
template<typename MatrixType_,int UpLo_>
template<bool Conjugate, typename RhsType, typename DstType>
void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
void LDLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
// dst = P b
dst = m_transpositions * rhs;
@ -624,9 +624,9 @@ void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
template<typename MatrixType,int _UpLo>
template<typename MatrixType,int UpLo_>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
bool LDLT<MatrixType,UpLo_>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows() == bAndX.rows());
@ -639,8 +639,8 @@ bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
template<typename MatrixType, int UpLo_>
MatrixType LDLT<MatrixType,UpLo_>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();

View File

@ -14,8 +14,8 @@ namespace Eigen {
namespace internal{
template<typename _MatrixType, int _UpLo> struct traits<LLT<_MatrixType, _UpLo> >
: traits<_MatrixType>
template<typename MatrixType_, int UpLo_> struct traits<LLT<MatrixType_, UpLo_> >
: traits<MatrixType_>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
@ -32,8 +32,8 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* \tparam MatrixType_ the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
@ -58,16 +58,16 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered.
* Note that during the decomposition, only the lower (or upper, as defined by UpLo_) triangular part of A is considered.
* Therefore, the strict lower part does not have to store correct values.
*
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
*/
template<typename _MatrixType, int _UpLo> class LLT
: public SolverBase<LLT<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_> class LLT
: public SolverBase<LLT<MatrixType_, UpLo_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<LLT> Base;
friend class SolverBase<LLT>;
@ -79,7 +79,7 @@ template<typename _MatrixType, int _UpLo> class LLT
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
UpLo = _UpLo
UpLo = UpLo_
};
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
@ -427,9 +427,9 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
* Example: \include TutorialLinAlgComputeTwice.cpp
* Output: \verbinclude TutorialLinAlgComputeTwice.out
*/
template<typename MatrixType, int _UpLo>
template<typename MatrixType, int UpLo_>
template<typename InputType>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
LLT<MatrixType,UpLo_>& LLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a)
{
check_template_parameters();
@ -444,7 +444,7 @@ LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
if (UpLo_ == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
@ -464,9 +464,9 @@ LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
* of same dimension.
*/
template<typename _MatrixType, int _UpLo>
template<typename MatrixType_, int UpLo_>
template<typename VectorType>
LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
LLT<MatrixType_,UpLo_> & LLT<MatrixType_,UpLo_>::rankUpdate(const VectorType& v, const RealScalar& sigma)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
eigen_assert(v.size()==m_matrix.cols());
@ -480,16 +480,16 @@ LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v,
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType,int _UpLo>
template<typename MatrixType_,int UpLo_>
template<typename RhsType, typename DstType>
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
void LLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
_solve_impl_transposed<true>(rhs, dst);
}
template<typename _MatrixType,int _UpLo>
template<typename MatrixType_,int UpLo_>
template<bool Conjugate, typename RhsType, typename DstType>
void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
void LLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
dst = rhs;
@ -511,9 +511,9 @@ void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename MatrixType, int UpLo_>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
void LLT<MatrixType,UpLo_>::solveInPlace(const MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
@ -524,8 +524,8 @@ void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
template<typename MatrixType, int UpLo_>
MatrixType LLT<MatrixType,UpLo_>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();

View File

@ -54,8 +54,8 @@ template<> struct cholmod_configure_matrix<std::complex<double> > {
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
* Note that the data are shared.
*/
template<typename _Scalar, int _Options, typename _StorageIndex>
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
template<typename Scalar_, int Options_, typename StorageIndex_>
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,StorageIndex_> > mat)
{
cholmod_sparse res;
res.nzmax = mat.nonZeros();
@ -80,11 +80,11 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
res.dtype = 0;
res.stype = -1;
if (internal::is_same<_StorageIndex,int>::value)
if (internal::is_same<StorageIndex_,int>::value)
{
res.itype = CHOLMOD_INT;
}
else if (internal::is_same<_StorageIndex,SuiteSparse_long>::value)
else if (internal::is_same<StorageIndex_,SuiteSparse_long>::value)
{
res.itype = CHOLMOD_LONG;
}
@ -94,39 +94,39 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
}
// setup res.xtype
internal::cholmod_configure_matrix<_Scalar>::run(res);
internal::cholmod_configure_matrix<Scalar_>::run(res);
res.stype = 0;
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
template<typename Scalar_, int Options_, typename Index_>
const cholmod_sparse viewAsCholmod(const SparseMatrix<Scalar_,Options_,Index_>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived()));
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
template<typename Scalar_, int Options_, typename Index_>
const cholmod_sparse viewAsCholmod(const SparseVector<Scalar_,Options_,Index_>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived()));
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
template<typename Scalar_, int Options_, typename Index_, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<Scalar_,Options_,Index_>, UpLo>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.matrix().const_cast_derived()));
if(UpLo==Upper) res.stype = 1;
if(UpLo==Lower) res.stype = -1;
// swap stype for rowmajor matrices (only works for real matrices)
EIGEN_STATIC_ASSERT((_Options & RowMajorBit) == 0 || NumTraits<_Scalar>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
if(_Options & RowMajorBit) res.stype *=-1;
EIGEN_STATIC_ASSERT((Options_ & RowMajorBit) == 0 || NumTraits<Scalar_>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
if(Options_ & RowMajorBit) res.stype *=-1;
return res;
}
@ -167,11 +167,11 @@ namespace internal {
// template specializations for int and long that call the correct cholmod method
#define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \
template<typename _StorageIndex> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \
template<typename StorageIndex_> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \
template<> inline ret cm_ ## name<SuiteSparse_long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); }
#define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \
template<typename _StorageIndex> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \
template<typename StorageIndex_> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \
template<> inline ret cm_ ## name<SuiteSparse_long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); }
EIGEN_CHOLMOD_SPECIALIZE0(int, start)
@ -183,14 +183,14 @@ EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A)
EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A)
template<typename _StorageIndex> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); }
template<typename StorageIndex_> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); }
template<> inline cholmod_dense* cm_solve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); }
template<typename _StorageIndex> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); }
template<typename StorageIndex_> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); }
template<> inline cholmod_sparse* cm_spsolve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); }
template<typename _StorageIndex>
inline int cm_factorize_p (cholmod_sparse* A, double beta[2], _StorageIndex* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); }
template<typename StorageIndex_>
inline int cm_factorize_p (cholmod_sparse* A, double beta[2], StorageIndex_* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); }
template<>
inline int cm_factorize_p<SuiteSparse_long> (cholmod_sparse* A, double beta[2], SuiteSparse_long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); }
@ -210,7 +210,7 @@ enum CholmodMode {
* \brief The base class for the direct Cholesky factorization of Cholmod
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename MatrixType_, int UpLo_, typename Derived>
class CholmodBase : public SparseSolverBase<Derived>
{
protected:
@ -218,8 +218,8 @@ class CholmodBase : public SparseSolverBase<Derived>
using Base::derived;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef MatrixType_ MatrixType;
enum { UpLo = UpLo_ };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef MatrixType CholMatrixType;
@ -461,8 +461,8 @@ class CholmodBase : public SparseSolverBase<Derived>
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
@ -473,15 +473,15 @@ class CholmodBase : public SparseSolverBase<Derived>
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_ = Lower>
class CholmodSimplicialLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT<MatrixType_, UpLo_> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
CholmodSimplicialLLT() : Base() { init(); }
@ -512,8 +512,8 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
@ -524,15 +524,15 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_ = Lower>
class CholmodSimplicialLDLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT<MatrixType_, UpLo_> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
CholmodSimplicialLDLT() : Base() { init(); }
@ -561,8 +561,8 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
@ -573,15 +573,15 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
*
* \sa \ref TutorialSparseSolverConcept
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_ = Lower>
class CholmodSupernodalLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT<MatrixType_, UpLo_> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
typedef CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
CholmodSupernodalLLT() : Base() { init(); }
@ -612,8 +612,8 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
* On the other hand, it does not provide access to the result of the factorization.
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
@ -624,15 +624,15 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
*
* \sa \ref TutorialSparseSolverConcept
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_ = Lower>
class CholmodDecomposition : public CholmodBase<MatrixType_, UpLo_, CholmodDecomposition<MatrixType_, UpLo_> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
typedef CholmodBase<MatrixType_, UpLo_, CholmodDecomposition> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
CholmodDecomposition() : Base() { init(); }

View File

@ -13,11 +13,11 @@
namespace Eigen {
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct traits<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> > : traits<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
typedef ArrayBase<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> > XprBase;
};
}
@ -41,16 +41,16 @@ struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : tra
*
* \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
: public PlainObjectBase<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
{
public:
typedef PlainObjectBase<Array> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Array)
enum { Options = _Options };
enum { Options = Options_ };
typedef typename Base::PlainObject PlainObject;
protected:

View File

@ -161,12 +161,12 @@ class BandMatrixBase : public EigenBase<Derived>
*
* \brief Represents a rectangular matrix with a banded storage
*
* \tparam _Scalar Numeric type, i.e. float, double, int
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
* \tparam _Supers Number of super diagonal
* \tparam _Subs Number of sub diagonal
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* \tparam Scalar_ Numeric type, i.e. float, double, int
* \tparam Rows_ Number of rows, or \b Dynamic
* \tparam Cols_ Number of columns, or \b Dynamic
* \tparam Supers_ Number of super diagonal
* \tparam Subs_ Number of sub diagonal
* \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
@ -174,29 +174,29 @@ class BandMatrixBase : public EigenBase<Derived>
* \sa class TridiagonalMatrix
*/
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
template<typename Scalar_, int Rows_, int Cols_, int Supers_, int Subs_, int Options_>
struct traits<BandMatrix<Scalar_,Rows_,Cols_,Supers_,Subs_,Options_> >
{
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
RowsAtCompileTime = Rows_,
ColsAtCompileTime = Cols_,
MaxRowsAtCompileTime = Rows_,
MaxColsAtCompileTime = Cols_,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
Supers = Supers_,
Subs = Subs_,
Options = Options_,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef Matrix<Scalar, DataRowsAtCompileTime, ColsAtCompileTime, int(Options) & int(RowMajor) ? RowMajor : ColMajor> CoefficientsType;
};
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
template<typename Scalar_, int Rows, int Cols, int Supers, int Subs, int Options>
class BandMatrix : public BandMatrixBase<BandMatrix<Scalar_,Rows,Cols,Supers,Subs,Options> >
{
public:
@ -233,32 +233,32 @@ class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Sub
internal::variable_if_dynamic<Index, Subs> m_subs;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
template<typename _CoefficientsType,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
class BandMatrixWrapper;
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
template<typename _CoefficientsType,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
struct traits<BandMatrixWrapper<_CoefficientsType,Rows_,Cols_,Supers_,Subs_,Options_> >
{
typedef typename _CoefficientsType::Scalar Scalar;
typedef typename _CoefficientsType::StorageKind StorageKind;
typedef typename _CoefficientsType::StorageIndex StorageIndex;
enum {
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
RowsAtCompileTime = Rows_,
ColsAtCompileTime = Cols_,
MaxRowsAtCompileTime = Rows_,
MaxColsAtCompileTime = Cols_,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
Supers = Supers_,
Subs = Subs_,
Options = Options_,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef _CoefficientsType CoefficientsType;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
template<typename _CoefficientsType,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,Rows_,Cols_,Supers_,Subs_,Options_> >
{
public:
@ -266,7 +266,7 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
typedef typename internal::traits<BandMatrixWrapper>::StorageIndex StorageIndex;
explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=Rows_, Index cols=Cols_, Index supers=Supers_, Index subs=Subs_)
: m_coeffs(coeffs),
m_rows(rows), m_supers(supers), m_subs(subs)
{
@ -291,9 +291,9 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
protected:
const CoefficientsType& m_coeffs;
internal::variable_if_dynamic<Index, _Rows> m_rows;
internal::variable_if_dynamic<Index, _Supers> m_supers;
internal::variable_if_dynamic<Index, _Subs> m_subs;
internal::variable_if_dynamic<Index, Rows_> m_rows;
internal::variable_if_dynamic<Index, Supers_> m_supers;
internal::variable_if_dynamic<Index, Subs_> m_subs;
};
/**
@ -330,16 +330,16 @@ class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint
struct BandShape {};
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct evaluator_traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
template<typename Scalar_, int Rows_, int Cols_, int Supers_, int Subs_, int Options_>
struct evaluator_traits<BandMatrix<Scalar_,Rows_,Cols_,Supers_,Subs_,Options_> >
: public evaluator_traits_base<BandMatrix<Scalar_,Rows_,Cols_,Supers_,Subs_,Options_> >
{
typedef BandShape Shape;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
template<typename _CoefficientsType,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,Rows_,Cols_,Supers_,Subs_,Options_> >
: public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,Rows_,Cols_,Supers_,Subs_,Options_> >
{
typedef BandShape Shape;
};

View File

@ -201,12 +201,12 @@ struct plain_array_helper {
*
* \sa Matrix
*/
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
template<typename T, int Size, int Rows_, int Cols_, int Options_> class DenseStorage;
// purely fixed-size matrix
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
template<typename T, int Size, int Rows_, int Cols_, int Options_> class DenseStorage
{
internal::plain_array<T,Size,_Options> m_data;
internal::plain_array<T,Size,Options_> m_data;
public:
EIGEN_DEVICE_FUNC DenseStorage() {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)
@ -251,7 +251,7 @@ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseSt
#endif
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows==_Rows && cols==_Cols);
eigen_internal_assert(size==rows*cols && rows==Rows_ && cols==Cols_);
EIGEN_UNUSED_VARIABLE(size);
EIGEN_UNUSED_VARIABLE(rows);
EIGEN_UNUSED_VARIABLE(cols);
@ -259,8 +259,8 @@ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseSt
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data, other.m_data);
}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return _Rows;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT {return _Cols;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return Rows_;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT {return Cols_;}
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
@ -268,7 +268,7 @@ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseSt
};
// null matrix
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
template<typename T, int Rows_, int Cols_, int Options_> class DenseStorage<T, 0, Rows_, Cols_, Options_>
{
public:
EIGEN_DEVICE_FUNC DenseStorage() {}
@ -277,8 +277,8 @@ template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; }
EIGEN_DEVICE_FUNC DenseStorage(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& ) {}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return _Rows;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT {return _Cols;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return Rows_;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT {return Cols_;}
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC const T *data() const { return 0; }
@ -286,19 +286,19 @@ template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0
};
// more specializations for null matrices; these are necessary to resolve ambiguities
template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int Options_> class DenseStorage<T, 0, Dynamic, Dynamic, Options_>
: public DenseStorage<T, 0, 0, 0, Options_> { };
template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int Rows_, int Options_> class DenseStorage<T, 0, Rows_, Dynamic, Options_>
: public DenseStorage<T, 0, 0, 0, Options_> { };
template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int Cols_, int Options_> class DenseStorage<T, 0, Dynamic, Cols_, Options_>
: public DenseStorage<T, 0, 0, 0, Options_> { };
// dynamic-size matrix with fixed-size storage
template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
template<typename T, int Size, int Options_> class DenseStorage<T, Size, Dynamic, Dynamic, Options_>
{
internal::plain_array<T,Size,_Options> m_data;
internal::plain_array<T,Size,Options_> m_data;
Index m_rows;
Index m_cols;
public:
@ -336,9 +336,9 @@ template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic
};
// dynamic-size matrix with fixed-size storage and fixed width
template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
template<typename T, int Size, int Cols_, int Options_> class DenseStorage<T, Size, Dynamic, Cols_, Options_>
{
internal::plain_array<T,Size,_Options> m_data;
internal::plain_array<T,Size,Options_> m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
@ -347,7 +347,7 @@ template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Si
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows)
{
internal::plain_array_helper::copy(other.m_data, m_rows * _Cols, m_data);
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
@ -355,18 +355,18 @@ template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Si
if (this != &other)
{
m_rows = other.m_rows;
internal::plain_array_helper::copy(other.m_data, m_rows * _Cols, m_data);
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
{
internal::plain_array_helper::swap(m_data, m_rows * _Cols, other.m_data, other.m_rows * _Cols);
internal::plain_array_helper::swap(m_data, m_rows * Cols_, other.m_data, other.m_rows * Cols_);
numext::swap(m_rows, other.m_rows);
}
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT {return m_rows;}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols(void) const EIGEN_NOEXCEPT {return _Cols;}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols(void) const EIGEN_NOEXCEPT {return Cols_;}
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
@ -374,9 +374,9 @@ template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Si
};
// dynamic-size matrix with fixed-size storage and fixed height
template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
template<typename T, int Size, int Rows_, int Options_> class DenseStorage<T, Size, Rows_, Dynamic, Options_>
{
internal::plain_array<T,Size,_Options> m_data;
internal::plain_array<T,Size,Options_> m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
@ -385,23 +385,23 @@ template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Si
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(other.m_cols)
{
internal::plain_array_helper::copy(other.m_data, _Rows * m_cols, m_data);
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_cols = other.m_cols;
internal::plain_array_helper::copy(other.m_data, _Rows * m_cols, m_data);
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
internal::plain_array_helper::swap(m_data, _Rows * m_cols, other.m_data, _Rows * other.m_cols);
internal::plain_array_helper::swap(m_data, Rows_ * m_cols, other.m_data, Rows_ * other.m_cols);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows(void) const EIGEN_NOEXCEPT {return _Rows;}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows(void) const EIGEN_NOEXCEPT {return Rows_;}
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT {return m_cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC void resize(Index, Index, Index cols) { m_cols = cols; }
@ -410,7 +410,7 @@ template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Si
};
// purely dynamic matrix.
template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
template<typename T, int Options_> class DenseStorage<T, Dynamic, Dynamic, Dynamic, Options_>
{
T *m_data;
Index m_rows;
@ -420,13 +420,13 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows), m_cols(cols)
: m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size)), m_rows(rows), m_cols(cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows>=0 && cols >=0);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*other.m_cols))
: m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(other.m_rows*other.m_cols))
, m_rows(other.m_rows)
, m_cols(other.m_cols)
{
@ -462,7 +462,7 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, m_rows*m_cols); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
{
numext::swap(m_data,other.m_data);
@ -473,7 +473,7 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT {return m_cols;}
void conservativeResize(Index size, Index rows, Index cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
m_data = internal::conditional_aligned_realloc_new_auto<T,(Options_&DontAlign)==0>(m_data, size, m_rows*m_cols);
m_rows = rows;
m_cols = cols;
}
@ -481,9 +481,9 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
{
if(size != m_rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, m_rows*m_cols);
if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
@ -496,25 +496,25 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
template<typename T, int Rows_, int Options_> class DenseStorage<T, Dynamic, Rows_, Dynamic, Options_>
{
T *m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {}
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(cols)
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size)), m_cols(cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows==_Rows && cols >=0);
eigen_internal_assert(size==rows*cols && rows==Rows_ && cols >=0);
EIGEN_UNUSED_VARIABLE(rows);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(_Rows*other.m_cols))
: m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(Rows_*other.m_cols))
, m_cols(other.m_cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols*_Rows)
internal::smart_copy(other.m_data, other.m_data+_Rows*m_cols, m_data);
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols*Rows_)
internal::smart_copy(other.m_data, other.m_data+Rows_*m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
@ -542,25 +542,25 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Rows_*m_cols); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data,other.m_data);
numext::swap(m_cols,other.m_cols);
}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return _Rows;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return Rows_;}
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT {return m_cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
m_data = internal::conditional_aligned_realloc_new_auto<T,(Options_&DontAlign)==0>(m_data, size, Rows_*m_cols);
m_cols = cols;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols)
{
if(size != _Rows*m_cols)
if(size != Rows_*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Rows_*m_cols);
if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
@ -572,25 +572,25 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
template<typename T, int Cols_, int Options_> class DenseStorage<T, Dynamic, Dynamic, Cols_, Options_>
{
T *m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {}
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows)
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size)), m_rows(rows)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size==rows*cols && rows>=0 && cols == _Cols);
eigen_internal_assert(size==rows*cols && rows>=0 && cols == Cols_);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*_Cols))
: m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(other.m_rows*Cols_))
, m_rows(other.m_rows)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*_Cols)
internal::smart_copy(other.m_data, other.m_data+other.m_rows*_Cols, m_data);
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*Cols_)
internal::smart_copy(other.m_data, other.m_data+other.m_rows*Cols_, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
@ -618,25 +618,25 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Cols_*m_rows); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data,other.m_data);
numext::swap(m_rows,other.m_rows);
}
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT {return m_rows;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) {return _Cols;}
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) {return Cols_;}
void conservativeResize(Index size, Index rows, Index)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
m_data = internal::conditional_aligned_realloc_new_auto<T,(Options_&DontAlign)==0>(m_data, size, m_rows*Cols_);
m_rows = rows;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index)
{
if(size != m_rows*_Cols)
if(size != m_rows*Cols_)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Cols_*m_rows);
if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})

View File

@ -60,12 +60,12 @@ struct traits<Diagonal<MatrixType,DiagIndex> >
};
}
template<typename MatrixType, int _DiagIndex> class Diagonal
: public internal::dense_xpr_base< Diagonal<MatrixType,_DiagIndex> >::type
template<typename MatrixType, int DiagIndex_> class Diagonal
: public internal::dense_xpr_base< Diagonal<MatrixType,DiagIndex_> >::type
{
public:
enum { DiagIndex = _DiagIndex };
enum { DiagIndex = DiagIndex_ };
typedef typename internal::dense_xpr_base<Diagonal>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)

View File

@ -116,7 +116,7 @@ class DiagonalBase : public EigenBase<Derived>
*
* \brief Represents a diagonal matrix with its storage
*
* \param _Scalar the type of coefficients
* \param Scalar_ the type of coefficients
* \param SizeAtCompileTime the dimension of the matrix, or Dynamic
* \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
@ -125,26 +125,26 @@ class DiagonalBase : public EigenBase<Derived>
*/
namespace internal {
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
template<typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<DiagonalMatrix<Scalar_,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<Scalar_,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
typedef Matrix<Scalar_,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
typedef DiagonalShape StorageKind;
enum {
Flags = LvalueBit | NoPreferredStorageOrderBit
};
};
}
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
template<typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime>
class DiagonalMatrix
: public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: public DiagonalBase<DiagonalMatrix<Scalar_,SizeAtCompileTime,MaxSizeAtCompileTime> >
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
typedef const DiagonalMatrix& Nested;
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
typedef typename internal::traits<DiagonalMatrix>::StorageIndex StorageIndex;
#endif
@ -261,7 +261,7 @@ class DiagonalMatrix
*
* \brief Expression of a diagonal matrix
*
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
* \param DiagonalVectorType_ the type of the vector of diagonal coefficients
*
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
@ -271,10 +271,10 @@ class DiagonalMatrix
*/
namespace internal {
template<typename _DiagonalVectorType>
struct traits<DiagonalWrapper<_DiagonalVectorType> >
template<typename DiagonalVectorType_>
struct traits<DiagonalWrapper<DiagonalVectorType_> >
{
typedef _DiagonalVectorType DiagonalVectorType;
typedef DiagonalVectorType_ DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::StorageIndex StorageIndex;
typedef DiagonalShape StorageKind;
@ -289,13 +289,13 @@ struct traits<DiagonalWrapper<_DiagonalVectorType> >
};
}
template<typename _DiagonalVectorType>
template<typename DiagonalVectorType_>
class DiagonalWrapper
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
: public DiagonalBase<DiagonalWrapper<DiagonalVectorType_> >, internal::no_assignment_operator
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef _DiagonalVectorType DiagonalVectorType;
typedef DiagonalVectorType_ DiagonalVectorType;
typedef DiagonalWrapper Nested;
#endif

View File

@ -14,34 +14,34 @@
namespace Eigen {
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct traits<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
{
private:
enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret };
typedef typename find_best_packet<_Scalar,size>::type PacketScalar;
enum { size = internal::size_at_compile_time<Rows_,Cols_>::ret };
typedef typename find_best_packet<Scalar_,size>::type PacketScalar;
enum {
row_major_bit = _Options&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic,
max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols,
default_alignment = compute_default_alignment<_Scalar,max_size>::value,
actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0,
row_major_bit = Options_&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = MaxRows_==Dynamic || MaxCols_==Dynamic,
max_size = is_dynamic_size_storage ? Dynamic : MaxRows_*MaxCols_,
default_alignment = compute_default_alignment<Scalar_,max_size>::value,
actual_alignment = ((Options_&DontAlign)==0) ? default_alignment : 0,
required_alignment = unpacket_traits<PacketScalar>::alignment,
packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0
packet_access_bit = (packet_traits<Scalar_>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0
};
public:
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
Options = _Options,
RowsAtCompileTime = Rows_,
ColsAtCompileTime = Cols_,
MaxRowsAtCompileTime = MaxRows_,
MaxColsAtCompileTime = MaxCols_,
Flags = compute_matrix_flags<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>::ret,
Options = Options_,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
@ -63,18 +63,18 @@ public:
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
*
* The first three template parameters are required:
* \tparam _Scalar Numeric type, e.g. float, double, int or std::complex<float>.
* \tparam Scalar_ Numeric type, e.g. float, double, int or std::complex<float>.
* User defined scalar types are supported as well (see \ref user_defined_scalars "here").
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
* \tparam Rows_ Number of rows, or \b Dynamic
* \tparam Cols_ Number of columns, or \b Dynamic
*
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either
* \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of either
* \b #AutoAlign or \b #DontAlign.
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
* \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
* \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
* \tparam MaxRows_ Maximum number of rows. Defaults to \a Rows_ (\ref maxrows "note").
* \tparam MaxCols_ Maximum number of columns. Defaults to \a Cols_ (\ref maxrows "note").
*
* Eigen provides a number of typedefs covering the usual cases. Here are some examples:
*
@ -128,12 +128,12 @@ public:
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
* If you want this behavior, see the Sparse module.</dd>
*
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
* <dt><b>\anchor maxrows MaxRows_ and MaxCols_:</b></dt>
* <dd>In most cases, one just leaves these parameters to the default values.
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case MaxRows_ and MaxCols_
* are the dimensions of the original matrix, while Rows_ and Cols_ are Dynamic.</dd>
* </dl>
*
* <i><b>ABI and storage layout</b></i>
@ -174,9 +174,9 @@ public:
* \ref TopicStorageOrders
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
class Matrix
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
: public PlainObjectBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
{
public:
@ -185,7 +185,7 @@ class Matrix
*/
typedef PlainObjectBase<Matrix> Base;
enum { Options = _Options };
enum { Options = Options_ };
EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)

View File

@ -252,15 +252,15 @@ template<> struct NumTraits<long double>
static inline long double dummy_precision() { return 1e-15l; }
};
template<typename _Real> struct NumTraits<std::complex<_Real> >
: GenericNumTraits<std::complex<_Real> >
template<typename Real_> struct NumTraits<std::complex<Real_> >
: GenericNumTraits<std::complex<Real_> >
{
typedef _Real Real;
typedef typename NumTraits<_Real>::Literal Literal;
typedef Real_ Real;
typedef typename NumTraits<Real_>::Literal Literal;
enum {
IsComplex = 1,
RequireInitialization = NumTraits<_Real>::RequireInitialization,
ReadCost = 2 * NumTraits<_Real>::ReadCost,
RequireInitialization = NumTraits<Real_>::RequireInitialization,
ReadCost = 2 * NumTraits<Real_>::ReadCost,
AddCost = 2 * NumTraits<Real>::AddCost,
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};

View File

@ -269,13 +269,13 @@ class PermutationBase : public EigenBase<Derived>
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
: traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> >
: traits<Matrix<StorageIndex_,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef PermutationStorage StorageKind;
typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef _StorageIndex StorageIndex;
typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef StorageIndex_ StorageIndex;
typedef void Scalar;
};
}
@ -287,14 +287,14 @@ struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _Storag
*
* \tparam SizeAtCompileTime the number of rows/cols, or Dynamic
* \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \tparam _StorageIndex the integer type of the indices
* \tparam StorageIndex_ the integer type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
*/
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> >
{
typedef PermutationBase<PermutationMatrix> Base;
typedef internal::traits<PermutationMatrix> Traits;
@ -389,20 +389,20 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
: traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>,_PacketAccess> >
: traits<Matrix<StorageIndex_,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef PermutationStorage StorageKind;
typedef Map<const Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef _StorageIndex StorageIndex;
typedef Map<const Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef StorageIndex_ StorageIndex;
typedef void Scalar;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>,_PacketAccess> >
{
typedef PermutationBase<Map> Base;
typedef internal::traits<Map> Traits;
@ -452,18 +452,18 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageInd
IndicesType m_indices;
};
template<typename _IndicesType> class TranspositionsWrapper;
template<typename IndicesType_> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
struct traits<PermutationWrapper<_IndicesType> >
template<typename IndicesType_>
struct traits<PermutationWrapper<IndicesType_> >
{
typedef PermutationStorage StorageKind;
typedef void Scalar;
typedef typename _IndicesType::Scalar StorageIndex;
typedef _IndicesType IndicesType;
typedef typename IndicesType_::Scalar StorageIndex;
typedef IndicesType_ IndicesType;
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
RowsAtCompileTime = IndicesType_::SizeAtCompileTime,
ColsAtCompileTime = IndicesType_::SizeAtCompileTime,
MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
Flags = 0
@ -476,14 +476,14 @@ struct traits<PermutationWrapper<_IndicesType> >
*
* \brief Class to view a vector of integers as a permutation matrix
*
* \tparam _IndicesType the type of the vector of integer (can be any compatible expression)
* \tparam IndicesType_ the type of the vector of integer (can be any compatible expression)
*
* This class allows to view any vector expression of integers as a permutation matrix.
*
* \sa class PermutationBase, class PermutationMatrix
*/
template<typename _IndicesType>
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
template<typename IndicesType_>
class PermutationWrapper : public PermutationBase<PermutationWrapper<IndicesType_> >
{
typedef PermutationBase<PermutationWrapper> Base;
typedef internal::traits<PermutationWrapper> Traits;

View File

@ -64,18 +64,18 @@ namespace doxygen {
// This is a workaround to doxygen not being able to understand the inheritance logic
// when it is hidden by the dense_xpr_base helper struct.
// Moreover, doxygen fails to include members that are not documented in the declaration body of
// MatrixBase if we inherits MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >,
// MatrixBase if we inherits MatrixBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >,
// this is why we simply inherits MatrixBase, though this does not make sense.
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename Derived> struct dense_xpr_base_dispatcher;
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct dense_xpr_base_dispatcher<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct dense_xpr_base_dispatcher<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
: public MatrixBase {};
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct dense_xpr_base_dispatcher<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct dense_xpr_base_dispatcher<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
: public ArrayBase {};
} // namespace doxygen

View File

@ -58,8 +58,8 @@ struct traits<Product<Lhs, Rhs, Option> >
*
* \brief Expression of the product of two arbitrary matrices or vectors
*
* \tparam _Lhs the type of the left-hand side expression
* \tparam _Rhs the type of the right-hand side expression
* \tparam Lhs_ the type of the left-hand side expression
* \tparam Rhs_ the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
*
@ -67,16 +67,16 @@ struct traits<Product<Lhs, Rhs, Option> >
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
*
*/
template<typename _Lhs, typename _Rhs, int Option>
class Product : public ProductImpl<_Lhs,_Rhs,Option,
typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,
typename internal::traits<_Rhs>::StorageKind,
internal::product_type<_Lhs,_Rhs>::ret>::ret>
template<typename Lhs_, typename Rhs_, int Option>
class Product : public ProductImpl<Lhs_,Rhs_,Option,
typename internal::product_promote_storage_type<typename internal::traits<Lhs_>::StorageKind,
typename internal::traits<Rhs_>::StorageKind,
internal::product_type<Lhs_,Rhs_>::ret>::ret>
{
public:
typedef _Lhs Lhs;
typedef _Rhs Rhs;
typedef Lhs_ Lhs;
typedef Rhs_ Rhs;
typedef typename ProductImpl<
Lhs, Rhs, Option,

View File

@ -836,13 +836,13 @@ public:
MatrixFlags = evaluator<MatrixType>::Flags,
DiagFlags = evaluator<DiagonalType>::Flags,
_StorageOrder = (Derived::MaxRowsAtCompileTime==1 && Derived::MaxColsAtCompileTime!=1) ? RowMajor
StorageOrder_ = (Derived::MaxRowsAtCompileTime==1 && Derived::MaxColsAtCompileTime!=1) ? RowMajor
: (Derived::MaxColsAtCompileTime==1 && Derived::MaxRowsAtCompileTime!=1) ? ColMajor
: MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
_SameStorageOrder = _StorageOrder == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor),
_SameStorageOrder = StorageOrder_ == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor),
_ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
_ScalarAccessOnDiag = !((int(StorageOrder_) == ColMajor && int(ProductOrder) == OnTheLeft)
||(int(StorageOrder_) == RowMajor && int(ProductOrder) == OnTheRight)),
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
// FIXME currently we need same types, but in the future the next rule should be the one
//_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
@ -913,7 +913,7 @@ struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalSha
typedef typename Lhs::DiagonalVectorType DiagonalType;
enum { StorageOrder = Base::_StorageOrder };
enum { StorageOrder = Base::StorageOrder_ };
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.rhs(), xpr.lhs().diagonal())
@ -957,7 +957,7 @@ struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape,
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
enum { StorageOrder = Base::_StorageOrder };
enum { StorageOrder = Base::StorageOrder_ };
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.lhs(), xpr.rhs().diagonal())

View File

@ -353,12 +353,12 @@ struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling>
};
// evaluator adaptor
template<typename _XprType>
class redux_evaluator : public internal::evaluator<_XprType>
template<typename XprType_>
class redux_evaluator : public internal::evaluator<XprType_>
{
typedef internal::evaluator<_XprType> Base;
typedef internal::evaluator<XprType_> Base;
public:
typedef _XprType XprType;
typedef XprType_ XprType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit redux_evaluator(const XprType &xpr) : Base(xpr) {}

View File

@ -14,16 +14,16 @@ namespace Eigen {
namespace internal {
template<typename _PlainObjectType, int _Options, typename _StrideType>
struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
: public traits<Map<_PlainObjectType, _Options, _StrideType> >
template<typename _PlainObjectType, int Options_, typename _StrideType>
struct traits<Ref<_PlainObjectType, Options_, _StrideType> >
: public traits<Map<_PlainObjectType, Options_, _StrideType> >
{
typedef _PlainObjectType PlainObjectType;
typedef _StrideType StrideType;
enum {
Options = _Options,
Flags = traits<Map<_PlainObjectType, _Options, _StrideType> >::Flags | NestByRefBit,
Alignment = traits<Map<_PlainObjectType, _Options, _StrideType> >::Alignment
Options = Options_,
Flags = traits<Map<_PlainObjectType, Options_, _StrideType> >::Flags | NestByRefBit,
Alignment = traits<Map<_PlainObjectType, Options_, _StrideType> >::Alignment
};
template<typename Derived> struct match {

View File

@ -46,12 +46,12 @@ struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
}
template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
: public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
template<typename MatrixType_, unsigned int UpLo> class SelfAdjointView
: public TriangularBase<SelfAdjointView<MatrixType_, UpLo> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef TriangularBase<SelfAdjointView> Base;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;

View File

@ -256,10 +256,10 @@ protected:
internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_incr;
};
template<typename _XprType>
struct indexed_based_stl_iterator_traits<generic_randaccess_stl_iterator<_XprType> >
template<typename XprType_>
struct indexed_based_stl_iterator_traits<generic_randaccess_stl_iterator<XprType_> >
{
typedef _XprType XprType;
typedef XprType_ XprType;
typedef generic_randaccess_stl_iterator<typename internal::remove_const<XprType>::type> non_const_iterator;
typedef generic_randaccess_stl_iterator<typename internal::add_const<XprType>::type> const_iterator;
};
@ -301,10 +301,10 @@ public:
pointer operator->() const { return &((*mp_xpr)(m_index)); }
};
template<typename _XprType, DirectionType Direction>
struct indexed_based_stl_iterator_traits<subvector_stl_iterator<_XprType,Direction> >
template<typename XprType_, DirectionType Direction>
struct indexed_based_stl_iterator_traits<subvector_stl_iterator<XprType_,Direction> >
{
typedef _XprType XprType;
typedef XprType_ XprType;
typedef subvector_stl_iterator<typename internal::remove_const<XprType>::type, Direction> non_const_iterator;
typedef subvector_stl_iterator<typename internal::add_const<XprType>::type, Direction> const_iterator;
};
@ -349,10 +349,10 @@ public:
pointer operator->() const { return (*mp_xpr).template subVector<Direction>(m_index); }
};
template<typename _XprType, DirectionType Direction>
struct indexed_based_stl_iterator_traits<subvector_stl_reverse_iterator<_XprType,Direction> >
template<typename XprType_, DirectionType Direction>
struct indexed_based_stl_iterator_traits<subvector_stl_reverse_iterator<XprType_,Direction> >
{
typedef _XprType XprType;
typedef XprType_ XprType;
typedef subvector_stl_reverse_iterator<typename internal::remove_const<XprType>::type, Direction> non_const_iterator;
typedef subvector_stl_reverse_iterator<typename internal::add_const<XprType>::type, Direction> const_iterator;
};

View File

@ -31,8 +31,8 @@ namespace Eigen {
* arguments to the constructor.
*
* Indeed, this class takes two template parameters:
* \tparam _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime.
* \tparam _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime.
* \tparam OuterStrideAtCompileTime_ the outer stride, or Dynamic if you want to specify it at runtime.
* \tparam InnerStrideAtCompileTime_ the inner stride, or Dynamic if you want to specify it at runtime.
*
* Here is an example:
* \include Map_general_stride.cpp
@ -44,14 +44,14 @@ namespace Eigen {
*
* \sa class InnerStride, class OuterStride, \ref TopicStorageOrders
*/
template<int _OuterStrideAtCompileTime, int _InnerStrideAtCompileTime>
template<int OuterStrideAtCompileTime_, int InnerStrideAtCompileTime_>
class Stride
{
public:
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
enum {
InnerStrideAtCompileTime = _InnerStrideAtCompileTime,
OuterStrideAtCompileTime = _OuterStrideAtCompileTime
InnerStrideAtCompileTime = InnerStrideAtCompileTime_,
OuterStrideAtCompileTime = OuterStrideAtCompileTime_
};
/** Default constructor, for use when strides are fixed at compile time */

View File

@ -113,11 +113,11 @@ class TranspositionsBase
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
{
typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef TranspositionsStorage StorageKind;
};
}
@ -151,8 +151,8 @@ struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageInde
* \sa class PermutationMatrix
*/
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
{
typedef internal::traits<Transpositions> Traits;
public:
@ -199,19 +199,19 @@ class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTim
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,_PacketAccess> >
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,_PacketAccess> >
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
{
typedef Map<const Matrix<_StorageIndex,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
typedef _StorageIndex StorageIndex;
typedef Map<const Matrix<StorageIndex_,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
typedef StorageIndex_ StorageIndex;
typedef TranspositionsStorage StorageKind;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess>
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,PacketAccess>
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,PacketAccess> >
{
typedef internal::traits<Map> Traits;
public:
@ -260,17 +260,17 @@ class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,P
};
namespace internal {
template<typename _IndicesType>
struct traits<TranspositionsWrapper<_IndicesType> >
: traits<PermutationWrapper<_IndicesType> >
template<typename IndicesType_>
struct traits<TranspositionsWrapper<IndicesType_> >
: traits<PermutationWrapper<IndicesType_> >
{
typedef TranspositionsStorage StorageKind;
};
}
template<typename _IndicesType>
template<typename IndicesType_>
class TranspositionsWrapper
: public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
: public TranspositionsBase<TranspositionsWrapper<IndicesType_> >
{
typedef internal::traits<TranspositionsWrapper> Traits;
public:

View File

@ -166,8 +166,8 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
* \sa MatrixBase::triangularView()
*/
namespace internal {
template<typename MatrixType, unsigned int _Mode>
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
template<typename MatrixType, unsigned int Mode_>
struct traits<TriangularView<MatrixType, Mode_> > : traits<MatrixType>
{
typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
@ -175,30 +175,30 @@ struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
typedef typename MatrixType::PlainObject FullMatrixType;
typedef MatrixType ExpressionType;
enum {
Mode = _Mode,
Mode = Mode_,
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)))
};
};
}
template<typename _MatrixType, unsigned int _Mode, typename StorageKind> class TriangularViewImpl;
template<typename MatrixType_, unsigned int Mode_, typename StorageKind> class TriangularViewImpl;
template<typename _MatrixType, unsigned int _Mode> class TriangularView
: public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind >
template<typename MatrixType_, unsigned int Mode_> class TriangularView
: public TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind >
{
public:
typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base;
typedef TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind > Base;
typedef typename internal::traits<TriangularView>::Scalar Scalar;
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
protected:
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
typedef TriangularView<typename internal::add_const<MatrixType>::type, _Mode> ConstTriangularView;
typedef TriangularView<typename internal::add_const<MatrixType>::type, Mode_> ConstTriangularView;
public:
@ -206,7 +206,7 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression;
enum {
Mode = _Mode,
Mode = Mode_,
Flags = internal::traits<TriangularView>::Flags,
TransposeMode = (Mode & Upper ? Lower : 0)
| (Mode & Lower ? Upper : 0)
@ -342,16 +342,17 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
*
* \sa class TriangularView, MatrixBase::triangularView()
*/
template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_MatrixType,_Mode,Dense>
: public TriangularBase<TriangularView<_MatrixType, _Mode> >
template<typename MatrixType_, unsigned int Mode_> class TriangularViewImpl<MatrixType_,Mode_,Dense>
: public TriangularBase<TriangularView<MatrixType_, Mode_> >
{
public:
typedef TriangularView<_MatrixType, _Mode> TriangularViewType;
typedef TriangularView<MatrixType_, Mode_> TriangularViewType;
typedef TriangularBase<TriangularViewType> Base;
typedef typename internal::traits<TriangularViewType>::Scalar Scalar;
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::PlainObject DenseMatrixType;
typedef DenseMatrixType PlainObject;
@ -362,7 +363,7 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_Mat
typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind;
enum {
Mode = _Mode,
Mode = Mode_,
Flags = internal::traits<TriangularViewType>::Flags
};

View File

@ -21,7 +21,7 @@ enum GEBPPacketSizeType {
GEBPPacketQuarter
};
template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false, int Arch=Architecture::Target, int _PacketSize=GEBPPacketFull>
template<typename LhsScalar_, typename RhsScalar_, bool ConjLhs_=false, bool ConjRhs_=false, int Arch=Architecture::Target, int PacketSize_=GEBPPacketFull>
class gebp_traits;
@ -414,21 +414,21 @@ struct packet_conditional<GEBPPacketHalf, T1, T2, T3> { typedef T2 type; };
* cplx*real : unpack rhs to constant packets, ...
* real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
*/
template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs, int Arch, int _PacketSize>
template<typename LhsScalar_, typename RhsScalar_, bool ConjLhs_, bool ConjRhs_, int Arch, int PacketSize_>
class gebp_traits
{
public:
typedef _LhsScalar LhsScalar;
typedef _RhsScalar RhsScalar;
typedef LhsScalar_ LhsScalar;
typedef RhsScalar_ RhsScalar;
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Res, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Lhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Rhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Res, PacketSize_);
enum {
ConjLhs = _ConjLhs,
ConjRhs = _ConjRhs,
ConjLhs = ConjLhs_,
ConjRhs = ConjRhs_,
Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable,
LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1,
RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1,
@ -543,20 +543,20 @@ public:
};
template<typename RealScalar, bool _ConjLhs, int Arch, int _PacketSize>
class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false, Arch, _PacketSize>
template<typename RealScalar, bool ConjLhs_, int Arch, int PacketSize_>
class gebp_traits<std::complex<RealScalar>, RealScalar, ConjLhs_, false, Arch, PacketSize_>
{
public:
typedef std::complex<RealScalar> LhsScalar;
typedef RealScalar RhsScalar;
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Res, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Lhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Rhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Res, PacketSize_);
enum {
ConjLhs = _ConjLhs,
ConjLhs = ConjLhs_,
ConjRhs = false,
Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable,
LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1,
@ -754,8 +754,8 @@ template<typename Packet> struct unpacket_traits<DoublePacket<Packet> > {
// return res;
// }
template<typename RealScalar, bool _ConjLhs, bool _ConjRhs, int Arch, int _PacketSize>
class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs, Arch, _PacketSize >
template<typename RealScalar, bool ConjLhs_, bool ConjRhs_, int Arch, int PacketSize_>
class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, ConjLhs_, ConjRhs_, Arch, PacketSize_ >
{
public:
typedef std::complex<RealScalar> Scalar;
@ -763,15 +763,15 @@ public:
typedef std::complex<RealScalar> RhsScalar;
typedef std::complex<RealScalar> ResScalar;
PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Res, _PacketSize);
PACKET_DECL_COND(Real, _PacketSize);
PACKET_DECL_COND_SCALAR(_PacketSize);
PACKET_DECL_COND_PREFIX(_, Lhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Rhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Res, PacketSize_);
PACKET_DECL_COND(Real, PacketSize_);
PACKET_DECL_COND_SCALAR(PacketSize_);
enum {
ConjLhs = _ConjLhs,
ConjRhs = _ConjRhs,
ConjLhs = ConjLhs_,
ConjRhs = ConjRhs_,
Vectorizable = unpacket_traits<RealPacket>::vectorizable
&& unpacket_traits<ScalarPacket>::vectorizable,
ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1,
@ -920,8 +920,8 @@ protected:
conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
};
template<typename RealScalar, bool _ConjRhs, int Arch, int _PacketSize>
class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs, Arch, _PacketSize >
template<typename RealScalar, bool ConjRhs_, int Arch, int PacketSize_>
class gebp_traits<RealScalar, std::complex<RealScalar>, false, ConjRhs_, Arch, PacketSize_ >
{
public:
typedef std::complex<RealScalar> Scalar;
@ -929,11 +929,11 @@ public:
typedef Scalar RhsScalar;
typedef Scalar ResScalar;
PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Res, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Real, _PacketSize);
PACKET_DECL_COND_SCALAR_PREFIX(_, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Lhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Rhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Res, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Real, PacketSize_);
PACKET_DECL_COND_SCALAR_PREFIX(_, PacketSize_);
#undef PACKET_DECL_COND_SCALAR_PREFIX
#undef PACKET_DECL_COND_PREFIX
@ -942,7 +942,7 @@ public:
enum {
ConjLhs = false,
ConjRhs = _ConjRhs,
ConjRhs = ConjRhs_,
Vectorizable = unpacket_traits<_RealPacket>::vectorizable
&& unpacket_traits<_ScalarPacket>::vectorizable,
LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1,

View File

@ -14,7 +14,7 @@ namespace Eigen {
namespace internal {
template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
template<typename LhsScalar_, typename RhsScalar_> class level3_blocking;
/* Specialization for a row-major destination matrix => simple transposition of the product */
template<
@ -247,11 +247,11 @@ struct gemm_functor
template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
template<typename _LhsScalar, typename _RhsScalar>
template<typename LhsScalar_, typename RhsScalar_>
class level3_blocking
{
typedef _LhsScalar LhsScalar;
typedef _RhsScalar RhsScalar;
typedef LhsScalar_ LhsScalar;
typedef RhsScalar_ RhsScalar;
protected:
LhsScalar* m_blockA;
@ -275,19 +275,19 @@ class level3_blocking
inline RhsScalar* blockB() { return m_blockB; }
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true /* == FiniteAtCompileTime */>
template<int StorageOrder, typename LhsScalar_, typename RhsScalar_, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,LhsScalar_,RhsScalar_,MaxRows, MaxCols, MaxDepth, KcFactor, true /* == FiniteAtCompileTime */>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
typename conditional<StorageOrder==RowMajor,RhsScalar_,LhsScalar_>::type,
typename conditional<StorageOrder==RowMajor,LhsScalar_,RhsScalar_>::type>
{
enum {
Transpose = StorageOrder==RowMajor,
ActualRows = Transpose ? MaxCols : MaxRows,
ActualCols = Transpose ? MaxRows : MaxCols
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef typename conditional<Transpose,RhsScalar_,LhsScalar_>::type LhsScalar;
typedef typename conditional<Transpose,LhsScalar_,RhsScalar_>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
enum {
SizeA = ActualRows * MaxDepth,
@ -326,17 +326,17 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
inline void allocateAll() {}
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
template<int StorageOrder, typename LhsScalar_, typename RhsScalar_, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,LhsScalar_,RhsScalar_,MaxRows, MaxCols, MaxDepth, KcFactor, false>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
typename conditional<StorageOrder==RowMajor,RhsScalar_,LhsScalar_>::type,
typename conditional<StorageOrder==RowMajor,LhsScalar_,RhsScalar_>::type>
{
enum {
Transpose = StorageOrder==RowMajor
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef typename conditional<Transpose,RhsScalar_,LhsScalar_>::type LhsScalar;
typedef typename conditional<Transpose,LhsScalar_,RhsScalar_>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
Index m_sizeA;

View File

@ -29,7 +29,7 @@ struct gemv_packet_cond<GEMVPacketFull, T1, T2, T3> { typedef T1 type; };
template <typename T1, typename T2, typename T3>
struct gemv_packet_cond<GEMVPacketHalf, T1, T2, T3> { typedef T2 type; };
template<typename LhsScalar, typename RhsScalar, int _PacketSize=GEMVPacketFull>
template<typename LhsScalar, typename RhsScalar, int PacketSize_=GEMVPacketFull>
class gemv_traits
{
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
@ -41,9 +41,9 @@ class gemv_traits
typename unpacket_traits<typename packet_traits<name ## Scalar>::half>::half>::type \
prefix ## name ## Packet
PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Res, _PacketSize);
PACKET_DECL_COND_PREFIX(_, Lhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Rhs, PacketSize_);
PACKET_DECL_COND_PREFIX(_, Res, PacketSize_);
#undef PACKET_DECL_COND_PREFIX
public:

View File

@ -308,15 +308,15 @@ public:
}
// storePacketBlock_helper defines a way to access values inside the PacketBlock, this is essentially required by the Complex types.
template<typename SubPacket, typename ScalarT, int n, int idx>
template<typename SubPacket, typename Scalar_, int n, int idx>
struct storePacketBlock_helper
{
storePacketBlock_helper<SubPacket, ScalarT, n, idx-1> spbh;
storePacketBlock_helper<SubPacket, Scalar_, n, idx-1> spbh;
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>* sup, Index i, Index j, const PacketBlock<SubPacket, n>& block) const {
spbh.store(sup, i,j,block);
for(int l = 0; l < unpacket_traits<SubPacket>::size; l++)
{
ScalarT *v = &sup->operator()(i+l, j+idx);
Scalar_ *v = &sup->operator()(i+l, j+idx);
*v = block.packet[idx][l];
}
}
@ -352,8 +352,8 @@ public:
}
};
template<typename SubPacket, typename ScalarT, int n>
struct storePacketBlock_helper<SubPacket, ScalarT, n, -1>
template<typename SubPacket, typename Scalar_, int n>
struct storePacketBlock_helper<SubPacket, Scalar_, n, -1>
{
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>*, Index, Index, const PacketBlock<SubPacket, n>& ) const {
}

View File

@ -312,7 +312,7 @@ enum SpecializedType {
};
/** \ingroup enums
* Enum containing possible values for the \p _Options template parameter of
* Enum containing possible values for the \p Options_ template parameter of
* Matrix, Array and BandMatrix. */
enum StorageOptions {
/** Storage order is column major (see \ref TopicStorageOrders). */

View File

@ -49,24 +49,24 @@ template<typename Derived> class DenseBase;
template<typename Derived> class PlainObjectBase;
template<typename Derived, int Level> class DenseCoeffsBase;
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
template<typename Scalar_, int Rows_, int Cols_,
int Options_ = AutoAlign |
#if EIGEN_GNUC_AT(3,4)
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
( (Rows_==1 && Cols_!=1) ? Eigen::RowMajor
: !(Cols_==1 && Rows_!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
: Eigen::ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
( (Rows_==1 && Cols_!=1) ? Eigen::RowMajor
: (Cols_==1 && Rows_!=1) ? Eigen::ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
int _MaxRows = _Rows,
int _MaxCols = _Cols
int MaxRows_ = Rows_,
int MaxCols_ = Cols_
> class Matrix;
template<typename Derived> class MatrixBase;
@ -97,15 +97,15 @@ template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product;
template<typename Derived> class DiagonalBase;
template<typename _DiagonalVectorType> class DiagonalWrapper;
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
template<typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
template<typename MatrixType, int Index = 0> class Diagonal;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
template<typename Derived> class PermutationBase;
template<typename Derived> class TranspositionsBase;
template<typename _IndicesType> class PermutationWrapper;
template<typename _IndicesType> class TranspositionsWrapper;
template<typename IndicesType_> class PermutationWrapper;
template<typename IndicesType_> class TranspositionsWrapper;
template<typename Derived,
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
@ -142,7 +142,7 @@ template<typename DecompositionType> struct image_retval;
} // end namespace internal
namespace internal {
template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
template<typename Scalar_, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
}
namespace internal {
@ -242,23 +242,23 @@ template<typename Scalar> struct scalar_bessel_k1e_op;
struct IOFormat;
// Array module
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
template<typename Scalar_, int Rows_, int Cols_,
int Options_ = AutoAlign |
#if EIGEN_GNUC_AT(3,4)
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
( (Rows_==1 && Cols_!=1) ? Eigen::RowMajor
: !(Cols_==1 && Rows_!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
: Eigen::ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
( (Rows_==1 && Cols_!=1) ? Eigen::RowMajor
: (Cols_==1 && Rows_!=1) ? Eigen::ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
int _MaxRows = _Rows, int _MaxCols = _Cols> class Array;
int MaxRows_ = Rows_, int MaxCols_ = Cols_> class Array;
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
template<typename ExpressionType, int Direction> class VectorwiseOp;
@ -283,7 +283,7 @@ template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class Ho
template<typename Scalar> class JacobiRotation;
// Geometry module:
template<typename Derived, int _Dim> class RotationBase;
template<typename Derived, int Dim_> class RotationBase;
template<typename Lhs, typename Rhs> class Cross;
template<typename Derived> class QuaternionBase;
template<typename Scalar> class Rotation2D;
@ -291,9 +291,9 @@ template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Translation;
template<typename Scalar,int Dim> class AlignedBox;
template<typename Scalar, int Options = AutoAlign> class Quaternion;
template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
template<typename Scalar,int Dim,int Mode,int Options_=AutoAlign> class Transform;
template <typename Scalar_, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
template <typename Scalar_, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
template<typename Scalar> class UniformScaling;
template<typename MatrixType,int Direction> class Homogeneous;

View File

@ -247,24 +247,24 @@ template<typename T> struct compute_default_alignment<T,Dynamic> {
enum { value = EIGEN_MAX_ALIGN_BYTES };
};
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
( (_Rows==1 && _Cols!=1) ? RowMajor
: (_Cols==1 && _Rows!=1) ? ColMajor
template<typename Scalar_, int Rows_, int Cols_,
int Options_ = AutoAlign |
( (Rows_==1 && Cols_!=1) ? RowMajor
: (Cols_==1 && Rows_!=1) ? ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
int _MaxRows = _Rows,
int _MaxCols = _Cols
int MaxRows_ = Rows_,
int MaxCols_ = Cols_
> class make_proper_matrix_type
{
enum {
IsColVector = _Cols==1 && _Rows!=1,
IsRowVector = _Rows==1 && _Cols!=1,
Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
: IsRowVector ? (_Options | RowMajor) & ~ColMajor
: _Options
IsColVector = Cols_==1 && Rows_!=1,
IsRowVector = Rows_==1 && Cols_!=1,
Options = IsColVector ? (Options_ | ColMajor) & ~RowMajor
: IsRowVector ? (Options_ | RowMajor) & ~ColMajor
: Options_
};
public:
typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
typedef Matrix<Scalar_, Rows_, Cols_, Options, MaxRows_, MaxCols_> type;
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
@ -278,9 +278,9 @@ class compute_matrix_flags
enum { ret = DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit };
};
template<int _Rows, int _Cols> struct size_at_compile_time
template<int Rows_, int Cols_> struct size_at_compile_time
{
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
enum { ret = (Rows_==Dynamic || Cols_==Dynamic) ? Dynamic : Rows_ * Cols_ };
};
template<typename XprType> struct size_of_xpr_at_compile_time
@ -350,16 +350,16 @@ template<typename T> struct eval<T,DiagonalShape>
};
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct eval<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>, Dense>
{
typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
typedef const Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>& type;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct eval<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>, Dense>
{
typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
typedef const Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>& type;
};

View File

@ -23,7 +23,7 @@ namespace Eigen {
*
* \brief Computes eigenvalues and eigenvectors of general complex matrices
*
* \tparam _MatrixType the type of the matrix of which we are
* \tparam MatrixType_ the type of the matrix of which we are
* computing the eigendecomposition; this is expected to be an
* instantiation of the Matrix class template.
*
@ -42,12 +42,12 @@ namespace Eigen {
*
* \sa class EigenSolver, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class ComplexEigenSolver
template<typename MatrixType_> class ComplexEigenSolver
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
/** \brief Synonym for the template parameter \p MatrixType_. */
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,

View File

@ -27,7 +27,7 @@ template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hes
*
* \brief Performs a complex Schur decomposition of a real or complex square matrix
*
* \tparam _MatrixType the type of the matrix of which we are
* \tparam MatrixType_ the type of the matrix of which we are
* computing the Schur decomposition; this is expected to be an
* instantiation of the Matrix class template.
*
@ -48,10 +48,10 @@ template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hes
*
* \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class ComplexSchur
template<typename MatrixType_> class ComplexSchur
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
@ -60,12 +60,12 @@ template<typename _MatrixType> class ComplexSchur
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type \p _MatrixType. */
/** \brief Scalar type for matrices of type \p MatrixType_. */
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
/** \brief Complex scalar type for \p _MatrixType.
/** \brief Complex scalar type for \p MatrixType_.
*
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
* \c float or \c double) and just \c Scalar if #Scalar is
@ -76,7 +76,7 @@ template<typename _MatrixType> class ComplexSchur
/** \brief Type for the matrices in the Schur decomposition.
*
* This is a square matrix with entries of type #ComplexScalar.
* The size is the same as the size of \p _MatrixType.
* The size is the same as the size of \p MatrixType_.
*/
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;

View File

@ -22,7 +22,7 @@ namespace Eigen {
*
* \brief Computes eigenvalues and eigenvectors of general matrices
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* \tparam MatrixType_ the type of the matrix of which we are computing the
* eigendecomposition; this is expected to be an instantiation of the Matrix
* class template. Currently, only real matrices are supported.
*
@ -61,12 +61,12 @@ namespace Eigen {
*
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class EigenSolver
template<typename MatrixType_> class EigenSolver
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
/** \brief Synonym for the template parameter \p MatrixType_. */
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,

View File

@ -23,7 +23,7 @@ namespace Eigen {
*
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
*
* \tparam _MatrixType the type of the matrices of which we are computing the
* \tparam MatrixType_ the type of the matrices of which we are computing the
* eigen-decomposition; this is expected to be an instantiation of the Matrix
* class template. Currently, only real matrices are supported.
*
@ -55,12 +55,12 @@ namespace Eigen {
*
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class GeneralizedEigenSolver
template<typename MatrixType_> class GeneralizedEigenSolver
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
/** \brief Synonym for the template parameter \p MatrixType_. */
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,

View File

@ -22,7 +22,7 @@ namespace Eigen {
*
* \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* \tparam MatrixType_ the type of the matrix of which we are computing the
* eigendecomposition; this is expected to be an instantiation of the Matrix
* class template.
*
@ -44,19 +44,19 @@ namespace Eigen {
*
* \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType>
class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
template<typename MatrixType_>
class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<MatrixType_>
{
typedef SelfAdjointEigenSolver<_MatrixType> Base;
typedef SelfAdjointEigenSolver<MatrixType_> Base;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
/** \brief Default constructor for fixed-size matrices.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via compute(). This constructor
* can only be used if \p _MatrixType is a fixed-size matrix; use
* can only be used if \p MatrixType_ is a fixed-size matrix; use
* GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
*/
GeneralizedSelfAdjointEigenSolver() : Base() {}

View File

@ -31,7 +31,7 @@ struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
*
* \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation
*
* \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the Hessenberg decomposition
*
* This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In
* the real case, the Hessenberg decomposition consists of an orthogonal
@ -54,12 +54,12 @@ struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
*
* \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module"
*/
template<typename _MatrixType> class HessenbergDecomposition
template<typename MatrixType_> class HessenbergDecomposition
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
/** \brief Synonym for the template parameter \p MatrixType_. */
typedef MatrixType_ MatrixType;
enum {
Size = MatrixType::RowsAtCompileTime,

View File

@ -19,7 +19,7 @@ namespace Eigen {
*
* \brief Performs a real QZ decomposition of a pair of square matrices
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* \tparam MatrixType_ the type of the matrix of which we are computing the
* real QZ decomposition; this is expected to be an instantiation of the
* Matrix class template.
*
@ -54,10 +54,10 @@ namespace Eigen {
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class RealQZ
template<typename MatrixType_> class RealQZ
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,

View File

@ -22,7 +22,7 @@ namespace Eigen {
*
* \brief Performs a real Schur decomposition of a square matrix
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* \tparam MatrixType_ the type of the matrix of which we are computing the
* real Schur decomposition; this is expected to be an instantiation of the
* Matrix class template.
*
@ -51,10 +51,10 @@ namespace Eigen {
*
* \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class RealSchur
template<typename MatrixType_> class RealSchur
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,

View File

@ -15,7 +15,7 @@
namespace Eigen {
template<typename _MatrixType>
template<typename MatrixType_>
class GeneralizedSelfAdjointEigenSolver;
namespace internal {
@ -33,7 +33,7 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
*
* \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* \tparam MatrixType_ the type of the matrix of which we are computing the
* eigendecomposition; this is expected to be an instantiation of the Matrix
* class template.
*
@ -73,11 +73,11 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
*
* \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class SelfAdjointEigenSolver
template<typename MatrixType_> class SelfAdjointEigenSolver
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
enum {
Size = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
@ -85,13 +85,13 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type \p _MatrixType. */
/** \brief Scalar type for matrices of type \p MatrixType_. */
typedef typename MatrixType::Scalar Scalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
/** \brief Real scalar type for \p _MatrixType.
/** \brief Real scalar type for \p MatrixType_.
*
* This is just \c Scalar if #Scalar is real (e.g., \c float or
* \c double), and the type of the real part of \c Scalar if #Scalar is
@ -104,7 +104,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
*
* This is a column vector with entries of type #RealScalar.
* The length of the vector is the size of \p _MatrixType.
* The length of the vector is the size of \p MatrixType_.
*/
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
@ -114,7 +114,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via compute(). This constructor
* can only be used if \p _MatrixType is a fixed-size matrix; use
* can only be used if \p MatrixType_ is a fixed-size matrix; use
* SelfAdjointEigenSolver(Index) for dynamic-size matrices.
*
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp

View File

@ -36,7 +36,7 @@ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
*
* \brief Tridiagonal decomposition of a selfadjoint matrix
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* \tparam MatrixType_ the type of the matrix of which we are computing the
* tridiagonal decomposition; this is expected to be an instantiation of the
* Matrix class template.
*
@ -61,12 +61,12 @@ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
*
* \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class Tridiagonalization
template<typename MatrixType_> class Tridiagonalization
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
/** \brief Synonym for the template parameter \p MatrixType_. */
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;

View File

@ -55,20 +55,20 @@ namespace Eigen {
*
* \brief An axis aligned box
*
* \tparam _Scalar the type of the scalar coefficients
* \tparam Scalar_ the type of the scalar coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
* \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty().
* \sa alignedboxtypedefs
*/
template <typename _Scalar, int _AmbientDim>
template <typename Scalar_, int _AmbientDim>
class AlignedBox
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,_AmbientDim)
enum { AmbientDimAtCompileTime = _AmbientDim };
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef NumTraits<Scalar> ScalarTraits;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename ScalarTraits::Real RealScalar;

View File

@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param Scalar_ the scalar type, i.e., the type of the coefficients.
*
* \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
*
@ -39,16 +39,16 @@ namespace Eigen {
*/
namespace internal {
template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
template<typename Scalar_> struct traits<AngleAxis<Scalar_> >
{
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
};
}
template<typename _Scalar>
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
template<typename Scalar_>
class AngleAxis : public RotationBase<AngleAxis<Scalar_>,3>
{
typedef RotationBase<AngleAxis<_Scalar>,3> Base;
typedef RotationBase<AngleAxis<Scalar_>,3> Base;
public:
@ -56,7 +56,7 @@ public:
enum { Dim = 3 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;

View File

@ -57,13 +57,13 @@ template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl
} // end namespace internal
template<typename MatrixType,int _Direction> class Homogeneous
: public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
template<typename MatrixType,int Direction_> class Homogeneous
: public MatrixBase<Homogeneous<MatrixType,Direction_> >, internal::no_assignment_operator
{
public:
typedef MatrixType NestedExpression;
enum { Direction = _Direction };
enum { Direction = Direction_ };
typedef MatrixBase<Homogeneous> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)

View File

@ -22,7 +22,7 @@ namespace Eigen {
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is _AmbientDim-1.
*
@ -30,16 +30,16 @@ namespace Eigen {
* \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
* and \f$ d \f$ is the distance (offset) to the origin.
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <typename Scalar_, int _AmbientDim, int Options_>
class Hyperplane
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
enum {
AmbientDimAtCompileTime = _AmbientDim,
Options = _Options
Options = Options_
};
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;

View File

@ -23,19 +23,19 @@ namespace Eigen {
* direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
* the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$.
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <typename Scalar_, int _AmbientDim, int Options_>
class ParametrizedLine
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,_AmbientDim)
enum {
AmbientDimAtCompileTime = _AmbientDim,
Options = _Options
Options = Options_
};
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,AmbientDimAtCompileTime,1,Options> VectorType;
@ -59,7 +59,7 @@ public:
: m_origin(origin), m_direction(direction) {}
template <int OtherOptions>
EIGEN_DEVICE_FUNC explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane);
EIGEN_DEVICE_FUNC explicit ParametrizedLine(const Hyperplane<Scalar_, _AmbientDim, OtherOptions>& hyperplane);
/** Constructs a parametrized line going from \a p0 to \a p1. */
EIGEN_DEVICE_FUNC static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
@ -96,13 +96,13 @@ public:
EIGEN_DEVICE_FUNC VectorType pointAt(const Scalar& t) const;
template <int OtherOptions>
EIGEN_DEVICE_FUNC Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
EIGEN_DEVICE_FUNC Scalar intersectionParameter(const Hyperplane<Scalar_, _AmbientDim, OtherOptions>& hyperplane) const;
template <int OtherOptions>
EIGEN_DEVICE_FUNC Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
EIGEN_DEVICE_FUNC Scalar intersection(const Hyperplane<Scalar_, _AmbientDim, OtherOptions>& hyperplane) const;
template <int OtherOptions>
EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane<Scalar_, _AmbientDim, OtherOptions>& hyperplane) const;
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
@ -178,9 +178,9 @@ protected:
*
* \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <typename Scalar_, int _AmbientDim, int Options_>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane)
EIGEN_DEVICE_FUNC inline ParametrizedLine<Scalar_, _AmbientDim,Options_>::ParametrizedLine(const Hyperplane<Scalar_, _AmbientDim,OtherOptions>& hyperplane)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
direction() = hyperplane.normal().unitOrthogonal();
@ -189,18 +189,18 @@ EIGEN_DEVICE_FUNC inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::Parame
/** \returns the point at \a t along this line
*/
template <typename _Scalar, int _AmbientDim, int _Options>
EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const
template <typename Scalar_, int _AmbientDim, int Options_>
EIGEN_DEVICE_FUNC inline typename ParametrizedLine<Scalar_, _AmbientDim,Options_>::VectorType
ParametrizedLine<Scalar_, _AmbientDim,Options_>::pointAt(const Scalar_& t) const
{
return origin() + (direction()*t);
}
/** \returns the parameter value of the intersection between \c *this and the given \a hyperplane
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <typename Scalar_, int _AmbientDim, int Options_>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
EIGEN_DEVICE_FUNC inline Scalar_ ParametrizedLine<Scalar_, _AmbientDim,Options_>::intersectionParameter(const Hyperplane<Scalar_, _AmbientDim, OtherOptions>& hyperplane) const
{
return -(hyperplane.offset()+hyperplane.normal().dot(origin()))
/ hyperplane.normal().dot(direction());
@ -210,19 +210,19 @@ EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>
/** \deprecated use intersectionParameter()
* \returns the parameter value of the intersection between \c *this and the given \a hyperplane
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <typename Scalar_, int _AmbientDim, int Options_>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
EIGEN_DEVICE_FUNC inline Scalar_ ParametrizedLine<Scalar_, _AmbientDim,Options_>::intersection(const Hyperplane<Scalar_, _AmbientDim, OtherOptions>& hyperplane) const
{
return intersectionParameter(hyperplane);
}
/** \returns the point of the intersection between \c *this and the given hyperplane
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <typename Scalar_, int _AmbientDim, int Options_>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
EIGEN_DEVICE_FUNC inline typename ParametrizedLine<Scalar_, _AmbientDim,Options_>::VectorType
ParametrizedLine<Scalar_, _AmbientDim,Options_>::intersectionPoint(const Hyperplane<Scalar_, _AmbientDim, OtherOptions>& hyperplane) const
{
return pointAt(intersectionParameter(hyperplane));
}

View File

@ -236,8 +236,8 @@ protected:
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients
* \tparam Options_ controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
*
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other representations
@ -256,12 +256,12 @@ protected:
*/
namespace internal {
template<typename _Scalar,int _Options>
struct traits<Quaternion<_Scalar,_Options> >
template<typename Scalar_,int Options_>
struct traits<Quaternion<Scalar_,Options_> >
{
typedef Quaternion<_Scalar,_Options> PlainObject;
typedef _Scalar Scalar;
typedef Matrix<_Scalar,4,1,_Options> Coefficients;
typedef Quaternion<Scalar_,Options_> PlainObject;
typedef Scalar_ Scalar;
typedef Matrix<Scalar_,4,1,Options_> Coefficients;
enum{
Alignment = internal::traits<Coefficients>::Alignment,
Flags = LvalueBit
@ -269,14 +269,14 @@ struct traits<Quaternion<_Scalar,_Options> >
};
}
template<typename _Scalar, int _Options>
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
template<typename Scalar_, int Options_>
class Quaternion : public QuaternionBase<Quaternion<Scalar_,Options_> >
{
public:
typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
typedef QuaternionBase<Quaternion<Scalar_,Options_> > Base;
enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
using Base::operator*=;
@ -352,7 +352,7 @@ protected:
#ifndef EIGEN_PARSED_BY_DOXYGEN
static EIGEN_STRONG_INLINE void _check_template_params()
{
EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
EIGEN_STATIC_ASSERT( (Options_ & DontAlign) == Options_,
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
#endif
@ -370,19 +370,19 @@ typedef Quaternion<double> Quaterniond;
***************************************************************************/
namespace internal {
template<typename _Scalar, int _Options>
struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
template<typename Scalar_, int Options_>
struct traits<Map<Quaternion<Scalar_>, Options_> > : traits<Quaternion<Scalar_, (int(Options_)&Aligned)==Aligned ? AutoAlign : DontAlign> >
{
typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
typedef Map<Matrix<Scalar_,4,1>, Options_> Coefficients;
};
}
namespace internal {
template<typename _Scalar, int _Options>
struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
template<typename Scalar_, int Options_>
struct traits<Map<const Quaternion<Scalar_>, Options_> > : traits<Quaternion<Scalar_, (int(Options_)&Aligned)==Aligned ? AutoAlign : DontAlign> >
{
typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
typedef Map<const Matrix<Scalar_,4,1>, Options_> Coefficients;
typedef traits<Quaternion<Scalar_, (int(Options_)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
enum {
Flags = TraitsBase::Flags & ~LvalueBit
};
@ -392,22 +392,22 @@ namespace internal {
/** \ingroup Geometry_Module
* \brief Quaternion expression mapping a constant memory buffer
*
* \tparam _Scalar the type of the Quaternion coefficients
* \tparam _Options see class Map
* \tparam Scalar_ the type of the Quaternion coefficients
* \tparam Options_ see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _Options>
class Map<const Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
template<typename Scalar_, int Options_>
class Map<const Quaternion<Scalar_>, Options_ >
: public QuaternionBase<Map<const Quaternion<Scalar_>, Options_> >
{
public:
typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
typedef QuaternionBase<Map<const Quaternion<Scalar_>, Options_> > Base;
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
@ -417,7 +417,7 @@ class Map<const Quaternion<_Scalar>, _Options >
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
* If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
@ -429,22 +429,22 @@ class Map<const Quaternion<_Scalar>, _Options >
/** \ingroup Geometry_Module
* \brief Expression of a quaternion from a memory buffer
*
* \tparam _Scalar the type of the Quaternion coefficients
* \tparam _Options see class Map
* \tparam Scalar_ the type of the Quaternion coefficients
* \tparam Options_ see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _Options>
class Map<Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
template<typename Scalar_, int Options_>
class Map<Quaternion<Scalar_>, Options_ >
: public QuaternionBase<Map<Quaternion<Scalar_>, Options_> >
{
public:
typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
typedef QuaternionBase<Map<Quaternion<Scalar_>, Options_> > Base;
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
@ -454,7 +454,7 @@ class Map<Quaternion<_Scalar>, _Options >
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
* If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }

View File

@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic
@ -31,16 +31,16 @@ namespace Eigen {
namespace internal {
template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
template<typename Scalar_> struct traits<Rotation2D<Scalar_> >
{
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
};
} // end namespace internal
template<typename _Scalar>
class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
template<typename Scalar_>
class Rotation2D : public RotationBase<Rotation2D<Scalar_>,2>
{
typedef RotationBase<Rotation2D<_Scalar>,2> Base;
typedef RotationBase<Rotation2D<Scalar_>,2> Base;
public:
@ -48,7 +48,7 @@ public:
enum { Dim = 2 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,2,2> Matrix2;

View File

@ -23,13 +23,13 @@ struct rotation_base_generic_product_selector;
* \brief Common base class for compact rotation representations
*
* \tparam Derived is the derived type, i.e., a rotation type
* \tparam _Dim the dimension of the space
* \tparam Dim_ the dimension of the space
*/
template<typename Derived, int _Dim>
template<typename Derived, int Dim_>
class RotationBase
{
public:
enum { Dim = _Dim };
enum { Dim = Dim_ };
/** the scalar type of the coefficients */
typedef typename internal::traits<Derived>::Scalar Scalar;
@ -135,9 +135,9 @@ struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,tr
*
* \brief Constructs a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename Scalar_, int Rows_, int Cols_, int _Storage, int MaxRows_, int MaxCols_>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
EIGEN_DEVICE_FUNC Matrix<Scalar_, Rows_, Cols_, _Storage, MaxRows_, MaxCols_>
::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
@ -148,10 +148,10 @@ EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
*
* \brief Set a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename Scalar_, int Rows_, int Cols_, int _Storage, int MaxRows_, int MaxCols_>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
EIGEN_DEVICE_FUNC Matrix<Scalar_, Rows_, Cols_, _Storage, MaxRows_, MaxCols_>&
Matrix<Scalar_, Rows_, Cols_, _Storage, MaxRows_, MaxCols_>
::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))

View File

@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a generic uniform scaling transformation
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients.
*
* This class represent a uniform scaling transformation. It is the return
* type of Scaling(Scalar), and most of the time this is the only way it
@ -45,12 +45,12 @@ namespace internal
};
}
template<typename _Scalar>
template<typename Scalar_>
class UniformScaling
{
public:
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
protected:

View File

@ -63,15 +63,15 @@ struct transform_construct_from_matrix;
template<typename TransformType> struct transform_take_affine_part;
template<typename _Scalar, int _Dim, int _Mode, int _Options>
struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
template<typename Scalar_, int Dim_, int _Mode, int Options_>
struct traits<Transform<Scalar_,Dim_,_Mode,Options_> >
{
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Eigen::Index StorageIndex;
typedef Dense StorageKind;
enum {
Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
Dim1 = Dim_==Dynamic ? Dim_ : Dim_ + 1,
RowsAtCompileTime = _Mode==Projective ? Dim1 : Dim_,
ColsAtCompileTime = Dim1,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
@ -89,8 +89,8 @@ template<int Mode> struct transform_make_affine;
*
* \brief Represents an homogeneous transformation in a N dimensional space
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _Dim the dimension of the space
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients
* \tparam Dim_ the dimension of the space
* \tparam _Mode the type of the transformation. Can be:
* - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
* where the last row is assumed to be [0 ... 0 1].
@ -100,7 +100,7 @@ template<int Mode> struct transform_make_affine;
* - #Isometry: same as #Affine with the additional assumption that
* the linear part represents a rotation. This assumption is exploited
* to speed up some functions such as inverse() and rotation().
* \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
* \tparam Options_ has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
* These Options are passed directly to the underlying matrix type.
*
* The homography is internally represented and stored by a matrix which
@ -200,20 +200,20 @@ template<int Mode> struct transform_make_affine;
*
* \sa class Matrix, class Quaternion
*/
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename Scalar_, int Dim_, int _Mode, int Options_>
class Transform
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,Dim_==Dynamic ? Dynamic : (Dim_+1)*(Dim_+1))
enum {
Mode = _Mode,
Options = _Options,
Dim = _Dim, ///< space dimension in which the transformation holds
HDim = _Dim+1, ///< size of a respective homogeneous vector
Options = Options_,
Dim = Dim_, ///< space dimension in which the transformation holds
HDim = Dim_+1, ///< size of a respective homogeneous vector
Rows = int(Mode)==(AffineCompact) ? Dim : HDim
};
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Eigen::Index StorageIndex;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
/** type of the matrix used to represent the transformation */
@ -443,7 +443,7 @@ public:
* \li a general transformation matrix of size Dim+1 x Dim+1.
*/
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim_,Dim_+1>::ResultType
operator * (const EigenBase<OtherDerived> &a, const Transform &b)
{ return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }

View File

@ -18,23 +18,23 @@ namespace Eigen {
*
* \brief Represents a translation transformation
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
* \tparam _Dim the dimension of the space, can be a compile time value or Dynamic
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients.
* \tparam Dim_ the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/
template<typename _Scalar, int _Dim>
template<typename Scalar_, int Dim_>
class Translation
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,Dim_)
/** dimension of the space */
enum { Dim = _Dim };
enum { Dim = Dim_ };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */

View File

@ -428,7 +428,7 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
return res;
}
template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
template<typename VectorsType_, typename CoeffsType_, int Side_> friend struct internal::hseq_side_dependent_impl;
/** \brief Sets the length of the Householder sequence.
* \param [in] length New value for the length.

View File

@ -21,7 +21,7 @@ namespace Eigen {
A.diagonal().asDiagonal() . x = b
\endcode
*
* \tparam _Scalar the type of the scalar.
* \tparam Scalar_ the type of the scalar.
*
* \implsparsesolverconcept
*
@ -32,10 +32,10 @@ namespace Eigen {
*
* \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
*/
template <typename _Scalar>
template <typename Scalar_>
class DiagonalPreconditioner
{
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
public:
typedef typename Vector::StorageIndex StorageIndex;
@ -116,7 +116,7 @@ class DiagonalPreconditioner
(A.adjoint() * A).diagonal().asDiagonal() * x = b
\endcode
*
* \tparam _Scalar the type of the scalar.
* \tparam Scalar_ the type of the scalar.
*
* \implsparsesolverconcept
*
@ -124,12 +124,12 @@ class DiagonalPreconditioner
*
* \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
*/
template <typename _Scalar>
class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
template <typename Scalar_>
class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<Scalar_>
{
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DiagonalPreconditioner<_Scalar> Base;
typedef DiagonalPreconditioner<Scalar_> Base;
using Base::m_invdiag;
public:

View File

@ -108,17 +108,17 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
}
template< typename _MatrixType,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
template< typename MatrixType_,
typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> >
class BiCGSTAB;
namespace internal {
template< typename _MatrixType, typename _Preconditioner>
struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
template< typename MatrixType_, typename Preconditioner_>
struct traits<BiCGSTAB<MatrixType_,Preconditioner_> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
typedef MatrixType_ MatrixType;
typedef Preconditioner_ Preconditioner;
};
}
@ -129,8 +129,8 @@ struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
* This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
* stabilized algorithm. The vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
* \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner
*
* \implsparsesolverconcept
*
@ -154,8 +154,8 @@ struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
template< typename MatrixType_, typename Preconditioner_>
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<MatrixType_,Preconditioner_> >
{
typedef IterativeSolverBase<BiCGSTAB> Base;
using Base::matrix;
@ -164,10 +164,10 @@ class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
typedef Preconditioner_ Preconditioner;
public:

View File

@ -92,17 +92,17 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
}
template< typename _MatrixType, int _UpLo=Lower,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
template< typename MatrixType_, int UpLo_=Lower,
typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> >
class ConjugateGradient;
namespace internal {
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
template< typename MatrixType_, int UpLo_, typename Preconditioner_>
struct traits<ConjugateGradient<MatrixType_,UpLo_,Preconditioner_> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
typedef MatrixType_ MatrixType;
typedef Preconditioner_ Preconditioner;
};
}
@ -113,11 +113,11 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
* This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
* The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
* \tparam MatrixType_ the type of the matrix A, can be a dense or a sparse matrix.
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower,
* \c Upper, or \c Lower|Upper in which the full matrix entries will be considered.
* Default is \c Lower, best performance is \c Lower|Upper.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
* \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner
*
* \implsparsesolverconcept
*
@ -127,8 +127,8 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
*
* The tolerance corresponds to the relative residual error: |Ax-b|/|b|
*
* \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is
* achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this
* \b Performance: Even though the default value of \c UpLo_ is \c Lower, significantly higher performance is
* achieved when using a complete matrix and \b Lower|Upper as the \a UpLo_ template parameter. Moreover, in this
* case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
* See \ref TopicMultiThreading for details.
*
@ -154,8 +154,8 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
*
* \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
template< typename MatrixType_, int UpLo_, typename Preconditioner_>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<MatrixType_,UpLo_,Preconditioner_> >
{
typedef IterativeSolverBase<ConjugateGradient> Base;
using Base::matrix;
@ -164,13 +164,13 @@ class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixTy
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
typedef Preconditioner_ Preconditioner;
enum {
UpLo = _UpLo
UpLo = UpLo_
};
public:

View File

@ -22,9 +22,9 @@ namespace Eigen {
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
*
* \tparam Scalar the scalar type of the input matrices
* \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
* \tparam UpLo_ The triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
* \tparam OrderingType_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
* unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
*
* \implsparsesolverconcept
@ -41,15 +41,15 @@ namespace Eigen {
* the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
*
*/
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> >
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
template <typename Scalar, int UpLo_ = Lower, typename OrderingType_ = AMDOrdering<int> >
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,UpLo_,OrderingType_> >
{
protected:
typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
typedef SparseSolverBase<IncompleteCholesky<Scalar,UpLo_,OrderingType_> > Base;
using Base::m_isInitialized;
public:
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef _OrderingType OrderingType;
typedef OrderingType_ OrderingType;
typedef typename OrderingType::PermutationType PermutationType;
typedef typename PermutationType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
@ -57,7 +57,7 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
typedef Matrix<RealScalar,Dynamic,1> VectorRx;
typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
typedef std::vector<std::list<StorageIndex> > VectorList;
enum { UpLo = _UpLo };
enum { UpLo = UpLo_ };
enum {
ColsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic
@ -185,9 +185,9 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
template<typename Scalar, int _UpLo, typename OrderingType>
template<typename _MatrixType>
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
template<typename Scalar, int UpLo_, typename OrderingType>
template<typename MatrixType_>
void IncompleteCholesky<Scalar,UpLo_, OrderingType>::factorize(const MatrixType_& mat)
{
using std::sqrt;
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
@ -199,12 +199,12 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
{
// The temporary is needed to make sure that the diagonal entry is properly sorted
FactorType tmp(mat.rows(), mat.cols());
tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
tmp = mat.template selfadjointView<UpLo_>().twistedBy(m_perm);
m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
}
else
{
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<UpLo_>();
}
Index n = m_L.cols();
@ -369,8 +369,8 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
} while(m_info!=Success);
}
template<typename Scalar, int _UpLo, typename OrderingType>
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
template<typename Scalar, int UpLo_, typename OrderingType>
inline void IncompleteCholesky<Scalar,UpLo_, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
{
if (jk < colPtr(col+1) )
{

View File

@ -95,15 +95,15 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
* alternatively, on GMANE:
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
*/
template <typename _Scalar, typename _StorageIndex = int>
class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageIndex> >
template <typename Scalar_, typename StorageIndex_ = int>
class IncompleteLUT : public SparseSolverBase<IncompleteLUT<Scalar_, StorageIndex_> >
{
protected:
typedef SparseSolverBase<IncompleteLUT> Base;
using Base::m_isInitialized;
public:
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
@ -219,8 +219,8 @@ void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor)
}
template <typename Scalar, typename StorageIndex>
template<typename _MatrixType>
void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat)
template<typename MatrixType_>
void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const MatrixType_& amat)
{
// Compute the Fill-reducing permutation
// Since ILUT does not perform any numerical pivoting,
@ -240,8 +240,8 @@ void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat)
}
template <typename Scalar, typename StorageIndex>
template<typename _MatrixType>
void IncompleteLUT<Scalar,StorageIndex>::factorize(const _MatrixType& amat)
template<typename MatrixType_>
void IncompleteLUT<Scalar,StorageIndex>::factorize(const MatrixType_& amat)
{
using std::sqrt;
using std::swap;

View File

@ -93,17 +93,17 @@ void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest
}
template< typename _MatrixType,
typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
template< typename MatrixType_,
typename Preconditioner_ = LeastSquareDiagonalPreconditioner<typename MatrixType_::Scalar> >
class LeastSquaresConjugateGradient;
namespace internal {
template< typename _MatrixType, typename _Preconditioner>
struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
template< typename MatrixType_, typename Preconditioner_>
struct traits<LeastSquaresConjugateGradient<MatrixType_,Preconditioner_> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
typedef MatrixType_ MatrixType;
typedef Preconditioner_ Preconditioner;
};
}
@ -116,8 +116,8 @@ struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
* Otherwise, the SparseLU or SparseQR classes might be preferable.
* The matrix A and the vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
* \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
* \tparam MatrixType_ the type of the matrix A, can be a dense or a sparse matrix.
* \tparam Preconditioner_ the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
*
* \implsparsesolverconcept
*
@ -145,8 +145,8 @@ struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
*
* \sa class ConjugateGradient, SparseLU, SparseQR
*/
template< typename _MatrixType, typename _Preconditioner>
class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
template< typename MatrixType_, typename Preconditioner_>
class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<MatrixType_,Preconditioner_> >
{
typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
using Base::matrix;
@ -155,10 +155,10 @@ class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresCon
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
typedef Preconditioner_ Preconditioner;
public:

View File

@ -23,7 +23,7 @@ namespace Eigen {
*
* \warning The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
@ -56,15 +56,15 @@ inline klu_numeric* klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], kl
}
template<typename _MatrixType>
class KLU : public SparseSolverBase<KLU<_MatrixType> >
template<typename MatrixType_>
class KLU : public SparseSolverBase<KLU<MatrixType_> >
{
protected:
typedef SparseSolverBase<KLU<_MatrixType> > Base;
typedef SparseSolverBase<KLU<MatrixType_> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;

View File

@ -13,8 +13,8 @@
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
: traits<_MatrixType>
template<typename MatrixType_> struct traits<FullPivLU<MatrixType_> >
: traits<MatrixType_>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
@ -30,7 +30,7 @@ template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
*
* \brief LU decomposition of a matrix with complete pivoting, and related features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
@ -57,11 +57,11 @@ template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
*
* \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
*/
template<typename _MatrixType> class FullPivLU
: public SolverBase<FullPivLU<_MatrixType> >
template<typename MatrixType_> class FullPivLU
: public SolverBase<FullPivLU<MatrixType_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<FullPivLU> Base;
friend class SolverBase<FullPivLU>;
@ -613,11 +613,11 @@ MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
/********* Implementation of kernel() **************************************************/
namespace internal {
template<typename _MatrixType>
struct kernel_retval<FullPivLU<_MatrixType> >
: kernel_retval_base<FullPivLU<_MatrixType> >
template<typename MatrixType_>
struct kernel_retval<FullPivLU<MatrixType_> >
: kernel_retval_base<FullPivLU<MatrixType_> >
{
EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<MatrixType_>)
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
MatrixType::MaxColsAtCompileTime,
@ -699,11 +699,11 @@ struct kernel_retval<FullPivLU<_MatrixType> >
/***** Implementation of image() *****************************************************/
template<typename _MatrixType>
struct image_retval<FullPivLU<_MatrixType> >
: image_retval_base<FullPivLU<_MatrixType> >
template<typename MatrixType_>
struct image_retval<FullPivLU<MatrixType_> >
: image_retval_base<FullPivLU<MatrixType_> >
{
EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<MatrixType_>)
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
MatrixType::MaxColsAtCompileTime,
@ -740,9 +740,9 @@ struct image_retval<FullPivLU<_MatrixType> >
} // end namespace internal
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename MatrixType_>
template<typename RhsType, typename DstType>
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
void FullPivLU<MatrixType_>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
* So we proceed as follows:
@ -787,9 +787,9 @@ void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
dst.row(permutationQ().indices().coeff(i)).setZero();
}
template<typename _MatrixType>
template<typename MatrixType_>
template<bool Conjugate, typename RhsType, typename DstType>
void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
void FullPivLU<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
* and since permutations are real and unitary, we can write this

View File

@ -14,13 +14,13 @@
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
: traits<_MatrixType>
template<typename MatrixType_> struct traits<PartialPivLU<MatrixType_> >
: traits<MatrixType_>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
typedef int StorageIndex;
typedef traits<_MatrixType> BaseTraits;
typedef traits<MatrixType_> BaseTraits;
enum {
Flags = BaseTraits::Flags & RowMajorBit,
CoeffReadCost = Dynamic
@ -46,7 +46,7 @@ struct enable_if_ref<Ref<T>,Derived> {
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
@ -73,12 +73,12 @@ struct enable_if_ref<Ref<T>,Derived> {
*
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
*/
template<typename _MatrixType> class PartialPivLU
: public SolverBase<PartialPivLU<_MatrixType> >
template<typename MatrixType_> class PartialPivLU
: public SolverBase<PartialPivLU<MatrixType_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<PartialPivLU> Base;
friend class SolverBase<PartialPivLU>;

View File

@ -28,40 +28,40 @@ namespace Eigen {
*
* \sa TutorialSparseDirectSolvers
*/
template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
template<typename _MatrixType, int Options> class PastixLLT;
template<typename _MatrixType, int Options> class PastixLDLT;
template<typename MatrixType_, bool IsStrSym = false> class PastixLU;
template<typename MatrixType_, int Options> class PastixLLT;
template<typename MatrixType_, int Options> class PastixLDLT;
namespace internal
{
template<class Pastix> struct pastix_traits;
template<typename _MatrixType>
struct pastix_traits< PastixLU<_MatrixType> >
template<typename MatrixType_>
struct pastix_traits< PastixLU<MatrixType_> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::StorageIndex StorageIndex;
typedef MatrixType_ MatrixType;
typedef typename MatrixType_::Scalar Scalar;
typedef typename MatrixType_::RealScalar RealScalar;
typedef typename MatrixType_::StorageIndex StorageIndex;
};
template<typename _MatrixType, int Options>
struct pastix_traits< PastixLLT<_MatrixType,Options> >
template<typename MatrixType_, int Options>
struct pastix_traits< PastixLLT<MatrixType_,Options> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::StorageIndex StorageIndex;
typedef MatrixType_ MatrixType;
typedef typename MatrixType_::Scalar Scalar;
typedef typename MatrixType_::RealScalar RealScalar;
typedef typename MatrixType_::StorageIndex StorageIndex;
};
template<typename _MatrixType, int Options>
struct pastix_traits< PastixLDLT<_MatrixType,Options> >
template<typename MatrixType_, int Options>
struct pastix_traits< PastixLDLT<MatrixType_,Options> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::StorageIndex StorageIndex;
typedef MatrixType_ MatrixType;
typedef typename MatrixType_::Scalar Scalar;
typedef typename MatrixType_::RealScalar RealScalar;
typedef typename MatrixType_::StorageIndex StorageIndex;
};
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
@ -134,8 +134,8 @@ class PastixBase : public SparseSolverBase<Derived>
public:
using Base::_solve_impl;
typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
typedef _MatrixType MatrixType;
typedef typename internal::pastix_traits<Derived>::MatrixType MatrixType_;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
@ -397,7 +397,7 @@ bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x
* This interface can symmetrize the input matrix otherwise.
* The vectors or matrices X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
* NOTE : Note that if the analysis and factorization phase are called separately,
* the input matrix will be symmetrized at each call, hence it is advised to
@ -408,11 +408,11 @@ bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x
* \sa \ref TutorialSparseSolverConcept, class SparseLU
*
*/
template<typename _MatrixType, bool IsStrSym>
class PastixLU : public PastixBase< PastixLU<_MatrixType> >
template<typename MatrixType_, bool IsStrSym>
class PastixLU : public PastixBase< PastixLU<MatrixType_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef PastixBase<PastixLU<MatrixType> > Base;
typedef typename Base::ColSpMatrix ColSpMatrix;
typedef typename MatrixType::StorageIndex StorageIndex;
@ -520,16 +520,16 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
*
* \sa \ref TutorialSparseSolverConcept, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo>
class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_>
class PastixLLT : public PastixBase< PastixLLT<MatrixType_, UpLo_> >
{
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
typedef MatrixType_ MatrixType;
typedef PastixBase<PastixLLT<MatrixType, UpLo_> > Base;
typedef typename Base::ColSpMatrix ColSpMatrix;
public:
enum { UpLo = _UpLo };
enum { UpLo = UpLo_ };
PastixLLT() : Base()
{
init();
@ -604,16 +604,16 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
*
* \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT
*/
template<typename _MatrixType, int _UpLo>
class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
template<typename MatrixType_, int UpLo_>
class PastixLDLT : public PastixBase< PastixLDLT<MatrixType_, UpLo_> >
{
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
typedef MatrixType_ MatrixType;
typedef PastixBase<PastixLDLT<MatrixType, UpLo_> > Base;
typedef typename Base::ColSpMatrix ColSpMatrix;
public:
enum { UpLo = _UpLo };
enum { UpLo = UpLo_ };
PastixLDLT():Base()
{
init();

View File

@ -34,9 +34,9 @@
namespace Eigen {
template<typename _MatrixType> class PardisoLU;
template<typename _MatrixType, int Options=Upper> class PardisoLLT;
template<typename _MatrixType, int Options=Upper> class PardisoLDLT;
template<typename MatrixType_> class PardisoLU;
template<typename MatrixType_, int Options=Upper> class PardisoLLT;
template<typename MatrixType_, int Options=Upper> class PardisoLDLT;
namespace internal
{
@ -66,31 +66,31 @@ namespace internal
template<class Pardiso> struct pardiso_traits;
template<typename _MatrixType>
struct pardiso_traits< PardisoLU<_MatrixType> >
template<typename MatrixType_>
struct pardiso_traits< PardisoLU<MatrixType_> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::StorageIndex StorageIndex;
typedef MatrixType_ MatrixType;
typedef typename MatrixType_::Scalar Scalar;
typedef typename MatrixType_::RealScalar RealScalar;
typedef typename MatrixType_::StorageIndex StorageIndex;
};
template<typename _MatrixType, int Options>
struct pardiso_traits< PardisoLLT<_MatrixType, Options> >
template<typename MatrixType_, int Options>
struct pardiso_traits< PardisoLLT<MatrixType_, Options> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::StorageIndex StorageIndex;
typedef MatrixType_ MatrixType;
typedef typename MatrixType_::Scalar Scalar;
typedef typename MatrixType_::RealScalar RealScalar;
typedef typename MatrixType_::StorageIndex StorageIndex;
};
template<typename _MatrixType, int Options>
struct pardiso_traits< PardisoLDLT<_MatrixType, Options> >
template<typename MatrixType_, int Options>
struct pardiso_traits< PardisoLDLT<MatrixType_, Options> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::StorageIndex StorageIndex;
typedef MatrixType_ MatrixType;
typedef typename MatrixType_::Scalar Scalar;
typedef typename MatrixType_::RealScalar RealScalar;
typedef typename MatrixType_::StorageIndex StorageIndex;
};
} // end namespace internal
@ -375,7 +375,7 @@ void PardisoImpl<Derived>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase
* By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
* \code solver.pardisoParameterArray()[59] = 1; \endcode
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
@ -437,21 +437,21 @@ class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
*
* \sa \ref TutorialSparseSolverConcept, class SimplicialLLT
*/
template<typename MatrixType, int _UpLo>
class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
template<typename MatrixType, int UpLo_>
class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,UpLo_> >
{
protected:
typedef PardisoImpl< PardisoLLT<MatrixType,_UpLo> > Base;
typedef PardisoImpl< PardisoLLT<MatrixType,UpLo_> > Base;
using Base::pardisoInit;
using Base::m_matrix;
friend class PardisoImpl< PardisoLLT<MatrixType,_UpLo> >;
friend class PardisoImpl< PardisoLLT<MatrixType,UpLo_> >;
public:
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::StorageIndex StorageIndex;
enum { UpLo = _UpLo };
enum { UpLo = UpLo_ };
using Base::compute;
PardisoLLT()

View File

@ -14,8 +14,8 @@
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
: traits<_MatrixType>
template<typename MatrixType_> struct traits<ColPivHouseholderQR<MatrixType_> >
: traits<MatrixType_>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
@ -31,7 +31,7 @@ template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
*
* \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
*
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
* such that
@ -48,12 +48,12 @@ template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
*
* \sa MatrixBase::colPivHouseholderQr()
*/
template<typename _MatrixType> class ColPivHouseholderQR
: public SolverBase<ColPivHouseholderQR<_MatrixType> >
template<typename MatrixType_> class ColPivHouseholderQR
: public SolverBase<ColPivHouseholderQR<MatrixType_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<ColPivHouseholderQR> Base;
friend class SolverBase<ColPivHouseholderQR>;
@ -582,9 +582,9 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename MatrixType_>
template<typename RhsType, typename DstType>
void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
void ColPivHouseholderQR<MatrixType_>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
const Index nonzero_pivots = nonzeroPivots();
@ -606,9 +606,9 @@ void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &
for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero();
}
template<typename _MatrixType>
template<typename MatrixType_>
template<bool Conjugate, typename RhsType, typename DstType>
void ColPivHouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
void ColPivHouseholderQR<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
const Index nonzero_pivots = nonzeroPivots();

View File

@ -13,9 +13,9 @@
namespace Eigen {
namespace internal {
template <typename _MatrixType>
struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
: traits<_MatrixType> {
template <typename MatrixType_>
struct traits<CompleteOrthogonalDecomposition<MatrixType_> >
: traits<MatrixType_> {
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
typedef int StorageIndex;
@ -47,11 +47,11 @@ struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
*
* \sa MatrixBase::completeOrthogonalDecomposition()
*/
template <typename _MatrixType> class CompleteOrthogonalDecomposition
: public SolverBase<CompleteOrthogonalDecomposition<_MatrixType> >
template <typename MatrixType_> class CompleteOrthogonalDecomposition
: public SolverBase<CompleteOrthogonalDecomposition<MatrixType_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<CompleteOrthogonalDecomposition> Base;
template<typename Derived>
@ -529,9 +529,9 @@ void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template <typename _MatrixType>
template <typename MatrixType_>
template <typename RhsType, typename DstType>
void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
void CompleteOrthogonalDecomposition<MatrixType_>::_solve_impl(
const RhsType& rhs, DstType& dst) const {
const Index rank = this->rank();
if (rank == 0) {
@ -561,9 +561,9 @@ void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
dst = colsPermutation() * dst;
}
template<typename _MatrixType>
template<typename MatrixType_>
template<bool Conjugate, typename RhsType, typename DstType>
void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
void CompleteOrthogonalDecomposition<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
const Index rank = this->rank();

View File

@ -15,8 +15,8 @@ namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> >
: traits<_MatrixType>
template<typename MatrixType_> struct traits<FullPivHouseholderQR<MatrixType_> >
: traits<MatrixType_>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
@ -40,7 +40,7 @@ struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
*
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
*
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
* such that
@ -57,12 +57,12 @@ struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
*
* \sa MatrixBase::fullPivHouseholderQr()
*/
template<typename _MatrixType> class FullPivHouseholderQR
: public SolverBase<FullPivHouseholderQR<_MatrixType> >
template<typename MatrixType_> class FullPivHouseholderQR
: public SolverBase<FullPivHouseholderQR<MatrixType_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<FullPivHouseholderQR> Base;
friend class SolverBase<FullPivHouseholderQR>;
@ -539,9 +539,9 @@ void FullPivHouseholderQR<MatrixType>::computeInPlace()
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename MatrixType_>
template<typename RhsType, typename DstType>
void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
void FullPivHouseholderQR<MatrixType_>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
const Index l_rank = rank();
@ -573,9 +573,9 @@ void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType
for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
}
template<typename _MatrixType>
template<typename MatrixType_>
template<bool Conjugate, typename RhsType, typename DstType>
void FullPivHouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
void FullPivHouseholderQR<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
const Index l_rank = rank();

View File

@ -15,8 +15,8 @@
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<HouseholderQR<_MatrixType> >
: traits<_MatrixType>
template<typename MatrixType_> struct traits<HouseholderQR<MatrixType_> >
: traits<MatrixType_>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
@ -33,7 +33,7 @@ template<typename _MatrixType> struct traits<HouseholderQR<_MatrixType> >
*
* \brief Householder QR decomposition of a matrix
*
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition
*
* This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
* such that
@ -53,12 +53,12 @@ template<typename _MatrixType> struct traits<HouseholderQR<_MatrixType> >
*
* \sa MatrixBase::householderQr()
*/
template<typename _MatrixType> class HouseholderQR
: public SolverBase<HouseholderQR<_MatrixType> >
template<typename MatrixType_> class HouseholderQR
: public SolverBase<HouseholderQR<MatrixType_> >
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef SolverBase<HouseholderQR> Base;
friend class SolverBase<HouseholderQR>;
@ -356,9 +356,9 @@ struct householder_qr_inplace_blocked
} // end namespace internal
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename MatrixType_>
template<typename RhsType, typename DstType>
void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
void HouseholderQR<MatrixType_>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
const Index rank = (std::min)(rows(), cols());
@ -374,9 +374,9 @@ void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) c
dst.bottomRows(cols()-rank).setZero();
}
template<typename _MatrixType>
template<typename MatrixType_>
template<bool Conjugate, typename RhsType, typename DstType>
void HouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
void HouseholderQR<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
const Index rank = (std::min)(rows(), cols());

View File

@ -50,21 +50,21 @@ namespace Eigen {
* R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
* NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
* \tparam MatrixType_ The type of the sparse matrix A, must be a column-major SparseMatrix<>
*
* \implsparsesolverconcept
*
*
*/
template<typename _MatrixType>
class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
template<typename MatrixType_>
class SPQR : public SparseSolverBase<SPQR<MatrixType_> >
{
protected:
typedef SparseSolverBase<SPQR<_MatrixType> > Base;
typedef SparseSolverBase<SPQR<MatrixType_> > Base;
using Base::m_isInitialized;
public:
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename MatrixType_::Scalar Scalar;
typedef typename MatrixType_::RealScalar RealScalar;
typedef SuiteSparse_long StorageIndex ;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
@ -90,7 +90,7 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
cholmod_l_start(&m_cc);
}
explicit SPQR(const _MatrixType& matrix)
explicit SPQR(const MatrixType_& matrix)
: m_analysisIsOk(false),
m_factorizationIsOk(false),
m_isRUpToDate(false),
@ -122,7 +122,7 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
std::free(m_HPinv);
}
void compute(const _MatrixType& matrix)
void compute(const MatrixType_& matrix)
{
if(m_isInitialized) SPQR_free();

View File

@ -33,15 +33,15 @@ namespace Eigen {
IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
#endif
template<typename _MatrixType> class BDCSVD;
template<typename MatrixType_> class BDCSVD;
namespace internal {
template<typename _MatrixType>
struct traits<BDCSVD<_MatrixType> >
: traits<_MatrixType>
template<typename MatrixType_>
struct traits<BDCSVD<MatrixType_> >
: traits<MatrixType_>
{
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
};
} // end namespace internal
@ -54,7 +54,7 @@ struct traits<BDCSVD<_MatrixType> >
*
* \brief class Bidiagonal Divide and Conquer SVD
*
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
*
* This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
* and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
@ -69,8 +69,8 @@ struct traits<BDCSVD<_MatrixType> >
*
* \sa class JacobiSVD
*/
template<typename _MatrixType>
class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
template<typename MatrixType_>
class BDCSVD : public SVDBase<BDCSVD<MatrixType_> >
{
typedef SVDBase<BDCSVD> Base;
@ -80,7 +80,7 @@ public:
using Base::computeU;
using Base::computeV;
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename NumTraits<RealScalar>::Literal Literal;

View File

@ -423,11 +423,11 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
}
};
template<typename _MatrixType, int QRPreconditioner>
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
: traits<_MatrixType>
template<typename MatrixType_, int QRPreconditioner>
struct traits<JacobiSVD<MatrixType_,QRPreconditioner> >
: traits<MatrixType_>
{
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
};
} // end namespace internal
@ -439,7 +439,7 @@ struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
*
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
*
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
* \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
* \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* for the R-SVD step for non-square matrices. See discussion of possible values below.
*
@ -485,13 +485,13 @@ struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
: public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
template<typename MatrixType_, int QRPreconditioner> class JacobiSVD
: public SVDBase<JacobiSVD<MatrixType_,QRPreconditioner> >
{
typedef SVDBase<JacobiSVD> Base;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
enum {
@ -601,9 +601,9 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
using Base::m_prescribedThreshold;
WorkMatrixType m_workMatrix;
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
template<typename MatrixType__, int QRPreconditioner_, bool IsComplex_>
friend struct internal::svd_precondition_2x2_block_to_be_real;
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
template<typename MatrixType__, int QRPreconditioner_, int Case_, bool DoAnything_>
friend struct internal::qr_preconditioner_impl;
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;

View File

@ -17,11 +17,11 @@ namespace internal {
// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
template<typename _MatrixType> class UpperBidiagonalization
template<typename MatrixType_> class UpperBidiagonalization
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
@ -355,8 +355,8 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
}
}
template<typename _MatrixType>
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
template<typename MatrixType_>
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::computeUnblocked(const MatrixType_& matrix)
{
Index rows = matrix.rows();
Index cols = matrix.cols();
@ -377,8 +377,8 @@ UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::comput
return *this;
}
template<typename _MatrixType>
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
template<typename MatrixType_>
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::compute(const MatrixType_& matrix)
{
Index rows = matrix.rows();
Index cols = matrix.cols();

View File

@ -271,17 +271,17 @@ class SimplicialCholeskyBase : public SparseSolverBase<Derived>
RealScalar m_shiftScale;
};
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLLT;
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLDLT;
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialCholesky;
template<typename MatrixType_, int UpLo_ = Lower, typename Ordering_ = AMDOrdering<typename MatrixType_::StorageIndex> > class SimplicialLLT;
template<typename MatrixType_, int UpLo_ = Lower, typename Ordering_ = AMDOrdering<typename MatrixType_::StorageIndex> > class SimplicialLDLT;
template<typename MatrixType_, int UpLo_ = Lower, typename Ordering_ = AMDOrdering<typename MatrixType_::StorageIndex> > class SimplicialCholesky;
namespace internal {
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
template<typename MatrixType_, int UpLo_, typename Ordering_> struct traits<SimplicialLLT<MatrixType_,UpLo_,Ordering_> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef MatrixType_ MatrixType;
typedef Ordering_ OrderingType;
enum { UpLo = UpLo_ };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
@ -291,11 +291,11 @@ template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<Simp
static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); }
};
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
template<typename MatrixType_,int UpLo_, typename Ordering_> struct traits<SimplicialLDLT<MatrixType_,UpLo_,Ordering_> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef MatrixType_ MatrixType;
typedef Ordering_ OrderingType;
enum { UpLo = UpLo_ };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
@ -305,11 +305,11 @@ template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<Simpl
static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); }
};
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
template<typename MatrixType_, int UpLo_, typename Ordering_> struct traits<SimplicialCholesky<MatrixType_,UpLo_,Ordering_> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef MatrixType_ MatrixType;
typedef Ordering_ OrderingType;
enum { UpLo = UpLo_ };
};
}
@ -325,21 +325,21 @@ template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<Simp
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
* such that the factorized matrix is P A P^-1.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
* \tparam Ordering_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
* \implsparsesolverconcept
*
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
*/
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
template<typename MatrixType_, int UpLo_, typename Ordering_>
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<MatrixType_,UpLo_,Ordering_> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef MatrixType_ MatrixType;
enum { UpLo = UpLo_ };
typedef SimplicialCholeskyBase<SimplicialLLT> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
@ -416,21 +416,21 @@ public:
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
* such that the factorized matrix is P A P^-1.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
* \tparam Ordering_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
* \implsparsesolverconcept
*
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
*/
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
template<typename MatrixType_, int UpLo_, typename Ordering_>
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<MatrixType_,UpLo_,Ordering_> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef MatrixType_ MatrixType;
enum { UpLo = UpLo_ };
typedef SimplicialCholeskyBase<SimplicialLDLT> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
@ -507,12 +507,12 @@ public:
*
* \sa class SimplicialLDLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
template<typename MatrixType_, int UpLo_, typename Ordering_>
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<MatrixType_,UpLo_,Ordering_> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef MatrixType_ MatrixType;
enum { UpLo = UpLo_ };
typedef SimplicialCholeskyBase<SimplicialCholesky> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;

View File

@ -19,12 +19,12 @@ namespace internal {
*
* See BasicSparseLLT and SparseProduct for usage examples.
*/
template<typename _Scalar, typename _StorageIndex>
template<typename Scalar_, typename StorageIndex_>
class AmbiVector
{
public:
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
typedef typename NumTraits<Scalar>::Real RealScalar;
explicit AmbiVector(Index size)
@ -125,8 +125,8 @@ class AmbiVector
};
/** \returns the number of non zeros in the current sub vector */
template<typename _Scalar,typename _StorageIndex>
Index AmbiVector<_Scalar,_StorageIndex>::nonZeros() const
template<typename Scalar_,typename StorageIndex_>
Index AmbiVector<Scalar_,StorageIndex_>::nonZeros() const
{
if (m_mode==IsSparse)
return m_llSize;
@ -134,8 +134,8 @@ Index AmbiVector<_Scalar,_StorageIndex>::nonZeros() const
return m_end - m_start;
}
template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::init(double estimatedDensity)
template<typename Scalar_,typename StorageIndex_>
void AmbiVector<Scalar_,StorageIndex_>::init(double estimatedDensity)
{
if (estimatedDensity>0.1)
init(IsDense);
@ -143,8 +143,8 @@ void AmbiVector<_Scalar,_StorageIndex>::init(double estimatedDensity)
init(IsSparse);
}
template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::init(int mode)
template<typename Scalar_,typename StorageIndex_>
void AmbiVector<Scalar_,StorageIndex_>::init(int mode)
{
m_mode = mode;
// This is only necessary in sparse mode, but we set these unconditionally to avoid some maybe-uninitialized warnings
@ -160,15 +160,15 @@ void AmbiVector<_Scalar,_StorageIndex>::init(int mode)
*
* Don't worry, this function is extremely cheap.
*/
template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::restart()
template<typename Scalar_,typename StorageIndex_>
void AmbiVector<Scalar_,StorageIndex_>::restart()
{
m_llCurrent = m_llStart;
}
/** Set all coefficients of current subvector to zero */
template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::setZero()
template<typename Scalar_,typename StorageIndex_>
void AmbiVector<Scalar_,StorageIndex_>::setZero()
{
if (m_mode==IsDense)
{
@ -183,8 +183,8 @@ void AmbiVector<_Scalar,_StorageIndex>::setZero()
}
}
template<typename _Scalar,typename _StorageIndex>
_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeffRef(Index i)
template<typename Scalar_,typename StorageIndex_>
Scalar_& AmbiVector<Scalar_,StorageIndex_>::coeffRef(Index i)
{
if (m_mode==IsDense)
return m_buffer[i];
@ -252,8 +252,8 @@ _Scalar& AmbiVector<_Scalar,_StorageIndex>::coeffRef(Index i)
}
}
template<typename _Scalar,typename _StorageIndex>
_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeff(Index i)
template<typename Scalar_,typename StorageIndex_>
Scalar_& AmbiVector<Scalar_,StorageIndex_>::coeff(Index i)
{
if (m_mode==IsDense)
return m_buffer[i];
@ -280,11 +280,11 @@ _Scalar& AmbiVector<_Scalar,_StorageIndex>::coeff(Index i)
}
/** Iterator over the nonzero coefficients */
template<typename _Scalar,typename _StorageIndex>
class AmbiVector<_Scalar,_StorageIndex>::Iterator
template<typename Scalar_,typename StorageIndex_>
class AmbiVector<Scalar_,StorageIndex_>::Iterator
{
public:
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
/** Default constructor

View File

@ -18,13 +18,13 @@ namespace internal {
* Stores a sparse set of values as a list of values and a list of indices.
*
*/
template<typename _Scalar,typename _StorageIndex>
template<typename Scalar_,typename StorageIndex_>
class CompressedStorage
{
public:
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
protected:

View File

@ -17,22 +17,22 @@ namespace Eigen {
*
* \brief Sparse matrix
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
* \param Scalar_ the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
*/
namespace internal {
template<typename _Scalar, int _Flags, typename _StorageIndex>
struct traits<MappedSparseMatrix<_Scalar, _Flags, _StorageIndex> > : traits<SparseMatrix<_Scalar, _Flags, _StorageIndex> >
template<typename Scalar_, int _Flags, typename StorageIndex_>
struct traits<MappedSparseMatrix<Scalar_, _Flags, StorageIndex_> > : traits<SparseMatrix<Scalar_, _Flags, StorageIndex_> >
{};
} // end namespace internal
template<typename _Scalar, int _Flags, typename _StorageIndex>
template<typename Scalar_, int _Flags, typename StorageIndex_>
class MappedSparseMatrix
: public Map<SparseMatrix<_Scalar, _Flags, _StorageIndex> >
: public Map<SparseMatrix<Scalar_, _Flags, StorageIndex_> >
{
typedef Map<SparseMatrix<_Scalar, _Flags, _StorageIndex> > Base;
typedef Map<SparseMatrix<Scalar_, _Flags, StorageIndex_> > Base;
public:
@ -49,11 +49,11 @@ class MappedSparseMatrix
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct evaluator<MappedSparseMatrix<_Scalar,_Options,_StorageIndex> >
: evaluator<SparseCompressedBase<MappedSparseMatrix<_Scalar,_Options,_StorageIndex> > >
template<typename Scalar_, int Options_, typename StorageIndex_>
struct evaluator<MappedSparseMatrix<Scalar_,Options_,StorageIndex_> >
: evaluator<SparseCompressedBase<MappedSparseMatrix<Scalar_,Options_,StorageIndex_> > >
{
typedef MappedSparseMatrix<_Scalar,_Options,_StorageIndex> XprType;
typedef MappedSparseMatrix<Scalar_,Options_,StorageIndex_> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
evaluator() : Base() {}

View File

@ -283,13 +283,13 @@ public:
} // namespace internal
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
class BlockImpl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
template<typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
class BlockImpl<SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols>
{
public:
typedef _StorageIndex StorageIndex;
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
typedef StorageIndex_ StorageIndex;
typedef SparseMatrix<Scalar_, Options_, StorageIndex_> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
@ -302,13 +302,13 @@ public:
using Base::operator=;
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
class BlockImpl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
template<typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
class BlockImpl<const SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<const SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols>
{
public:
typedef _StorageIndex StorageIndex;
typedef const SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
typedef StorageIndex_ StorageIndex;
typedef const SparseMatrix<Scalar_, Options_, StorageIndex_> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
@ -545,20 +545,20 @@ public:
inline operator bool() const { return m_outerPos < m_end; }
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
struct unary_evaluator<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
template<typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
struct unary_evaluator<Block<SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true> > >
{
typedef Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
typedef Block<SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
struct unary_evaluator<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
template<typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
struct unary_evaluator<Block<const SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<const SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true> > >
{
typedef Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
typedef Block<const SparseMatrix<Scalar_, Options_, StorageIndex_>,BlockRows,BlockCols,true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
};

View File

@ -73,8 +73,8 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, t
// FIXME: what is the purpose of the following specialization? Is it for the BlockedSparse format?
// -> let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators
// template<typename T1, typename T2/*, int _Options, typename _StrideType*/>
// struct ScalarBinaryOpTraits<T1, Ref<T2/*, _Options, _StrideType*/> >
// template<typename T1, typename T2/*, int Options_, typename _StrideType*/>
// struct ScalarBinaryOpTraits<T1, Ref<T2/*, Options_, _StrideType*/> >
// {
// enum {
// Defined = 1

View File

@ -29,10 +29,10 @@ namespace Eigen {
*
* More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
*
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
* \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
* \tparam Scalar_ the scalar type, i.e. the type of the coefficients
* \tparam Options_ Union of bit flags controlling the storage scheme. Currently the only possibility
* is ColMajor or RowMajor. The default is 0 which means column-major.
* \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
* \tparam StorageIndex_ the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
*
* \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
* whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
@ -43,11 +43,11 @@ namespace Eigen {
*/
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
template<typename Scalar_, int Options_, typename StorageIndex_>
struct traits<SparseMatrix<Scalar_, Options_, StorageIndex_> >
{
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
@ -55,21 +55,21 @@ struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
Flags = Options_ | NestByRefBit | LvalueBit | CompressedAccessBit,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
template<typename Scalar_, int Options_, typename StorageIndex_, int DiagIndex>
struct traits<Diagonal<SparseMatrix<Scalar_, Options_, StorageIndex_>, DiagIndex> >
{
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
typedef SparseMatrix<Scalar_, Options_, StorageIndex_> MatrixType;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Dense StorageKind;
typedef _StorageIndex StorageIndex;
typedef StorageIndex_ StorageIndex;
typedef MatrixXpr XprKind;
enum {
@ -81,9 +81,9 @@ struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex
};
};
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
: public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
template<typename Scalar_, int Options_, typename StorageIndex_, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<Scalar_, Options_, StorageIndex_>, DiagIndex> >
: public traits<Diagonal<SparseMatrix<Scalar_, Options_, StorageIndex_>, DiagIndex> >
{
enum {
Flags = 0
@ -92,13 +92,13 @@ struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, Dia
} // end namespace internal
template<typename _Scalar, int _Options, typename _StorageIndex>
template<typename Scalar_, int Options_, typename StorageIndex_>
class SparseMatrix
: public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
: public SparseCompressedBase<SparseMatrix<Scalar_, Options_, StorageIndex_> >
{
typedef SparseCompressedBase<SparseMatrix> Base;
using Base::convert_index;
friend class SparseVector<_Scalar,0,_StorageIndex>;
friend class SparseVector<Scalar_,0,StorageIndex_>;
template<typename, typename, typename, typename, typename>
friend struct internal::Assignment;
public:
@ -118,7 +118,7 @@ class SparseMatrix
using Base::IsRowMajor;
typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
enum {
Options = _Options
Options = Options_
};
typedef typename Base::IndexVector IndexVector;
@ -1104,11 +1104,11 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
* an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
* be explicitly stored into a std::vector for instance.
*/
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename Scalar, int Options_, typename StorageIndex_>
template<typename InputIterators>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
void SparseMatrix<Scalar,Options_,StorageIndex_>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
{
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,Options_,StorageIndex_> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
}
/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
@ -1120,17 +1120,17 @@ void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIte
* mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
* \endcode
*/
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename Scalar, int Options_, typename StorageIndex_>
template<typename InputIterators,typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
void SparseMatrix<Scalar,Options_,StorageIndex_>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
{
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,Options_,StorageIndex_>, DupFunctor>(begin, end, *this, dup_func);
}
/** \internal */
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename Scalar, int Options_, typename StorageIndex_>
template<typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
void SparseMatrix<Scalar,Options_,StorageIndex_>::collapseDuplicates(DupFunctor dup_func)
{
eigen_assert(!isCompressed());
// TODO, in practice we should be able to use m_innerNonZeros for that task
@ -1168,9 +1168,9 @@ void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor
m_data.resize(m_outerIndex[m_outerSize]);
}
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename Scalar, int Options_, typename StorageIndex_>
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
EIGEN_DONT_INLINE SparseMatrix<Scalar,Options_,StorageIndex_>& SparseMatrix<Scalar,Options_,StorageIndex_>::operator=(const SparseMatrixBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
@ -1241,8 +1241,8 @@ EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scal
}
}
template<typename _Scalar, int _Options, typename _StorageIndex>
typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
template<typename Scalar_, int Options_, typename StorageIndex_>
typename SparseMatrix<Scalar_,Options_,StorageIndex_>::Scalar& SparseMatrix<Scalar_,Options_,StorageIndex_>::insert(Index row, Index col)
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
@ -1361,8 +1361,8 @@ typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Sca
return insertUncompressed(row,col);
}
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
template<typename Scalar_, int Options_, typename StorageIndex_>
EIGEN_DONT_INLINE typename SparseMatrix<Scalar_,Options_,StorageIndex_>::Scalar& SparseMatrix<Scalar_,Options_,StorageIndex_>::insertUncompressed(Index row, Index col)
{
eigen_assert(!isCompressed());
@ -1393,8 +1393,8 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar&
return (m_data.value(p) = Scalar(0));
}
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
template<typename Scalar_, int Options_, typename StorageIndex_>
EIGEN_DONT_INLINE typename SparseMatrix<Scalar_,Options_,StorageIndex_>::Scalar& SparseMatrix<Scalar_,Options_,StorageIndex_>::insertCompressed(Index row, Index col)
{
eigen_assert(isCompressed());
@ -1502,12 +1502,12 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar&
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
: evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
template<typename Scalar_, int Options_, typename StorageIndex_>
struct evaluator<SparseMatrix<Scalar_,Options_,StorageIndex_> >
: evaluator<SparseCompressedBase<SparseMatrix<Scalar_,Options_,StorageIndex_> > >
{
typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
typedef evaluator<SparseCompressedBase<SparseMatrix<Scalar_,Options_,StorageIndex_> > > Base;
typedef SparseMatrix<Scalar_,Options_,StorageIndex_> SparseMatrixType;
evaluator() : Base() {}
explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
};

View File

@ -165,9 +165,9 @@ protected:
} // end namespace internal
// sparse matrix = sparse-product (can be sparse*sparse, sparse*perm, etc.)
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename Scalar, int Options_, typename StorageIndex_>
template<typename Lhs, typename Rhs>
SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const Product<Lhs,Rhs,AliasFreeProduct>& src)
SparseMatrix<Scalar,Options_,StorageIndex_>& SparseMatrix<Scalar,Options_,StorageIndex_>::operator=(const Product<Lhs,Rhs,AliasFreeProduct>& src)
{
// std::cout << "in Assignment : " << DstOptions << "\n";
SparseMatrix dst(src.rows(),src.cols());

View File

@ -25,9 +25,9 @@ SparseMatrixBase<Derived>::sum() const
return res;
}
template<typename _Scalar, int _Options, typename _Index>
typename internal::traits<SparseMatrix<_Scalar,_Options,_Index> >::Scalar
SparseMatrix<_Scalar,_Options,_Index>::sum() const
template<typename Scalar_, int Options_, typename Index_>
typename internal::traits<SparseMatrix<Scalar_,Options_,Index_> >::Scalar
SparseMatrix<Scalar_,Options_,Index_>::sum() const
{
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
if(this->isCompressed())
@ -36,9 +36,9 @@ SparseMatrix<_Scalar,_Options,_Index>::sum() const
return Base::sum();
}
template<typename _Scalar, int _Options, typename _Index>
typename internal::traits<SparseVector<_Scalar,_Options, _Index> >::Scalar
SparseVector<_Scalar,_Options,_Index>::sum() const
template<typename Scalar_, int Options_, typename Index_>
typename internal::traits<SparseVector<Scalar_,Options_, Index_> >::Scalar
SparseVector<Scalar_,Options_,Index_>::sum() const
{
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
return Matrix<Scalar,1,Dynamic>::Map(m_data.valuePtr(), m_data.size()).sum();

View File

@ -20,13 +20,13 @@ namespace internal {
template<typename Derived> class SparseRefBase;
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
struct traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
template<typename MatScalar, int MatOptions, typename MatIndex, int Options_, typename _StrideType>
struct traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options_, _StrideType> >
: public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
{
typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
enum {
Options = _Options,
Options = Options_,
Flags = traits<PlainObjectType>::Flags | CompressedAccessBit | NestByRefBit
};
@ -40,22 +40,22 @@ struct traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _Stride
};
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
struct traits<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
: public traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
template<typename MatScalar, int MatOptions, typename MatIndex, int Options_, typename _StrideType>
struct traits<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options_, _StrideType> >
: public traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options_, _StrideType> >
{
enum {
Flags = (traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit
};
};
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
struct traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
template<typename MatScalar, int MatOptions, typename MatIndex, int Options_, typename _StrideType>
struct traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options_, _StrideType> >
: public traits<SparseVector<MatScalar,MatOptions,MatIndex> >
{
typedef SparseVector<MatScalar,MatOptions,MatIndex> PlainObjectType;
enum {
Options = _Options,
Options = Options_,
Flags = traits<PlainObjectType>::Flags | CompressedAccessBit | NestByRefBit
};
@ -68,9 +68,9 @@ struct traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _Stride
};
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
struct traits<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
: public traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
template<typename MatScalar, int MatOptions, typename MatIndex, int Options_, typename _StrideType>
struct traits<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options_, _StrideType> >
: public traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options_, _StrideType> >
{
enum {
Flags = (traits<SparseVector<MatScalar,MatOptions,MatIndex> >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit

View File

@ -40,13 +40,13 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
}
template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
: public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
template<typename MatrixType, unsigned int Mode_> class SparseSelfAdjointView
: public EigenBase<SparseSelfAdjointView<MatrixType,Mode_> >
{
public:
enum {
Mode = _Mode,
Mode = Mode_,
TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
@ -516,7 +516,7 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
}
}
template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
template<int SrcMode_,int DstMode_,typename MatrixType,int DstOrder>
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
{
typedef typename MatrixType::StorageIndex StorageIndex;
@ -529,8 +529,8 @@ void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixTyp
enum {
SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
StorageOrderMatch = int(SrcOrder) == int(DstOrder),
DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
DstMode = DstOrder==RowMajor ? (DstMode_==Upper ? Lower : Upper) : DstMode_,
SrcMode = SrcOrder==RowMajor ? (SrcMode_==Upper ? Lower : Upper) : SrcMode_
};
MatEval matEval(mat);

View File

@ -49,10 +49,10 @@ const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class SparseMatrix;
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class DynamicSparseMatrix;
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class SparseVector;
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class MappedSparseMatrix;
template<typename Scalar_, int _Flags = 0, typename StorageIndex_ = int> class SparseMatrix;
template<typename Scalar_, int _Flags = 0, typename StorageIndex_ = int> class DynamicSparseMatrix;
template<typename Scalar_, int _Flags = 0, typename StorageIndex_ = int> class SparseVector;
template<typename Scalar_, int _Flags = 0, typename StorageIndex_ = int> class MappedSparseMatrix;
template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView;
template<typename Lhs, typename Rhs> class SparseDiagonalProduct;
@ -80,41 +80,41 @@ template<typename T> struct eval<T,Sparse>
{};
template<typename T,int Cols,int Flags> struct sparse_eval<T,1,Cols,Flags> {
typedef typename traits<T>::Scalar _Scalar;
typedef typename traits<T>::StorageIndex _StorageIndex;
typedef typename traits<T>::Scalar Scalar_;
typedef typename traits<T>::StorageIndex StorageIndex_;
public:
typedef SparseVector<_Scalar, RowMajor, _StorageIndex> type;
typedef SparseVector<Scalar_, RowMajor, StorageIndex_> type;
};
template<typename T,int Rows,int Flags> struct sparse_eval<T,Rows,1,Flags> {
typedef typename traits<T>::Scalar _Scalar;
typedef typename traits<T>::StorageIndex _StorageIndex;
typedef typename traits<T>::Scalar Scalar_;
typedef typename traits<T>::StorageIndex StorageIndex_;
public:
typedef SparseVector<_Scalar, ColMajor, _StorageIndex> type;
typedef SparseVector<Scalar_, ColMajor, StorageIndex_> type;
};
// TODO this seems almost identical to plain_matrix_type<T, Sparse>
template<typename T,int Rows,int Cols,int Flags> struct sparse_eval {
typedef typename traits<T>::Scalar _Scalar;
typedef typename traits<T>::StorageIndex _StorageIndex;
enum { _Options = ((Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
typedef typename traits<T>::Scalar Scalar_;
typedef typename traits<T>::StorageIndex StorageIndex_;
enum { Options_ = ((Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
public:
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type;
typedef SparseMatrix<Scalar_, Options_, StorageIndex_> type;
};
template<typename T,int Flags> struct sparse_eval<T,1,1,Flags> {
typedef typename traits<T>::Scalar _Scalar;
typedef typename traits<T>::Scalar Scalar_;
public:
typedef Matrix<_Scalar, 1, 1> type;
typedef Matrix<Scalar_, 1, 1> type;
};
template<typename T> struct plain_matrix_type<T,Sparse>
{
typedef typename traits<T>::Scalar _Scalar;
typedef typename traits<T>::StorageIndex _StorageIndex;
enum { _Options = ((evaluator<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
typedef typename traits<T>::Scalar Scalar_;
typedef typename traits<T>::StorageIndex StorageIndex_;
enum { Options_ = ((evaluator<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
public:
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type;
typedef SparseMatrix<Scalar_, Options_, StorageIndex_> type;
};
template<typename T>

View File

@ -17,7 +17,7 @@ namespace Eigen {
*
* \brief a sparse vector class
*
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
* \tparam Scalar_ the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
@ -26,21 +26,21 @@ namespace Eigen {
*/
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct traits<SparseVector<_Scalar, _Options, _StorageIndex> >
template<typename Scalar_, int Options_, typename StorageIndex_>
struct traits<SparseVector<Scalar_, Options_, StorageIndex_> >
{
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
IsColVector = (_Options & RowMajorBit) ? 0 : 1,
IsColVector = (Options_ & RowMajorBit) ? 0 : 1,
RowsAtCompileTime = IsColVector ? Dynamic : 1,
ColsAtCompileTime = IsColVector ? 1 : Dynamic,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit,
Flags = Options_ | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
@ -60,9 +60,9 @@ struct sparse_vector_assign_selector;
}
template<typename _Scalar, int _Options, typename _StorageIndex>
template<typename Scalar_, int Options_, typename StorageIndex_>
class SparseVector
: public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> >
: public SparseCompressedBase<SparseVector<Scalar_, Options_, StorageIndex_> >
{
typedef SparseCompressedBase<SparseVector> Base;
using Base::convert_index;
@ -75,7 +75,7 @@ class SparseVector
enum { IsColVector = internal::traits<SparseVector>::IsColVector };
enum {
Options = _Options
Options = Options_
};
EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
@ -397,7 +397,7 @@ protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
EIGEN_STATIC_ASSERT((Options_&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
}
Storage m_data;
@ -406,17 +406,17 @@ protected:
namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct evaluator<SparseVector<_Scalar,_Options,_Index> >
: evaluator_base<SparseVector<_Scalar,_Options,_Index> >
template<typename Scalar_, int Options_, typename Index_>
struct evaluator<SparseVector<Scalar_,Options_,Index_> >
: evaluator_base<SparseVector<Scalar_,Options_,Index_> >
{
typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType;
typedef SparseVector<Scalar_,Options_,Index_> SparseVectorType;
typedef evaluator_base<SparseVectorType> Base;
typedef typename SparseVectorType::InnerIterator InnerIterator;
typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator;
enum {
CoeffReadCost = NumTraits<_Scalar>::ReadCost,
CoeffReadCost = NumTraits<Scalar_>::ReadCost,
Flags = SparseVectorType::Flags
};

View File

@ -14,7 +14,7 @@
namespace Eigen {
template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
template <typename MatrixType_, typename OrderingType_ = COLAMDOrdering<typename MatrixType_::StorageIndex> > class SparseLU;
template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
@ -119,25 +119,25 @@ private:
* If this is the case for your matrices, you can try the basic scaling method at
* "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
*
* \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
* \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
* \tparam MatrixType_ The type of the sparse matrix. It must be a column-major SparseMatrix<>
* \tparam OrderingType_ The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
*
* \implsparsesolverconcept
*
* \sa \ref TutorialSparseSolverConcept
* \sa \ref OrderingMethods_Module
*/
template <typename _MatrixType, typename _OrderingType>
class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
template <typename MatrixType_, typename OrderingType_>
class SparseLU : public SparseSolverBase<SparseLU<MatrixType_,OrderingType_> >, public internal::SparseLUImpl<typename MatrixType_::Scalar, typename MatrixType_::StorageIndex>
{
protected:
typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
typedef SparseSolverBase<SparseLU<MatrixType_,OrderingType_> > APIBase;
using APIBase::m_isInitialized;
public:
using APIBase::_solve_impl;
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef MatrixType_ MatrixType;
typedef OrderingType_ OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
@ -197,9 +197,9 @@ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >,
*
* \sa adjoint(), solve()
*/
const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
const SparseLUTransposeView<false,SparseLU<MatrixType_,OrderingType_> > transpose()
{
SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
SparseLUTransposeView<false, SparseLU<MatrixType_,OrderingType_> > transposeView;
transposeView.setSparseLU(this);
transposeView.setIsInitialized(this->m_isInitialized);
return transposeView;
@ -218,9 +218,9 @@ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >,
*
* \sa transpose(), solve()
*/
const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
const SparseLUTransposeView<true, SparseLU<MatrixType_,OrderingType_> > adjoint()
{
SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
SparseLUTransposeView<true, SparseLU<MatrixType_,OrderingType_> > adjointView;
adjointView.setSparseLU(this);
adjointView.setIsInitialized(this->m_isInitialized);
return adjointView;

View File

@ -29,12 +29,12 @@ namespace internal {
* SuperInnerIterator to iterate through all supernodes
* Function for triangular solve
*/
template <typename _Scalar, typename _StorageIndex>
template <typename Scalar_, typename StorageIndex_>
class MappedSuperNodalMatrix
{
public:
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
public:

View File

@ -59,8 +59,8 @@ namespace internal {
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
* matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
* \tparam MatrixType_ The type of the sparse matrix A, must be a column-major SparseMatrix<>
* \tparam OrderingType_ The fill-reducing ordering method. See the \link OrderingMethods_Module
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
*
* \implsparsesolverconcept
@ -80,16 +80,16 @@ namespace internal {
* \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix.
*
*/
template<typename _MatrixType, typename _OrderingType>
class SparseQR : public SparseSolverBase<SparseQR<_MatrixType,_OrderingType> >
template<typename MatrixType_, typename OrderingType_>
class SparseQR : public SparseSolverBase<SparseQR<MatrixType_,OrderingType_> >
{
protected:
typedef SparseSolverBase<SparseQR<_MatrixType,_OrderingType> > Base;
typedef SparseSolverBase<SparseQR<MatrixType_,OrderingType_> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef MatrixType_ MatrixType;
typedef OrderingType_ OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;

View File

@ -313,7 +313,7 @@ MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
* \class SuperLUBase
* \brief The base class for the direct and incomplete LU factorization of SuperLU
*/
template<typename _MatrixType, typename Derived>
template<typename MatrixType_, typename Derived>
class SuperLUBase : public SparseSolverBase<Derived>
{
protected:
@ -321,7 +321,7 @@ class SuperLUBase : public SparseSolverBase<Derived>
using Base::derived;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
@ -476,7 +476,7 @@ class SuperLUBase : public SparseSolverBase<Derived>
* using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported.
*
@ -484,12 +484,12 @@ class SuperLUBase : public SparseSolverBase<Derived>
*
* \sa \ref TutorialSparseSolverConcept, class SparseLU
*/
template<typename _MatrixType>
class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
template<typename MatrixType_>
class SuperLU : public SuperLUBase<MatrixType_,SuperLU<MatrixType_> >
{
public:
typedef SuperLUBase<_MatrixType,SuperLU> Base;
typedef _MatrixType MatrixType;
typedef SuperLUBase<MatrixType_,SuperLU> Base;
typedef MatrixType_ MatrixType;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::StorageIndex StorageIndex;
@ -830,19 +830,19 @@ typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const
*
* \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
* \sa \ref TutorialSparseSolverConcept, class IncompleteLUT, class ConjugateGradient, class BiCGSTAB
*/
template<typename _MatrixType>
class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
template<typename MatrixType_>
class SuperILU : public SuperLUBase<MatrixType_,SuperILU<MatrixType_> >
{
public:
typedef SuperLUBase<_MatrixType,SuperILU> Base;
typedef _MatrixType MatrixType;
typedef SuperLUBase<MatrixType_,SuperILU> Base;
typedef MatrixType_ MatrixType;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;

View File

@ -278,21 +278,21 @@ inline SuiteSparse_long umfpack_get_determinant(std::complex<double> *Mx, double
*
* \warning The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
* \sa \ref TutorialSparseSolverConcept, class SparseLU
*/
template<typename _MatrixType>
class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
template<typename MatrixType_>
class UmfPackLU : public SparseSolverBase<UmfPackLU<MatrixType_> >
{
protected:
typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base;
typedef SparseSolverBase<UmfPackLU<MatrixType_> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;

View File

@ -32,10 +32,10 @@ struct traits<image_retval_base<DecompositionType> >
> ReturnType;
};
template<typename _DecompositionType> struct image_retval_base
: public ReturnByValue<image_retval_base<_DecompositionType> >
template<typename DecompositionType_> struct image_retval_base
: public ReturnByValue<image_retval_base<DecompositionType_> >
{
typedef _DecompositionType DecompositionType;
typedef DecompositionType_ DecompositionType;
typedef typename DecompositionType::MatrixType MatrixType;
typedef ReturnByValue<image_retval_base> Base;

View File

@ -34,10 +34,10 @@ struct traits<kernel_retval_base<DecompositionType> >
> ReturnType;
};
template<typename _DecompositionType> struct kernel_retval_base
: public ReturnByValue<kernel_retval_base<_DecompositionType> >
template<typename DecompositionType_> struct kernel_retval_base
: public ReturnByValue<kernel_retval_base<DecompositionType_> >
{
typedef _DecompositionType DecompositionType;
typedef DecompositionType_ DecompositionType;
typedef ReturnByValue<kernel_retval_base> Base;
explicit kernel_retval_base(const DecompositionType& dec)

View File

@ -34,21 +34,21 @@ class GpuHelper
Essentially, this helper function automatically calls glMatrixMode(matrixTarget) if required
and does a proper call to the right glMultMatrix*() function according to the scalar type
and storage order.
\warning glMatrixMode() must never be called directly. If your're unsure, use forceMatrixMode().
\warning glMatrixMode() must never be called directly. If you are unsure, use forceMatrixMode().
\sa Matrix, loadMatrix(), forceMatrixMode()
*/
template<typename Scalar, int _Flags>
void multMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget);
template<typename Scalar, int Flags_>
void multMatrix(const Matrix<Scalar,4,4, Flags_, 4,4>& mat, GLenum matrixTarget);
/** Load the matrix \a mat to the OpenGL matrix \a matrixTarget.
Essentially, this helper function automatically calls glMatrixMode(matrixTarget) if required
and does a proper call to the right glLoadMatrix*() or glLoadIdentity() function according to the scalar type
and storage order.
\warning glMatrixMode() must never be called directly. If your're unsure, use forceMatrixMode().
\warning glMatrixMode() must never be called directly. If you are unsure, use forceMatrixMode().
\sa Matrix, multMatrix(), forceMatrixMode()
*/
template<typename Scalar, int _Flags>
void loadMatrix(const Eigen::Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget);
template<typename Scalar, int Flags_>
void loadMatrix(const Eigen::Matrix<Scalar,4,4, Flags_, 4,4>& mat, GLenum matrixTarget);
template<typename Scalar, typename Derived>
void loadMatrix(
@ -66,8 +66,8 @@ class GpuHelper
/** Push the OpenGL matrix \a matrixTarget and load \a mat.
*/
template<typename Scalar, int _Flags>
inline void pushMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget);
template<typename Scalar, int Flags_>
inline void pushMatrix(const Matrix<Scalar,4,4, Flags_, 4,4>& mat, GLenum matrixTarget);
template<typename Scalar, typename Derived>
void pushMatrix(
@ -113,22 +113,22 @@ extern GpuHelper gpu;
/** \internal
*/
template<bool RowMajor, int _Flags> struct GlMatrixHelper;
template<bool RowMajor, int Flags_> struct GlMatrixHelper;
template<int _Flags> struct GlMatrixHelper<false,_Flags>
template<int Flags_> struct GlMatrixHelper<false,Flags_>
{
static void loadMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glLoadMatrixf(mat.data()); }
static void loadMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glLoadMatrixd(mat.data()); }
static void multMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glMultMatrixf(mat.data()); }
static void multMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glMultMatrixd(mat.data()); }
static void loadMatrix(const Matrix<float, 4,4, Flags_, 4,4>& mat) { glLoadMatrixf(mat.data()); }
static void loadMatrix(const Matrix<double,4,4, Flags_, 4,4>& mat) { glLoadMatrixd(mat.data()); }
static void multMatrix(const Matrix<float, 4,4, Flags_, 4,4>& mat) { glMultMatrixf(mat.data()); }
static void multMatrix(const Matrix<double,4,4, Flags_, 4,4>& mat) { glMultMatrixd(mat.data()); }
};
template<int _Flags> struct GlMatrixHelper<true,_Flags>
template<int Flags_> struct GlMatrixHelper<true,Flags_>
{
static void loadMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glLoadMatrixf(mat.transpose().eval().data()); }
static void loadMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glLoadMatrixd(mat.transpose().eval().data()); }
static void multMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glMultMatrixf(mat.transpose().eval().data()); }
static void multMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glMultMatrixd(mat.transpose().eval().data()); }
static void loadMatrix(const Matrix<float, 4,4, Flags_, 4,4>& mat) { glLoadMatrixf(mat.transpose().eval().data()); }
static void loadMatrix(const Matrix<double,4,4, Flags_, 4,4>& mat) { glLoadMatrixd(mat.transpose().eval().data()); }
static void multMatrix(const Matrix<float, 4,4, Flags_, 4,4>& mat) { glMultMatrixf(mat.transpose().eval().data()); }
static void multMatrix(const Matrix<double,4,4, Flags_, 4,4>& mat) { glMultMatrixd(mat.transpose().eval().data()); }
};
inline void GpuHelper::setMatrixTarget(GLenum matrixTarget)
@ -137,11 +137,11 @@ inline void GpuHelper::setMatrixTarget(GLenum matrixTarget)
glMatrixMode(mCurrentMatrixTarget=matrixTarget);
}
template<typename Scalar, int _Flags>
void GpuHelper::multMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget)
template<typename Scalar, int Flags_>
void GpuHelper::multMatrix(const Matrix<Scalar,4,4, Flags_, 4,4>& mat, GLenum matrixTarget)
{
setMatrixTarget(matrixTarget);
GlMatrixHelper<_Flags&Eigen::RowMajorBit, _Flags>::multMatrix(mat);
GlMatrixHelper<Flags_&Eigen::RowMajorBit, Flags_>::multMatrix(mat);
}
template<typename Scalar, typename Derived>
@ -153,11 +153,11 @@ void GpuHelper::loadMatrix(
glLoadIdentity();
}
template<typename Scalar, int _Flags>
void GpuHelper::loadMatrix(const Eigen::Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget)
template<typename Scalar, int Flags_>
void GpuHelper::loadMatrix(const Eigen::Matrix<Scalar,4,4, Flags_, 4,4>& mat, GLenum matrixTarget)
{
setMatrixTarget(matrixTarget);
GlMatrixHelper<(_Flags&Eigen::RowMajorBit)!=0, _Flags>::loadMatrix(mat);
GlMatrixHelper<(Flags_&Eigen::RowMajorBit)!=0, Flags_>::loadMatrix(mat);
}
inline void GpuHelper::pushMatrix(GLenum matrixTarget)
@ -166,11 +166,11 @@ inline void GpuHelper::pushMatrix(GLenum matrixTarget)
glPushMatrix();
}
template<typename Scalar, int _Flags>
inline void GpuHelper::pushMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget)
template<typename Scalar, int Flags_>
inline void GpuHelper::pushMatrix(const Matrix<Scalar,4,4, Flags_, 4,4>& mat, GLenum matrixTarget)
{
pushMatrix(matrixTarget);
GlMatrixHelper<_Flags&Eigen::RowMajorBit,_Flags>::loadMatrix(mat);
GlMatrixHelper<Flags_&Eigen::RowMajorBit,Flags_>::loadMatrix(mat);
}
template<typename Scalar, typename Derived>

View File

@ -132,11 +132,11 @@ inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b)
Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation))));
}
template<typename _Scalar> class EulerAngles
template<typename Scalar_> class EulerAngles
{
public:
enum { Dim = 3 };
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;

View File

@ -88,7 +88,7 @@ You may wonder, isn't it overengineering to have the storage in a separate class
Let's look at this constructor, in src/Core/DenseStorage.h. You can see that there are many partial template specializations of DenseStorages here, treating separately the cases where dimensions are Dynamic or fixed at compile-time. The partial specialization that we are looking at is:
\code
template<typename T, int _Cols> class DenseStorage<T, Dynamic, Dynamic, _Cols>
template<typename T, int Cols_> class DenseStorage<T, Dynamic, Dynamic, Cols_>
\endcode
Here, the constructor called is DenseStorage::DenseStorage(int size, int rows, int columns)
@ -101,7 +101,7 @@ inline DenseStorage(int size, int rows, int) : m_data(internal::aligned_new<T>(s
Here, the \a m_data member is the actual array of coefficients of the matrix. As you see, it is dynamically allocated. Rather than calling new[] or malloc(), as you can see, we have our own internal::aligned_new defined in src/Core/util/Memory.h. What it does is that if vectorization is enabled, then it uses a platform-specific call to allocate a 128-bit-aligned array, as that is very useful for vectorization with both SSE2 and AltiVec. If vectorization is disabled, it amounts to the standard new[].
As you can see, the constructor also sets the \a m_rows member to \a size. Notice that there is no \a m_columns member: indeed, in this partial specialization of DenseStorage, we know the number of columns at compile-time, since the _Cols template parameter is different from Dynamic. Namely, in our case, _Cols is 1, which is to say that our vector is just a matrix with 1 column. Hence, there is no need to store the number of columns as a runtime variable.
As you can see, the constructor also sets the \a m_rows member to \a size. Notice that there is no \a m_columns member: indeed, in this partial specialization of DenseStorage, we know the number of columns at compile-time, since the Cols_ template parameter is different from Dynamic. Namely, in our case, Cols_ is 1, which is to say that our vector is just a matrix with 1 column. Hence, there is no need to store the number of columns as a runtime variable.
When you call VectorXf::data() to get the pointer to the array of coefficients, it returns DenseStorage::data() which returns the \a m_data member.

View File

@ -16,10 +16,10 @@ struct other_matrix_type
typedef int type;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct other_matrix_type<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct other_matrix_type<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
{
typedef Matrix<_Scalar, _Rows, _Cols, _Options^RowMajor, _MaxRows, _MaxCols> type;
typedef Matrix<Scalar_, Rows_, Cols_, Options_^RowMajor, MaxRows_, MaxCols_> type;
};
template<typename MatrixType> void swap(const MatrixType& m)

View File

@ -37,23 +37,23 @@ namespace Eigen {
*
*/
// TODO specialize Cwise
template<typename _Scalar> class AlignedVector3;
template<typename Scalar_> class AlignedVector3;
namespace internal {
template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
: traits<Matrix<_Scalar,3,1,0,4,1> >
template<typename Scalar_> struct traits<AlignedVector3<Scalar_> >
: traits<Matrix<Scalar_,3,1,0,4,1> >
{
};
}
template<typename _Scalar> class AlignedVector3
: public MatrixBase<AlignedVector3<_Scalar> >
template<typename Scalar_> class AlignedVector3
: public MatrixBase<AlignedVector3<Scalar_> >
{
typedef Matrix<_Scalar,4,1> CoeffType;
typedef Matrix<Scalar_,4,1> CoeffType;
CoeffType m_coeffs;
public:
typedef MatrixBase<AlignedVector3<_Scalar> > Base;
typedef MatrixBase<AlignedVector3<Scalar_> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
using Base::operator*;
@ -207,10 +207,10 @@ template<typename _Scalar> class AlignedVector3
namespace internal {
template<typename _Scalar>
struct eval<AlignedVector3<_Scalar>, Dense>
template<typename Scalar_>
struct eval<AlignedVector3<Scalar_>, Dense>
{
typedef const AlignedVector3<_Scalar>& type;
typedef const AlignedVector3<Scalar_>& type;
};
template<typename Scalar>

View File

@ -122,16 +122,16 @@ struct traits<TensorRef<PlainObjectType> >
};
template<typename _Scalar, int NumIndices_, int Options, typename IndexType_>
struct eval<Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense>
template<typename Scalar_, int NumIndices_, int Options, typename IndexType_>
struct eval<Tensor<Scalar_, NumIndices_, Options, IndexType_>, Eigen::Dense>
{
typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>EIGEN_DEVICE_REF type;
typedef const Tensor<Scalar_, NumIndices_, Options, IndexType_>EIGEN_DEVICE_REF type;
};
template<typename _Scalar, int NumIndices_, int Options, typename IndexType_>
struct eval<const Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense>
template<typename Scalar_, int NumIndices_, int Options, typename IndexType_>
struct eval<const Tensor<Scalar_, NumIndices_, Options, IndexType_>, Eigen::Dense>
{
typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>EIGEN_DEVICE_REF type;
typedef const Tensor<Scalar_, NumIndices_, Options, IndexType_>EIGEN_DEVICE_REF type;
};
template<typename Scalar_, typename Dimensions, int Options, typename IndexType_>

View File

@ -637,21 +637,21 @@ struct enumerate_group_elements_noid<Multiply, Equality, id, type_list<>, initia
* \tparam Equality The equality check operation that checks if two group elements
* are equal to another.
* \tparam id The identity element
* \tparam _generators A list of (possibly redundant) generators of the group
* \tparam Generators_ A list of (possibly redundant) generators of the group
*/
template<
template<typename, typename> class Multiply,
template<typename, typename> class Equality,
typename id,
typename _generators
typename Generators_
>
struct enumerate_group_elements
: public enumerate_group_elements_noid<
Multiply,
Equality,
id,
typename strip_identities<Equality, id, _generators>::type,
strip_identities<Equality, id, _generators>::global_flags
typename strip_identities<Equality, id, Generators_>::type,
strip_identities<Equality, id, Generators_>::global_flags
>
{
};

View File

@ -203,11 +203,11 @@ class FFT
}
*/
template <typename _Input>
template <typename Input_>
inline
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
void fwd( std::vector<Complex> & dst, const std::vector<Input_> & src)
{
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
if ( NumTraits<Input_>::IsComplex == 0 && HasFlag(HalfSpectrum) )
dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
else
dst.resize(src.size());
@ -343,12 +343,12 @@ class FFT
}
}
template <typename _Output>
template <typename Output_>
inline
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
void inv( std::vector<Output_> & dst, const std::vector<Complex> & src,Index nfft=-1)
{
if (nfft<1)
nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
nfft = ( NumTraits<Output_>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
dst.resize( nfft );
inv( &dst[0],&src[0],nfft);
}

View File

@ -55,23 +55,23 @@ struct get_boxes_helper<ObjectList, VolumeList, int> {
/** \class KdBVH
* \brief A simple bounding volume hierarchy based on AlignedBox
*
* \param _Scalar The underlying scalar type of the bounding boxes
* \param _Dim The dimension of the space in which the hierarchy lives
* \param Scalar_ The underlying scalar type of the bounding boxes
* \param Dim_ The dimension of the space in which the hierarchy lives
* \param _Object The object type that lives in the hierarchy. It must have value semantics. Either bounding_box(_Object) must
* be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer.
* be defined and return an AlignedBox<Scalar_, Dim_> or bounding boxes must be provided to the tree initializer.
*
* This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree.
* Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers
* and builds a BVH with the structure of that Kd-tree. When the elements of the tree are too expensive to be copied around,
* it is useful for _Object to be a pointer.
*/
template<typename _Scalar, int _Dim, typename _Object> class KdBVH
template<typename Scalar_, int Dim_, typename _Object> class KdBVH
{
public:
enum { Dim = _Dim };
enum { Dim = Dim_ };
typedef _Object Object;
typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef AlignedBox<Scalar, Dim> Volume;
typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
typedef int Index;

View File

@ -92,18 +92,18 @@ namespace Eigen
*
* More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
*
* \tparam _Scalar the scalar type, i.e. the type of the angles.
* \tparam Scalar_ the scalar type, i.e. the type of the angles.
*
* \tparam _System the EulerSystem to use, which represents the axes of rotation.
*/
template <typename _Scalar, class _System>
class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
template <typename Scalar_, class _System>
class EulerAngles : public RotationBase<EulerAngles<Scalar_, _System>, 3>
{
public:
typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base;
typedef RotationBase<EulerAngles<Scalar_, _System>, 3> Base;
/** the scalar type of the angles */
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
/** the EulerSystem to use, which represents the axes of rotation. */
@ -322,10 +322,10 @@ EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
namespace internal
{
template<typename _Scalar, class _System>
struct traits<EulerAngles<_Scalar, _System> >
template<typename Scalar_, class _System>
struct traits<EulerAngles<Scalar_, _System> >
{
typedef _Scalar Scalar;
typedef Scalar_ Scalar;
};
// set from a rotation matrix

View File

@ -13,7 +13,7 @@
namespace Eigen
{
// Forward declarations
template <typename _Scalar, class _System>
template <typename Scalar_, class _System>
class EulerAngles;
namespace internal
@ -272,7 +272,7 @@ namespace Eigen
res.gamma() = -res.gamma();
}
template <typename _Scalar, class _System>
template <typename Scalar_, class _System>
friend class Eigen::EulerAngles;
template<typename System,

Some files were not shown because too many files have changed in this diff Show More