mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-03 06:50:57 +08:00
Add restarted GMRES with deflation
This commit is contained in:
parent
a76fbbf397
commit
474716ec5b
528
unsupported/Eigen/src/IterativeSolvers/DGMRES.h
Normal file
528
unsupported/Eigen/src/IterativeSolvers/DGMRES.h
Normal file
@ -0,0 +1,528 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DGMRES_H
|
||||
#define EIGEN_DGMRES_H
|
||||
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template< typename _MatrixType,
|
||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class DGMRES;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
struct traits<DGMRES<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
};
|
||||
|
||||
/** \brief Computes a permutation vector to have a sorted sequence
|
||||
* \param vec The vector to reorder.
|
||||
* \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
|
||||
* \param ncut Put the ncut smallest elements at the end of the vector
|
||||
* WARNING This is an expensive sort, so should be used only
|
||||
* for small size vectors
|
||||
* TODO Use modified QuickSplit or std::nth_element to get the smallest values
|
||||
*/
|
||||
template <typename VectorType, typename IndexType>
|
||||
void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
|
||||
{
|
||||
assert(vec.size() == perm.size());
|
||||
typedef typename IndexType::Scalar Index;
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
Index n = vec.size();
|
||||
bool flag;
|
||||
for (Index k = 0; k < ncut; k++)
|
||||
{
|
||||
flag = false;
|
||||
for (Index j = 0; j < vec.size()-1; j++)
|
||||
{
|
||||
if ( vec(perm(j)) < vec(perm(j+1)) )
|
||||
{
|
||||
std::swap(perm(j),perm(j+1));
|
||||
flag = true;
|
||||
}
|
||||
if (!flag) break; // The vector is in sorted order
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
/**
|
||||
* \ingroup IterativeLInearSolvers_Module
|
||||
* \brief A Restarted GMRES with deflation.
|
||||
* This class implements a modification of the GMRES solver for
|
||||
* sparse linear systems. The basis is built with modified
|
||||
* Gram-Schmidt. At each restart, a few approximated eigenvectors
|
||||
* corresponding to the smallest eigenvalues are used to build a
|
||||
* preconditioner for the next cycle. This preconditioner
|
||||
* for deflation can be combined with any other preconditioner,
|
||||
* the IncompleteLUT for instance. The preconditioner is applied
|
||||
* at right of the matrix and the combination is multiplicative.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
* Typical usage :
|
||||
* \code
|
||||
* SparseMatrix<double> A;
|
||||
* VectorXd x, b;
|
||||
* //Fill A and b ...
|
||||
* DGMRES<SparseMatrix<double> > solver;
|
||||
* solver.set_restart(30); // Set restarting value
|
||||
* solver.setEigenv(1); // Set the number of eigenvalues to deflate
|
||||
* solver.compute(A);
|
||||
* x = solver.solve(b);
|
||||
* \endcode
|
||||
*
|
||||
* References :
|
||||
* [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
|
||||
* Algebraic Solvers for Linear Systems Arising from Compressible
|
||||
* Flows, Computers and Fluids, In Press,
|
||||
* http://dx.doi.org/10.1016/j.compfluid.2012.03.023
|
||||
* [2] K. Burrage and J. Erhel, On the performance of various
|
||||
* adaptive preconditioned GMRES strategies, 5(1998), 101-121.
|
||||
* [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
|
||||
* preconditioned by deflation,J. Computational and Applied
|
||||
* Mathematics, 69(1996), 303-318.
|
||||
|
||||
*
|
||||
*/
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef IterativeSolverBase<DGMRES> Base;
|
||||
using Base::mp_matrix;
|
||||
using Base::m_error;
|
||||
using Base::m_iterations;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_tolerance;
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
|
||||
|
||||
/** Default constructor. */
|
||||
DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
DGMRES(const MatrixType& A) : Base(A),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false)
|
||||
{}
|
||||
|
||||
~DGMRES() {}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||||
* \a x0 as an initial solution.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs,typename Guess>
|
||||
inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
|
||||
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "DGMRES is not initialized.");
|
||||
eigen_assert(Base::rows()==b.rows()
|
||||
&& "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval_with_guess
|
||||
<DGMRES, Rhs, Guess>(*this, b.derived(), x0);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||||
{
|
||||
bool failed = false;
|
||||
for(int j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner);
|
||||
}
|
||||
m_info = failed ? NumericalIssue
|
||||
: m_error <= Base::m_tolerance ? Success
|
||||
: NoConvergence;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x = b;
|
||||
_solveWithGuess(b,x);
|
||||
}
|
||||
/**
|
||||
* Get the restart value
|
||||
*/
|
||||
int restart() { return m_restart; }
|
||||
|
||||
/**
|
||||
* Set the restart value (default is 30)
|
||||
*/
|
||||
void set_restart(const int restart) { m_restart=restart; }
|
||||
|
||||
/**
|
||||
* Set the number of eigenvalues to deflate at each restart
|
||||
*/
|
||||
void setEigenv(const int neig)
|
||||
{
|
||||
m_neig = neig;
|
||||
if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the size of the deflation subspace size
|
||||
*/
|
||||
int deflSize() {return m_r; }
|
||||
|
||||
/**
|
||||
* Set the maximum size of the deflation subspace
|
||||
*/
|
||||
void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
|
||||
|
||||
protected:
|
||||
// DGMRES algorithm
|
||||
template<typename Rhs, typename Dest>
|
||||
void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
|
||||
// Perform one cycle of GMRES
|
||||
template<typename Dest>
|
||||
int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
|
||||
// Compute data to use for deflation
|
||||
int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
|
||||
// Apply deflation to a vector
|
||||
template<typename RhsType, typename DestType>
|
||||
int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
|
||||
// Init data for deflation
|
||||
void dgmresInitDeflation(Index& rows) const;
|
||||
mutable DenseMatrix m_V; // Krylov basis vectors
|
||||
mutable DenseMatrix m_H; // Hessenberg matrix
|
||||
mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
|
||||
mutable Index m_restart; // Maximum size of the Krylov subspace
|
||||
mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
|
||||
mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
|
||||
mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
|
||||
mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
|
||||
mutable int m_neig; //Number of eigenvalues to extract at each restart
|
||||
mutable int m_r; // Current number of deflated eigenvalues, size of m_U
|
||||
mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
|
||||
mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
|
||||
mutable bool m_isDeflAllocated;
|
||||
mutable bool m_isDeflInitialized;
|
||||
|
||||
//Adaptive strategy
|
||||
mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
|
||||
mutable bool m_force; // Force the use of deflation at each restart
|
||||
|
||||
};
|
||||
/**
|
||||
* \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
|
||||
*
|
||||
* A right preconditioner is used combined with deflation.
|
||||
*
|
||||
*/
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
template<typename Rhs, typename Dest>
|
||||
void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond) const
|
||||
{
|
||||
//Initialization
|
||||
int n = mat.rows();
|
||||
DenseVector r0(n);
|
||||
int nbIts = 0;
|
||||
m_H.resize(m_restart+1, m_restart);
|
||||
m_Hes.resize(m_restart, m_restart);
|
||||
m_V.resize(n,m_restart+1);
|
||||
//Initial residual vector and intial norm
|
||||
x = precond.solve(x);
|
||||
r0 = rhs - mat * x;
|
||||
RealScalar beta = r0.norm();
|
||||
RealScalar normRhs = rhs.norm();
|
||||
m_error = beta/normRhs;
|
||||
if(m_error < m_tolerance)
|
||||
m_info = Success;
|
||||
else
|
||||
m_info = NoConvergence;
|
||||
|
||||
// Iterative process
|
||||
while (nbIts < m_iterations && m_info == NoConvergence)
|
||||
{
|
||||
dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
|
||||
|
||||
// Compute the new residual vector for the restart
|
||||
if (nbIts < m_iterations && m_info == NoConvergence)
|
||||
r0 = rhs - mat * x;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform one restart cycle of DGMRES
|
||||
* \param mat The coefficient matrix
|
||||
* \param precond The preconditioner
|
||||
* \param x the new approximated solution
|
||||
* \param r0 The initial residual vector
|
||||
* \param beta The norm of the residual computed so far
|
||||
* \param normRhs The norm of the right hand side vector
|
||||
* \param nbIts The number of iterations
|
||||
*/
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
template<typename Dest>
|
||||
int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
|
||||
{
|
||||
//Initialization
|
||||
DenseVector g(m_restart+1); // Right hand side of the least square problem
|
||||
g.setZero();
|
||||
g(0) = Scalar(beta);
|
||||
m_V.col(0) = r0/beta;
|
||||
m_info = NoConvergence;
|
||||
std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
|
||||
int it = 0; // Number of inner iterations
|
||||
int n = mat.rows();
|
||||
DenseVector tv1(n), tv2(n); //Temporary vectors
|
||||
while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
|
||||
{
|
||||
int n = m_V.rows();
|
||||
|
||||
// Apply preconditioner(s) at right
|
||||
if (m_isDeflInitialized )
|
||||
{
|
||||
dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
|
||||
tv2 = precond.solve(tv1);
|
||||
}
|
||||
else
|
||||
{
|
||||
tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
|
||||
}
|
||||
tv1 = mat * tv2;
|
||||
|
||||
// Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
|
||||
RealScalar coef;
|
||||
for (int i = 0; i <= it; ++i)
|
||||
{
|
||||
coef = tv1.dot(m_V.col(i));
|
||||
tv1 = tv1 - coef * m_V.col(i);
|
||||
m_H(i,it) = coef;
|
||||
m_Hes(i,it) = coef;
|
||||
}
|
||||
// Normalize the vector
|
||||
coef = tv1.norm();
|
||||
m_V.col(it+1) = tv1/coef;
|
||||
m_H(it+1, it) = coef;
|
||||
// m_Hes(it+1,it) = coef;
|
||||
|
||||
// FIXME Check for happy breakdown
|
||||
|
||||
// Update Hessenberg matrix with Givens rotations
|
||||
for (int i = 1; i <= it; ++i)
|
||||
{
|
||||
m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
|
||||
}
|
||||
// Compute the new plane rotation
|
||||
gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
|
||||
// Apply the new rotation
|
||||
m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
|
||||
g.applyOnTheLeft(it,it+1, gr[it].adjoint());
|
||||
|
||||
beta = std::abs(g(it+1));
|
||||
m_error = beta/normRhs;
|
||||
std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
|
||||
it++; nbIts++;
|
||||
|
||||
if (m_error < m_tolerance)
|
||||
{
|
||||
// The method has converged
|
||||
m_info = Success;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the new coefficients by solving the least square problem
|
||||
// it++;
|
||||
//FIXME Check first if the matrix is singular ... zero diagonal
|
||||
DenseVector nrs(m_restart);
|
||||
nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
|
||||
|
||||
// Form the new solution
|
||||
if (m_isDeflInitialized)
|
||||
{
|
||||
tv1 = m_V.leftCols(it) * nrs;
|
||||
dgmresApplyDeflation(tv1, tv2);
|
||||
x = x + precond.solve(tv2);
|
||||
}
|
||||
else
|
||||
x = x + precond.solve(m_V.leftCols(it) * nrs);
|
||||
|
||||
// Go for a new cycle and compute data for deflation
|
||||
if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
|
||||
dgmresComputeDeflationData(mat, precond, it, m_neig);
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
|
||||
{
|
||||
m_U.resize(rows, m_maxNeig);
|
||||
m_MU.resize(rows, m_maxNeig);
|
||||
m_T.resize(m_maxNeig, m_maxNeig);
|
||||
m_lambdaN = 0.0;
|
||||
m_isDeflAllocated = true;
|
||||
}
|
||||
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
|
||||
{
|
||||
// First, find the Schur form of the Hessenberg matrix H
|
||||
RealSchur<DenseMatrix> schurofH;
|
||||
bool computeU = true;
|
||||
DenseMatrix matrixQ(it,it);
|
||||
matrixQ.setIdentity();
|
||||
schurofH.computeHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
|
||||
const DenseMatrix& T = schurofH.matrixT();
|
||||
|
||||
// Extract the schur values from the diagonal of T;
|
||||
Matrix<ComplexScalar,Dynamic,1> eig(it);
|
||||
Matrix<Index,Dynamic,1>perm(it);
|
||||
int j = 0;
|
||||
while (j < it-1)
|
||||
{
|
||||
if (T(j+1,j) ==Scalar(0))
|
||||
{
|
||||
eig(j) = ComplexScalar(T(j,j),Scalar(0));
|
||||
j++;
|
||||
}
|
||||
else
|
||||
{
|
||||
eig(j) = ComplexScalar(T(j,j),T(j+1,j));
|
||||
eig(j+1) = ComplexScalar(T(j,j+1),T(j+1,j+1));
|
||||
j++;
|
||||
}
|
||||
}
|
||||
if (j < it) eig(j) = ComplexScalar(T(j,j),Scalar(0));
|
||||
|
||||
// Reorder the absolute values of Schur values
|
||||
DenseVector modulEig(it);
|
||||
for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
|
||||
perm.setLinSpaced(it,0,it-1);
|
||||
internal::sortWithPermutation(modulEig, perm, neig);
|
||||
|
||||
if (!m_lambdaN)
|
||||
{
|
||||
//Find the maximum eigenvalue
|
||||
for (int i = 0; i < it; ++i)
|
||||
if (modulEig(i) > m_lambdaN)
|
||||
m_lambdaN = modulEig(i);
|
||||
}
|
||||
//Count the real number of extracted eigenvalues (with complex conjugates)
|
||||
int nbrEig = 0;
|
||||
while (nbrEig < neig)
|
||||
{
|
||||
if(eig(perm(it-nbrEig-1)).imag() == Scalar(0)) nbrEig++;
|
||||
else nbrEig += 2;
|
||||
}
|
||||
// Extract the smallest Schur vectors
|
||||
DenseMatrix Sr(it, nbrEig);
|
||||
for (int j = 0; j < nbrEig; j++)
|
||||
{
|
||||
Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
|
||||
}
|
||||
|
||||
// Form the Schur vectors of the initial matrix using the Krylov basis
|
||||
DenseMatrix X;
|
||||
X = m_V.leftCols(it) * Sr;
|
||||
if (m_r)
|
||||
{
|
||||
// Orthogonalize X against m_U using modified Gram-Schmidt
|
||||
for (int j = 0; j < nbrEig; j++)
|
||||
for (int k =0; k < m_r; k++)
|
||||
X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
|
||||
}
|
||||
|
||||
// Compute m_MX = A * M^-1 * X
|
||||
Index m = m_V.rows();
|
||||
if (!m_isDeflAllocated)
|
||||
dgmresInitDeflation(m);
|
||||
DenseMatrix MX(m, nbrEig);
|
||||
DenseVector tv1(m);
|
||||
for (int j = 0; j < nbrEig; j++)
|
||||
{
|
||||
tv1 = mat * X.col(j);
|
||||
MX.col(j) = precond.solve(tv1);
|
||||
}
|
||||
|
||||
//Update T = [U'MU U'MX; X'MU X'MX]
|
||||
m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
|
||||
if(m_r)
|
||||
{
|
||||
m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
|
||||
m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
|
||||
}
|
||||
|
||||
// Save X into m_U and m_MX in m_MU
|
||||
for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
|
||||
for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
|
||||
// Increase the size of the invariant subspace
|
||||
m_r += nbrEig;
|
||||
|
||||
// Factorize m_T into m_luT
|
||||
m_luT.compute(m_T.topLeftCorner(m_r, m_r));
|
||||
|
||||
//FIXME CHeck if the factorization was correctly done (nonsingular matrix)
|
||||
m_isDeflInitialized = true;
|
||||
return 0;
|
||||
}
|
||||
template<typename _MatrixType, typename _Preconditioner>
|
||||
template<typename RhsType, typename DestType>
|
||||
int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
|
||||
{
|
||||
DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
|
||||
y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename _Preconditioner, typename Rhs>
|
||||
struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
|
||||
: solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
|
||||
{
|
||||
typedef DGMRES<_MatrixType, _Preconditioner> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user