mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-31 19:00:35 +08:00
Added a few benchmarks for the tensor code
This commit is contained in:
parent
14f537c296
commit
46fc881e4a
305
bench/tensors/tensor_benchmarks.h
Normal file
305
bench/tensors/tensor_benchmarks.h
Normal file
@ -0,0 +1,305 @@
|
||||
#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
|
||||
#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
|
||||
|
||||
typedef int TensorIndex;
|
||||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "testing/base/public/benchmark.h"
|
||||
|
||||
using Eigen::Tensor;
|
||||
using Eigen::TensorMap;
|
||||
|
||||
|
||||
// TODO(bsteiner): also templatize on the input type since we have users
|
||||
// for int8 as well as floats.
|
||||
template <typename Device> class BenchmarkSuite {
|
||||
public:
|
||||
BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n)
|
||||
: m_(m), k_(k), n_(n), device_(device) {
|
||||
initialize();
|
||||
}
|
||||
|
||||
BenchmarkSuite(const Device& device, size_t m)
|
||||
: m_(m), k_(m), n_(m), device_(device) {
|
||||
initialize();
|
||||
}
|
||||
|
||||
~BenchmarkSuite() {
|
||||
device_.deallocate(a_);
|
||||
device_.deallocate(b_);
|
||||
device_.deallocate(c_);
|
||||
}
|
||||
|
||||
void memcpy(int num_iters) {
|
||||
eigen_assert(m_ == k_ && k_ == n_);
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
device_.memcpy(c_, a_, m_ * m_ * sizeof(float));
|
||||
}
|
||||
// Record the number of values copied per second
|
||||
finalizeBenchmark(m_ * m_ * num_iters);
|
||||
}
|
||||
|
||||
void random(int num_iters) {
|
||||
eigen_assert(m_ == k_ && k_ == n_);
|
||||
const Eigen::array<TensorIndex, 2> sizes(m_, m_);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = C.random();
|
||||
}
|
||||
// Record the number of random numbers generated per second
|
||||
finalizeBenchmark(m_ * m_ * num_iters);
|
||||
}
|
||||
|
||||
void slicing(int num_iters) {
|
||||
eigen_assert(m_ == k_ && k_ == n_);
|
||||
const Eigen::array<TensorIndex, 2> sizes(m_, m_);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
|
||||
|
||||
const Eigen::DSizes<TensorIndex, 2> quarter_sizes(Eigen::array<TensorIndex, 2>(m_/2, m_/2));
|
||||
const Eigen::DSizes<TensorIndex, 2> first_quadrant(Eigen::array<TensorIndex, 2>(0, 0));
|
||||
const Eigen::DSizes<TensorIndex, 2> second_quadrant(Eigen::array<TensorIndex, 2>(0, m_/2));
|
||||
const Eigen::DSizes<TensorIndex, 2> third_quadrant(Eigen::array<TensorIndex, 2>(m_/2, 0));
|
||||
const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(Eigen::array<TensorIndex, 2>(m_/2, m_/2));
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.slice(first_quadrant, quarter_sizes).device(device_) =
|
||||
A.slice(first_quadrant, quarter_sizes);
|
||||
C.slice(second_quadrant, quarter_sizes).device(device_) =
|
||||
B.slice(second_quadrant, quarter_sizes);
|
||||
C.slice(third_quadrant, quarter_sizes).device(device_) =
|
||||
A.slice(third_quadrant, quarter_sizes);
|
||||
C.slice(fourth_quadrant, quarter_sizes).device(device_) =
|
||||
B.slice(fourth_quadrant, quarter_sizes);
|
||||
}
|
||||
// Record the number of values copied from the rhs slice to the lhs slice
|
||||
// each second
|
||||
finalizeBenchmark(m_ * m_ * num_iters);
|
||||
}
|
||||
|
||||
void shuffling(int num_iters) {
|
||||
eigen_assert(m_ == n_);
|
||||
const Eigen::array<TensorIndex, 2> size_a(m_, k_);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
|
||||
const Eigen::array<TensorIndex, 2> size_b(k_, m_);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
|
||||
|
||||
const Eigen::array<int, 2> shuffle(1, 0);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
B.device(device_) = A.shuffle(shuffle);
|
||||
}
|
||||
// Record the number of values shuffled from A and copied to B each second
|
||||
finalizeBenchmark(m_ * k_ * num_iters);
|
||||
}
|
||||
|
||||
void padding(int num_iters) {
|
||||
eigen_assert(m_ == k_);
|
||||
const Eigen::array<TensorIndex, 2> size_a(m_, k_-3);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
|
||||
const Eigen::array<TensorIndex, 2> size_b(k_, m_);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
|
||||
|
||||
Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
|
||||
paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
|
||||
paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
B.device(device_) = A.pad(paddings);
|
||||
}
|
||||
// Record the number of values copied from the padded tensor A each second
|
||||
finalizeBenchmark(m_ * k_ * num_iters);
|
||||
}
|
||||
|
||||
void striding(int num_iters) {
|
||||
eigen_assert(m_ == k_);
|
||||
const Eigen::array<TensorIndex, 2> size_a(m_, k_);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
|
||||
const Eigen::array<TensorIndex, 2> size_b(m_, k_ / 2);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
|
||||
|
||||
const Eigen::array<TensorIndex, 2> strides(1, 2);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
B.device(device_) = A.stride(strides);
|
||||
}
|
||||
// Record the number of values copied from the padded tensor A each second
|
||||
finalizeBenchmark(m_ * k_ * num_iters);
|
||||
}
|
||||
|
||||
void broadcasting(int num_iters) {
|
||||
const Eigen::array<TensorIndex, 2> size_a(m_, 1);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
|
||||
const Eigen::array<TensorIndex, 2> size_c(m_, n_);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, size_c);
|
||||
|
||||
#if defined(__CUDACC__)
|
||||
// nvcc doesn't support cxx11
|
||||
const Eigen::array<int, 2> broadcast(1, n_);
|
||||
#else
|
||||
// Take advantage of cxx11 to give the compiler information it can use to
|
||||
// optimize the code.
|
||||
Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
|
||||
broadcast.set(1, n_);
|
||||
#endif
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = A.broadcast(broadcast);
|
||||
}
|
||||
// Record the number of values broadcasted from A and copied to C each second
|
||||
finalizeBenchmark(m_ * n_ * num_iters);
|
||||
}
|
||||
|
||||
void coeffWiseOp(int num_iters) {
|
||||
eigen_assert(m_ == k_ && k_ == n_);
|
||||
const Eigen::array<TensorIndex, 2> sizes(m_, m_);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7);
|
||||
}
|
||||
// Record the number of FLOP executed per second (2 multiplications and
|
||||
// 1 addition per value)
|
||||
finalizeBenchmark(3 * m_ * m_ * num_iters);
|
||||
}
|
||||
|
||||
void algebraicFunc(int num_iters) {
|
||||
eigen_assert(m_ == k_ && k_ == n_);
|
||||
const Eigen::array<TensorIndex, 2> sizes(m_, m_);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
|
||||
}
|
||||
// Record the number of FLOP executed per second (assuming one operation
|
||||
// per value)
|
||||
finalizeBenchmark(m_ * m_ * num_iters);
|
||||
}
|
||||
|
||||
void transcendentalFunc(int num_iters) {
|
||||
eigen_assert(m_ == k_ && k_ == n_);
|
||||
const Eigen::array<TensorIndex, 2> sizes(m_, m_);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = A.exp() + B.log();
|
||||
}
|
||||
// Record the number of FLOP executed per second (assuming one operation
|
||||
// per value)
|
||||
finalizeBenchmark(m_ * m_ * num_iters);
|
||||
}
|
||||
|
||||
// Simple reduction
|
||||
void reduction(int num_iters) {
|
||||
const Eigen::array<TensorIndex, 2> input_size(k_, n_);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, input_size);
|
||||
const Eigen::array<TensorIndex, 1> output_size(n_);
|
||||
TensorMap<Tensor<float, 1>, Eigen::Aligned> C(c_, output_size);
|
||||
|
||||
const Eigen::array<TensorIndex, 1> sum_along_dim(0);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = B.sum(sum_along_dim);
|
||||
}
|
||||
// Record the number of FLOP executed per second (assuming one operation
|
||||
// per value)
|
||||
finalizeBenchmark(m_ * m_ * num_iters);
|
||||
}
|
||||
|
||||
// do a contraction which is equivalent to a matrix multiplication
|
||||
void contraction(int num_iters) {
|
||||
const Eigen::array<TensorIndex, 2> sizeA(m_, k_);
|
||||
const Eigen::array<TensorIndex, 2> sizeB(k_, n_);
|
||||
const Eigen::array<TensorIndex, 2> sizeC(m_, n_);
|
||||
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizeA);
|
||||
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizeB);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizeC);
|
||||
|
||||
typedef typename Tensor<float, 2>::DimensionPair DimPair;
|
||||
const Eigen::array<DimPair, 1> dims(DimPair(1, 0));
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = A.contract(B, dims);
|
||||
}
|
||||
// Record the number of FLOP executed per second (size_ multiplications and
|
||||
// additions for each value in the resulting tensor)
|
||||
finalizeBenchmark(static_cast<int64>(2) * m_ * n_ * k_ * num_iters);
|
||||
}
|
||||
|
||||
void convolution(int num_iters, int kernel_x, int kernel_y) {
|
||||
const Eigen::array<TensorIndex, 2> input_sizes(m_, n_);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, input_sizes);
|
||||
const Eigen::array<TensorIndex, 2> kernel_sizes(kernel_x, kernel_y);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, kernel_sizes);
|
||||
const Eigen::array<TensorIndex, 2> result_sizes(
|
||||
m_ - kernel_x + 1, n_ - kernel_y + 1);
|
||||
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, result_sizes);
|
||||
Eigen::array<Tensor<float, 2>::Index, 2> dims(0, 1);
|
||||
|
||||
StartBenchmarkTiming();
|
||||
for (int iter = 0; iter < num_iters; ++iter) {
|
||||
C.device(device_) = A.convolve(B, dims);
|
||||
}
|
||||
// Record the number of FLOP executed per second (kernel_size
|
||||
// multiplications and additions for each value in the resulting tensor)
|
||||
finalizeBenchmark(
|
||||
(m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * 2 * num_iters);
|
||||
}
|
||||
|
||||
private:
|
||||
void initialize() {
|
||||
a_ = (float *) device_.allocate(m_ * k_ * sizeof(float));
|
||||
b_ = (float *) device_.allocate(k_ * n_ * sizeof(float));
|
||||
c_ = (float *) device_.allocate(m_ * n_ * sizeof(float));
|
||||
|
||||
// Initialize the content of the memory pools to prevent asan from
|
||||
// complaining.
|
||||
device_.memset(a_, 12, m_ * k_ * sizeof(float));
|
||||
device_.memset(b_, 23, k_ * n_ * sizeof(float));
|
||||
device_.memset(c_, 31, m_ * n_ * sizeof(float));
|
||||
|
||||
BenchmarkUseRealTime();
|
||||
}
|
||||
|
||||
inline void finalizeBenchmark(int64 num_items) {
|
||||
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
||||
if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) {
|
||||
device_.synchronize();
|
||||
}
|
||||
#endif
|
||||
StopBenchmarkTiming();
|
||||
SetBenchmarkItemsProcessed(num_items);
|
||||
}
|
||||
|
||||
|
||||
size_t m_;
|
||||
size_t k_;
|
||||
size_t n_;
|
||||
float* a_;
|
||||
float* b_;
|
||||
float* c_;
|
||||
Device device_;
|
||||
};
|
||||
#endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
|
156
bench/tensors/tensor_benchmarks_cpu.cc
Normal file
156
bench/tensors/tensor_benchmarks_cpu.cc
Normal file
@ -0,0 +1,156 @@
|
||||
#define EIGEN_USE_THREADS
|
||||
|
||||
#include "base/sysinfo.h"
|
||||
#include "strings/strcat.h"
|
||||
#include "third_party/eigen3/tensor_benchmarks.h"
|
||||
#include "thread/threadpool.h"
|
||||
|
||||
#ifdef __ANDROID__
|
||||
#define CREATE_THREAD_POOL(threads) \
|
||||
Eigen::ThreadPoolDevice device(threads);
|
||||
#else
|
||||
#define CREATE_THREAD_POOL(threads) \
|
||||
ThreadPool tp(threads); \
|
||||
tp.StartWorkers(); \
|
||||
Eigen::ThreadPoolDevice device(&tp, threads);
|
||||
#endif
|
||||
|
||||
// Simple functions
|
||||
#define BM_FuncCPU(FUNC, THREADS) \
|
||||
static void BM_##FUNC##_##THREADS##T(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
CREATE_THREAD_POOL(THREADS); \
|
||||
BenchmarkSuite<Eigen::ThreadPoolDevice> suite(device, N); \
|
||||
suite.FUNC(iters); \
|
||||
SetBenchmarkLabel(StrCat("using ", THREADS, " threads")); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC##_##THREADS##T, 10, 5000);
|
||||
|
||||
BM_FuncCPU(memcpy, 4);
|
||||
BM_FuncCPU(memcpy, 8);
|
||||
BM_FuncCPU(memcpy, 12);
|
||||
|
||||
BM_FuncCPU(random, 4);
|
||||
BM_FuncCPU(random, 8);
|
||||
BM_FuncCPU(random, 12);
|
||||
|
||||
BM_FuncCPU(slicing, 4);
|
||||
BM_FuncCPU(slicing, 8);
|
||||
BM_FuncCPU(slicing, 12);
|
||||
|
||||
BM_FuncCPU(shuffling, 4);
|
||||
BM_FuncCPU(shuffling, 8);
|
||||
BM_FuncCPU(shuffling, 12);
|
||||
|
||||
BM_FuncCPU(padding, 4);
|
||||
BM_FuncCPU(padding, 8);
|
||||
BM_FuncCPU(padding, 12);
|
||||
|
||||
BM_FuncCPU(striding, 4);
|
||||
BM_FuncCPU(striding, 8);
|
||||
BM_FuncCPU(striding, 12);
|
||||
|
||||
BM_FuncCPU(broadcasting, 4);
|
||||
BM_FuncCPU(broadcasting, 8);
|
||||
BM_FuncCPU(broadcasting, 12);
|
||||
|
||||
BM_FuncCPU(coeffWiseOp, 4);
|
||||
BM_FuncCPU(coeffWiseOp, 8);
|
||||
BM_FuncCPU(coeffWiseOp, 12);
|
||||
|
||||
BM_FuncCPU(algebraicFunc, 4);
|
||||
BM_FuncCPU(algebraicFunc, 8);
|
||||
BM_FuncCPU(algebraicFunc, 12);
|
||||
|
||||
BM_FuncCPU(transcendentalFunc, 4);
|
||||
BM_FuncCPU(transcendentalFunc, 8);
|
||||
BM_FuncCPU(transcendentalFunc, 12);
|
||||
|
||||
BM_FuncCPU(reduction, 4);
|
||||
BM_FuncCPU(reduction, 8);
|
||||
BM_FuncCPU(reduction, 12);
|
||||
|
||||
|
||||
// Contractions
|
||||
#define BM_FuncWithInputDimsCPU(FUNC, D1, D2, D3, THREADS) \
|
||||
static void BM_##FUNC##_##D1##x##D2##x##D3##_##THREADS##T(int iters, int N) {\
|
||||
StopBenchmarkTiming(); \
|
||||
if (THREADS == 1) { \
|
||||
Eigen::DefaultDevice device; \
|
||||
BenchmarkSuite<Eigen::DefaultDevice> suite(device, D1, D2, D3); \
|
||||
suite.FUNC(iters); \
|
||||
} else { \
|
||||
CREATE_THREAD_POOL(THREADS); \
|
||||
BenchmarkSuite<Eigen::ThreadPoolDevice> suite(device, D1, D2, D3); \
|
||||
suite.FUNC(iters); \
|
||||
} \
|
||||
SetBenchmarkLabel(StrCat("using ", THREADS, " threads")); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC##_##D1##x##D2##x##D3##_##THREADS##T, 10, 5000);
|
||||
|
||||
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, N, 1);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, N, 4);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, N, 8);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, N, 12);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, N, 16);
|
||||
|
||||
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 1);
|
||||
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 4);
|
||||
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 8);
|
||||
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 12);
|
||||
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 16);
|
||||
|
||||
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 1);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 4);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 8);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 12);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 16);
|
||||
|
||||
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 1);
|
||||
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 4);
|
||||
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 8);
|
||||
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 12);
|
||||
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 16);
|
||||
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 1);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 4);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 8);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 12);
|
||||
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 16);
|
||||
|
||||
|
||||
// Convolutions
|
||||
#define BM_FuncWithKernelDimsCPU(FUNC, DIM1, DIM2, THREADS) \
|
||||
static void BM_##FUNC##_##DIM1##x##DIM2##_##THREADS##T(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
CREATE_THREAD_POOL(THREADS); \
|
||||
BenchmarkSuite<Eigen::ThreadPoolDevice> suite(device, N); \
|
||||
suite.FUNC(iters, DIM1, DIM2); \
|
||||
SetBenchmarkLabel(StrCat("using ", THREADS, " threads")); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC##_##DIM1##x##DIM2##_##THREADS##T, 128, 5000);
|
||||
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 1, 4);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 1, 8);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 1, 12);
|
||||
|
||||
BM_FuncWithKernelDimsCPU(convolution, 1, 7, 4);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 1, 7, 8);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 1, 7, 12);
|
||||
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 4, 4);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 4, 8);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 4, 12);
|
||||
|
||||
BM_FuncWithKernelDimsCPU(convolution, 4, 7, 4);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 4, 7, 8);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 4, 7, 12);
|
||||
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 64, 4);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 64, 8);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 7, 64, 12);
|
||||
|
||||
BM_FuncWithKernelDimsCPU(convolution, 64, 7, 4);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 64, 7, 8);
|
||||
BM_FuncWithKernelDimsCPU(convolution, 64, 7, 12);
|
75
bench/tensors/tensor_benchmarks_gpu.cc
Normal file
75
bench/tensors/tensor_benchmarks_gpu.cc
Normal file
@ -0,0 +1,75 @@
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <iostream>
|
||||
#include "strings/strcat.h"
|
||||
#include "third_party/eigen3/tensor_benchmarks.h"
|
||||
|
||||
|
||||
|
||||
// Simple functions
|
||||
#define BM_FuncGPU(FUNC) \
|
||||
static void BM_##FUNC(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
cudaStream_t stream; \
|
||||
cudaStreamCreate(&stream); \
|
||||
Eigen::GpuDevice device(&stream); \
|
||||
BenchmarkSuite<Eigen::GpuDevice> suite(device, N); \
|
||||
cudaDeviceSynchronize(); \
|
||||
suite.FUNC(iters); \
|
||||
cudaStreamDestroy(stream); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC, 10, 5000);
|
||||
|
||||
BM_FuncGPU(memcpy);
|
||||
BM_FuncGPU(random);
|
||||
BM_FuncGPU(slicing);
|
||||
BM_FuncGPU(shuffling);
|
||||
BM_FuncGPU(padding);
|
||||
BM_FuncGPU(striding);
|
||||
BM_FuncGPU(broadcasting);
|
||||
BM_FuncGPU(coeffWiseOp);
|
||||
BM_FuncGPU(reduction);
|
||||
|
||||
|
||||
// Contractions
|
||||
#define BM_FuncWithInputDimsGPU(FUNC, D1, D2, D3) \
|
||||
static void BM_##FUNC##_##D1##x##D2##x##D3(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
cudaStream_t stream; \
|
||||
cudaStreamCreate(&stream); \
|
||||
Eigen::GpuDevice device(&stream); \
|
||||
BenchmarkSuite<Eigen::GpuDevice> suite(device, D1, D2, D3); \
|
||||
cudaDeviceSynchronize(); \
|
||||
suite.FUNC(iters); \
|
||||
cudaStreamDestroy(stream); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC##_##D1##x##D2##x##D3, 10, 5000);
|
||||
|
||||
|
||||
BM_FuncWithInputDimsGPU(contraction, N, N, N);
|
||||
BM_FuncWithInputDimsGPU(contraction, 64, N, N);
|
||||
BM_FuncWithInputDimsGPU(contraction, N, 64, N);
|
||||
|
||||
|
||||
// Convolutions
|
||||
#define BM_FuncWithKernelDimsGPU(FUNC, DIM1, DIM2) \
|
||||
static void BM_##FUNC##_##DIM1##x##DIM2(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
cudaStream_t stream; \
|
||||
cudaStreamCreate(&stream); \
|
||||
Eigen::GpuDevice device(&stream); \
|
||||
BenchmarkSuite<Eigen::GpuDevice> suite(device, N); \
|
||||
cudaDeviceSynchronize(); \
|
||||
suite.FUNC(iters, DIM1, DIM2); \
|
||||
cudaStreamDestroy(stream); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC##_##DIM1##x##DIM2, 128, 5000);
|
||||
|
||||
BM_FuncWithKernelDimsGPU(convolution, 7, 1);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 1, 7);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 7, 4);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 4, 7);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 7, 64);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 64, 7);
|
Loading…
x
Reference in New Issue
Block a user