mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-31 19:00:35 +08:00
Add simple example on how to compute Cholesky decomposition.
This commit is contained in:
parent
f422668d39
commit
45a6bb34c3
@ -31,7 +31,7 @@ namespace internal {
|
||||
template<typename MatrixType, int UpLo> struct LDLT_Traits;
|
||||
}
|
||||
|
||||
/** \ingroup cholesky_Module
|
||||
/** \ingroup Cholesky_Module
|
||||
*
|
||||
* \class LDLT
|
||||
*
|
||||
|
@ -29,7 +29,7 @@ namespace internal{
|
||||
template<typename MatrixType, int UpLo> struct LLT_Traits;
|
||||
}
|
||||
|
||||
/** \ingroup cholesky_Module
|
||||
/** \ingroup Cholesky_Module
|
||||
*
|
||||
* \class LLT
|
||||
*
|
||||
@ -49,6 +49,9 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
|
||||
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
|
||||
* has a solution.
|
||||
*
|
||||
* Example: \include LLT_example.cpp
|
||||
* Output: \verbinclude LLT_example.out
|
||||
*
|
||||
* \sa MatrixBase::llt(), class LDLT
|
||||
*/
|
||||
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
|
||||
@ -333,9 +336,11 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
|
||||
} // end namespace internal
|
||||
|
||||
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
|
||||
*
|
||||
*
|
||||
* \returns a reference to *this
|
||||
*
|
||||
* Example: \include TutorialLinAlgComputeTwice.cpp
|
||||
* Output: \verbinclude TutorialLinAlgComputeTwice.out
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
|
@ -144,6 +144,9 @@ You need an eigendecomposition here, see available such decompositions on \ref T
|
||||
Make sure to check if your matrix is self-adjoint, as is often the case in these problems. Here's an example using
|
||||
SelfAdjointEigenSolver, it could easily be adapted to general matrices using EigenSolver or ComplexEigenSolver.
|
||||
|
||||
The computation of eigenvalues and eigenvectors does not necessarily converge, but such failure to converge is
|
||||
very rare. The call to info() is to check for this possibility.
|
||||
|
||||
<table class="example">
|
||||
<tr><th>Example:</th><th>Output:</th></tr>
|
||||
<tr>
|
||||
|
12
doc/snippets/LLT_example.cpp
Normal file
12
doc/snippets/LLT_example.cpp
Normal file
@ -0,0 +1,12 @@
|
||||
MatrixXd A(3,3);
|
||||
A << 4,-1,2, -1,6,0, 2,0,5;
|
||||
cout << "The matrix A is" << endl << A << endl;
|
||||
|
||||
LLT<MatrixXd> lltOfA(A); // compute the Cholesky decomposition of A
|
||||
MatrixXd L = lltOfA.matrixL(); // retrieve factor L in the decomposition
|
||||
// The previous two lines can also be written as "L = A.llt().matrixL()"
|
||||
|
||||
cout << "The Cholesky factor L is" << endl << L << endl;
|
||||
cout << "To check this, let us compute L * L.transpose()" << endl;
|
||||
cout << L * L.transpose() << endl;
|
||||
cout << "This should equal the matrix A" << endl;
|
Loading…
x
Reference in New Issue
Block a user