Added support for tensor slicing

This commit is contained in:
Benoit Steiner 2014-07-07 14:07:57 -07:00
parent 774c3c1e0a
commit 47981c5925

View File

@ -20,10 +20,9 @@ namespace Eigen {
*
*/
namespace internal {
template<typename XprType, typename NewDimensions>
struct traits<TensorReshapingOp<XprType, NewDimensions> > : public traits<XprType>
template<typename NewDimensions, typename XprType>
struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType>
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename XprType::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename traits<XprType>::StorageKind StorageKind;
@ -32,24 +31,24 @@ struct traits<TensorReshapingOp<XprType, NewDimensions> > : public traits<XprTyp
typedef typename remove_reference<Nested>::type _Nested;
};
template<typename XprType, typename NewDimensions>
struct eval<TensorReshapingOp<XprType, NewDimensions>, Eigen::Dense>
template<typename NewDimensions, typename XprType>
struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense>
{
typedef const TensorReshapingOp<XprType, NewDimensions>& type;
typedef const TensorReshapingOp<NewDimensions, XprType>& type;
};
template<typename XprType, typename NewDimensions>
struct nested<TensorReshapingOp<XprType, NewDimensions>, 1, typename eval<TensorReshapingOp<XprType, NewDimensions> >::type>
template<typename NewDimensions, typename XprType>
struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, typename eval<TensorReshapingOp<NewDimensions, XprType> >::type>
{
typedef TensorReshapingOp<XprType, NewDimensions> type;
typedef TensorReshapingOp<NewDimensions, XprType> type;
};
} // end namespace internal
template<typename XprType, typename NewDimensions>
class TensorReshapingOp : public TensorBase<TensorReshapingOp<XprType, NewDimensions> >
template<typename NewDimensions, typename XprType>
class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
@ -71,16 +70,27 @@ class TensorReshapingOp : public TensorBase<TensorReshapingOp<XprType, NewDimens
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const OtherDerived& other)
{
typedef TensorAssignOp<TensorReshapingOp, const OtherDerived> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice, false>::run(assign, DefaultDevice());
return *this;
}
protected:
typename XprType::Nested m_xpr;
const NewDimensions m_dims;
};
template<typename ArgType, typename NewDimensions, typename Device>
struct TensorEvaluator<const TensorReshapingOp<ArgType, NewDimensions>, Device>
// Eval as rvalue
template<typename NewDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
{
typedef TensorReshapingOp<ArgType, NewDimensions> XprType;
typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
typedef NewDimensions Dimensions;
enum {
@ -88,7 +98,7 @@ struct TensorEvaluator<const TensorReshapingOp<ArgType, NewDimensions>, Device>
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
};
TensorEvaluator(const XprType& op, const Device& device)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_dimensions(op.dimensions())
{ }
@ -96,7 +106,7 @@ struct TensorEvaluator<const TensorReshapingOp<ArgType, NewDimensions>, Device>
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeeded() {
m_impl.evalSubExprsIfNeeded();
@ -116,12 +126,313 @@ struct TensorEvaluator<const TensorReshapingOp<ArgType, NewDimensions>, Device>
return m_impl.template packet<LoadMode>(index);
}
protected:
NewDimensions m_dimensions;
TensorEvaluator<ArgType, Device> m_impl;
};
// Eval as lvalue
// TODO(bsteiner): share the code with the evaluator for rvalue reshapes.
template<typename NewDimensions, typename ArgType, typename Device>
struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device>
{
typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
typedef NewDimensions Dimensions;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_dimensions(op.dimensions())
{ }
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeeded() {
m_impl.evalSubExprsIfNeeded();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_impl.coeff(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
{
return m_impl.coeffRef(index);
}
template <int StoreMode> EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketReturnType& x)
{
m_impl.template writePacket<StoreMode>(index, x);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_impl.template packet<LoadMode>(index);
}
private:
NewDimensions m_dimensions;
TensorEvaluator<ArgType, Device> m_impl;
};
/** \class TensorSlicing
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor slicing class.
*
*
*/
namespace internal {
template<typename StartIndices, typename Sizes, typename XprType>
struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
};
template<typename StartIndices, typename Sizes, typename XprType>
struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense>
{
typedef const TensorSlicingOp<StartIndices, Sizes, XprType>& type;
};
template<typename StartIndices, typename Sizes, typename XprType>
struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, typename eval<TensorSlicingOp<StartIndices, Sizes, XprType> >::type>
{
typedef TensorSlicingOp<StartIndices, Sizes, XprType> type;
};
} // end namespace internal
template<typename StartIndices, typename Sizes, typename XprType>
class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> >
{
public:
typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorSlicingOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes)
: m_xpr(expr), m_indices(indices), m_sizes(sizes) {}
EIGEN_DEVICE_FUNC
const StartIndices& startIndices() const { return m_indices; }
EIGEN_DEVICE_FUNC
const Sizes& sizes() const { return m_sizes; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const OtherDerived& other)
{
typedef TensorAssignOp<TensorSlicingOp, const OtherDerived> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice, false>::run(assign, DefaultDevice());
return *this;
}
protected:
typename XprType::Nested m_xpr;
const StartIndices m_indices;
const Sizes m_sizes;
};
// Eval as rvalue
template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
{
typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
static const int NumDims = internal::array_size<Sizes>::value;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/false,
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_dimensions(op.sizes()), m_offsets(op.startIndices())
{
for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) {
eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
for (int i = 0; i < NumDims; ++i) {
if (i > 0) {
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
} else {
m_inputStrides[0] = 1;
}
}
const Sizes& output_dims = op.sizes();
for (int i = 0; i < NumDims; ++i) {
if (i > 0) {
m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
} else {
m_outputStrides[0] = 1;
}
}
}
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef Sizes Dimensions;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeeded() {
m_impl.evalSubExprsIfNeeded();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
Index inputIndex = 0;
for (int i = NumDims - 1; i >= 0; --i) {
const Index idx = index / m_outputStrides[i];
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
return m_impl.coeff(inputIndex);
}
/* template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_impl.template packet<LoadMode>(index);
}*/
private:
Dimensions m_dimensions;
array<Index, NumDims> m_outputStrides;
array<Index, NumDims> m_inputStrides;
const StartIndices m_offsets;
TensorEvaluator<ArgType, Device> m_impl;
};
// Eval as lvalue
// TODO(bsteiner): share the code with the evaluator for rvalue slices.
template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
{
typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
static const int NumDims = internal::array_size<Sizes>::value;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/false,
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_dimensions(op.sizes()), m_offsets(op.startIndices())
{
for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) {
eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
for (int i = 0; i < NumDims; ++i) {
if (i > 0) {
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
} else {
m_inputStrides[0] = 1;
}
}
const Sizes& output_dims = op.sizes();
for (int i = 0; i < NumDims; ++i) {
if (i > 0) {
m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
} else {
m_outputStrides[0] = 1;
}
}
}
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef Sizes Dimensions;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeeded() {
m_impl.evalSubExprsIfNeeded();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
Index inputIndex = 0;
for (int i = NumDims - 1; i >= 0; --i) {
const Index idx = index / m_outputStrides[i];
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
return m_impl.coeff(inputIndex);
}
/* template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_impl.template packet<LoadMode>(index);
}*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
{
Index inputIndex = 0;
for (int i = NumDims - 1; i >= 0; --i) {
const Index idx = index / m_outputStrides[i];
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
return m_impl.coeffRef(inputIndex);
}
private:
Dimensions m_dimensions;
array<Index, NumDims> m_outputStrides;
array<Index, NumDims> m_inputStrides;
const StartIndices m_offsets;
TensorEvaluator<ArgType, Device> m_impl;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H