Incomplete Cholesky preconditioner... not yet stable

This commit is contained in:
Desire NUENTSA 2012-09-11 12:12:19 +02:00
parent 504edbddb1
commit 45672e724e
4 changed files with 275 additions and 53 deletions

View File

@ -10,8 +10,56 @@
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
namespace Eigen {
namespace internal {
/**
* Compute a quick-sort split of a vector
* On output, the vector row is permuted such that its elements satisfy
* abs(row(i)) >= abs(row(ncut)) if i<ncut
* abs(row(i)) <= abs(row(ncut)) if i>ncut
* \param row The vector of values
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
typedef typename VectorV::RealScalar RealScalar;
using std::swap;
int mid;
int n = row.size(); /* length of the vector */
int first, last ;
ncut--; /* to fit the zero-based indices */
first = 0;
last = n-1;
if (ncut < first || ncut > last ) return 0;
do {
mid = first;
RealScalar abskey = std::abs(row(mid));
for (int j = first + 1; j <= last; j++) {
if ( std::abs(row(j)) > abskey) {
++mid;
swap(row(mid), row(j));
swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
swap(row(mid), row(first));
swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
}
}// end namespace internal
/**
* \brief Incomplete LU factorization with dual-threshold strategy
* During the numerical factorization, two dropping rules are used :
@ -126,10 +174,6 @@ class IncompleteLUT : internal::noncopyable
protected:
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
@ -171,51 +215,6 @@ void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
this->m_fillfactor = fillfactor;
}
/**
* Compute a quick-sort split of a vector
* On output, the vector row is permuted such that its elements satisfy
* abs(row(i)) >= abs(row(ncut)) if i<ncut
* abs(row(i)) <= abs(row(ncut)) if i>ncut
* \param row The vector of values
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
template <typename Scalar>
template <typename VectorV, typename VectorI>
int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
using std::swap;
int mid;
int n = row.size(); /* length of the vector */
int first, last ;
ncut--; /* to fit the zero-based indices */
first = 0;
last = n-1;
if (ncut < first || ncut > last ) return 0;
do {
mid = first;
RealScalar abskey = std::abs(row(mid));
for (int j = first + 1; j <= last; j++) {
if ( std::abs(row(j)) > abskey) {
++mid;
swap(row(mid), row(j));
swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
swap(row(mid), row(first));
swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
}
template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
@ -400,7 +399,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
QuickSplit(ul, jul, len);
internal::QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part
m_lu.startVec(ii);
@ -429,7 +428,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
QuickSplit(uu, juu, len);
internal::QuickSplit(uu, juu, len);
// store the largest elements of the U part
for(int k = ii + 1; k < ii + len; k++)

View File

@ -13,7 +13,7 @@
#include <Eigen/SuperLUSupport>
// #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h>
#include <bench/BenchTimer.h>
#include <unsupported/Eigen/IterativeSolvers>
using namespace std;
using namespace Eigen;
@ -26,7 +26,8 @@ int main(int argc, char **args)
VectorXd b, x, tmp;
BenchTimer timer,totaltime;
//SparseLU<SparseMatrix<double, ColMajor> > solver;
SuperLU<SparseMatrix<double, ColMajor> > solver;
// SuperLU<SparseMatrix<double, ColMajor> > solver;
ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver;
ifstream matrix_file;
string line;
int n;

View File

@ -33,6 +33,7 @@
#include "../../Eigen/Jacobi"
#include "../../Eigen/Householder"
#include "src/IterativeSolvers/GMRES.h"
#include "src/IterativeSolvers/IncompleteCholesky.h"
//#include "src/IterativeSolvers/SSORPreconditioner.h"
//@}

View File

@ -0,0 +1,221 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
#define EIGEN_INCOMPLETE_CHOlESKY_H
#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
#include <Eigen/OrderingMethods>
#include <list>
namespace Eigen {
/**
* \brief Modified Incomplete Cholesky with dual threshold
*
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
*
* \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
* matrix. It is advised to give a row-oriented sparse matrix
* \tparam _UpLo The triangular part of the matrix to reference.
* \tparam _OrderingType
*/
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
class IncompleteCholesky : internal::noncopyable
{
public:
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef Matrix<Index,Dynamic, 1> IndexType;
public:
IncompleteCholesky() {}
IncompleteCholesky(const MatrixType& matrix)
{
compute(matrix);
}
Index rows() const { return m_L.rows(); }
Index cols() const { return m_L.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
return m_info;
}
/**
* \brief Computes the fill reducing permutation vector.
*/
template<typename MatrixType>
void analyzePattern(const MatrixType& mat)
{
OrderingType ord;
ord(mat, m_perm);
m_analysisIsOk = true;
}
template<typename MatrixType>
void factorize(const MatrixType& amat);
template<typename MatrixType>
void compute (const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
}
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
if (m_perm.rows() == b.rows())
x = m_perm.inverse() * b;
else
x = b;
x = m_L.template triangularView<UnitLower>().solve(x);
x = m_L.adjoint().template triangularView<Upper>().solve(x);
if (m_perm.rows() == b.rows())
x = m_perm * x;
}
template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
eigen_assert(cols()==b.rows()
&& "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
}
protected:
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
bool m_analysisIsOk;
bool m_factorizationIsOk;
bool m_isInitialized;
ComputationInfo m_info;
PermutationType m_perm;
};
template<typename Scalar, int _UpLo, typename OrderingType>
template<typename _MatrixType>
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
{
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
// FIXME Stability: We should probably compute the scaling factors and the shifts that are needed to ensure an efficient LLT preconditioner.
// Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
// Apply the fill-reducing permutation computed in analyzePattern()
if (m_perm.rows() == mat.rows() )
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
else
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
int n = mat.cols();
Scalar *vals = m_L.valuePtr(); //Values
Index *rowIdx = m_L.innerIndexPtr(); //Row indices
Index *colPtr = m_L.outerIndexPtr(); // Pointer to the beginning of each row
VectorType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
// Initialize firstElt;
for (int j = 0; j < n-1; j++) firstElt(j) = colPtr[j]+1;
std::vector<std::list<Index> > listCol(n); // listCol(j) is a linked list of columns to update column j
VectorType curCol(n); // Store a nonzero values in each column
VectorType irow(n); // Row indices of nonzero elements in each column
// jki version of the Cholesky factorization
for (int j=0; j < n; j++)
{
//Left-looking factorize the column j
// First, load the jth column into curCol
Scalar diag = vals[colPtr[j]]; // Lower diagonal matrix with
curCol.setZero();
irow.setLinSpaced(n,0,n-1);
for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
{
curCol(rowIdx[i]) = vals[i];
irow(rowIdx[i]) = rowIdx[i];
}
std::list<int>::iterator k;
// Browse all previous columns that will update column j
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
{
int jk = firstElt(*k); // First element to use in the column
Scalar a_jk = vals[jk];
diag -= a_jk * a_jk;
jk += 1;
for (int i = jk; i < colPtr[*k]; i++)
{
curCol(rowIdx[i]) -= vals[i] * a_jk ;
}
firstElt(*k) = jk;
if (jk < colPtr[*k+1])
{
// Add this column to the updating columns list for column *k+1
listCol[rowIdx[jk]].push_back(*k);
}
}
// Select the largest p elements
// p is the original number of elements in the column (without the diagonal)
int p = colPtr[j+1] - colPtr[j] - 2 ;
internal::QuickSplit(curCol, irow, p);
if(RealScalar(diag) <= 0)
{
m_info = NumericalIssue;
return;
}
RealScalar rdiag = internal::sqrt(RealScalar(diag));
Scalar scal = Scalar(1)/rdiag;
vals[colPtr[j]] = rdiag;
// Insert the largest p elements in the matrix and scale them meanwhile
int cpt = 0;
for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
{
vals[i] = curCol(cpt) * scal;
rowIdx[i] = irow(cpt);
cpt ++;
}
}
m_factorizationIsOk = true;
m_isInitialized = true;
m_info = Success;
}
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<IncompleteCholesky<_MatrixType>, Rhs>
: solve_retval_base<IncompleteCholesky<_MatrixType>, Rhs>
{
typedef IncompleteCholesky<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif