mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
Various fixes in polynomial solver and its unit tests:
- cleanup noise in imaginary part of real roots - take into account the magnitude of the derivative to check roots. - use <= instead of < at appropriate places
This commit is contained in:
parent
348bb386d1
commit
450dc97c6b
@ -75,8 +75,7 @@ class companion
|
||||
void setPolynomial( const VectorType& poly )
|
||||
{
|
||||
const Index deg = poly.size()-1;
|
||||
m_monic = Scalar(-1)/poly[deg] * poly.head(deg);
|
||||
//m_bl_diag.setIdentity( deg-1 );
|
||||
m_monic = -poly.head(deg)/poly[deg];
|
||||
m_bl_diag.setOnes(deg-1);
|
||||
}
|
||||
|
||||
|
@ -126,7 +126,7 @@ class PolynomialSolverBase
|
||||
|
||||
for( Index i=0; i<m_roots.size(); ++i )
|
||||
{
|
||||
if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
|
||||
if( abs( m_roots[i].imag() ) <= absImaginaryThreshold )
|
||||
{
|
||||
if( !hasArealRoot )
|
||||
{
|
||||
@ -144,10 +144,10 @@ class PolynomialSolverBase
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
else if(!hasArealRoot)
|
||||
{
|
||||
if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
|
||||
res = i; }
|
||||
res = i;}
|
||||
}
|
||||
}
|
||||
return numext::real_ref(m_roots[res]);
|
||||
@ -167,7 +167,7 @@ class PolynomialSolverBase
|
||||
|
||||
for( Index i=0; i<m_roots.size(); ++i )
|
||||
{
|
||||
if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
|
||||
if( abs( m_roots[i].imag() ) <= absImaginaryThreshold )
|
||||
{
|
||||
if( !hasArealRoot )
|
||||
{
|
||||
@ -340,6 +340,7 @@ class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
ComplexEigenSolver<CompanionMatrixType>,
|
||||
EigenSolver<CompanionMatrixType> >::type EigenSolverType;
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, Scalar, std::complex<Scalar> >::type ComplexScalar;
|
||||
|
||||
public:
|
||||
/** Computes the complex roots of a new polynomial. */
|
||||
@ -354,6 +355,27 @@ class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
|
||||
companion.balance();
|
||||
m_eigenSolver.compute( companion.denseMatrix() );
|
||||
m_roots = m_eigenSolver.eigenvalues();
|
||||
MatrixXcd A = companion.denseMatrix();
|
||||
// cleanup noise in imaginary part of real roots:
|
||||
// if the imaginary part is rather small compared to the real part
|
||||
// and that cancelling the imaginary part yield a smaller evaluation,
|
||||
// then it's safe to keep the real part only.
|
||||
RealScalar coarse_prec = std::pow(4,poly.size()+1)*NumTraits<RealScalar>::epsilon();
|
||||
std::cout << coarse_prec << "\n";
|
||||
for(Index i = 0; i<m_roots.size(); ++i)
|
||||
{
|
||||
if( internal::isMuchSmallerThan(numext::abs(numext::imag(m_roots[i])),
|
||||
numext::abs(numext::real(m_roots[i])),
|
||||
coarse_prec) )
|
||||
{
|
||||
ComplexScalar as_real_root = ComplexScalar(numext::real(m_roots[i]));
|
||||
if( numext::abs(poly_eval(poly, as_real_root))
|
||||
<= numext::abs(poly_eval(poly, m_roots[i])))
|
||||
{
|
||||
m_roots[i] = as_real_root;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if(poly.size () == 2)
|
||||
{
|
||||
|
@ -26,6 +26,16 @@ struct increment_if_fixed_size
|
||||
}
|
||||
}
|
||||
|
||||
template<typename PolynomialType>
|
||||
PolynomialType polyder(const PolynomialType& p)
|
||||
{
|
||||
typedef typename PolynomialType::Scalar Scalar;
|
||||
PolynomialType res(p.size());
|
||||
for(Index i=1; i<p.size(); ++i)
|
||||
res[i-1] = p[i]*Scalar(i);
|
||||
res[p.size()-1] = 0.;
|
||||
return res;
|
||||
}
|
||||
|
||||
template<int Deg, typename POLYNOMIAL, typename SOLVER>
|
||||
bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
|
||||
@ -44,10 +54,17 @@ bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
|
||||
psolve.compute( pols );
|
||||
const RootsType& roots( psolve.roots() );
|
||||
EvalRootsType evr( deg );
|
||||
POLYNOMIAL pols_der = polyder(pols);
|
||||
EvalRootsType der( deg );
|
||||
for( int i=0; i<roots.size(); ++i ){
|
||||
evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
|
||||
evr[i] = std::abs( poly_eval( pols, roots[i] ) );
|
||||
der[i] = numext::maxi(RealScalar(1.), std::abs( poly_eval( pols_der, roots[i] ) ));
|
||||
}
|
||||
|
||||
bool evalToZero = evr.isZero( test_precision<Scalar>() );
|
||||
// we need to divide by the magnitude of the derivative because
|
||||
// with a high derivative is very small error in the value of the root
|
||||
// yiels a very large error in the polynomial evaluation.
|
||||
bool evalToZero = (evr.cwiseQuotient(der)).isZero( test_precision<Scalar>() );
|
||||
if( !evalToZero )
|
||||
{
|
||||
cerr << "WRONG root: " << endl;
|
||||
|
Loading…
Reference in New Issue
Block a user