Pulled latest updates from trunk

This commit is contained in:
Benoit Steiner 2016-06-09 08:25:47 -07:00
commit 4434b16694
7 changed files with 98 additions and 51 deletions

View File

@ -32,6 +32,7 @@
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/Eigenvalues/Tridiagonalization.h"
#include "src/Eigenvalues/RealSchur.h"
#include "src/Eigenvalues/EigenSolver.h"

View File

@ -31,6 +31,7 @@
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/SVD/UpperBidiagonalization.h"
#include "src/SVD/SVDBase.h"
#include "src/SVD/JacobiSVD.h"

View File

@ -327,24 +327,13 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
}
else
{
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a triangular 2x2 block T
// From the eigen decomposition of T = U * E * U^-1,
// we can extract the eigenvalues of (U^-1 * S * U) / E
// Here, we can take advantage that E = diag(T), and U = [ 1 T_01 ; 0 T_11-T_00], and U^-1 = [1 -T_11/(T_11-T_00) ; 0 1/(T_11-T_00)].
// Then taking beta=T_00*T_11*(T_11-T_00), we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00) * (T_11-T_00):
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
// Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
// T = [a b ; 0 c]
// S = [e f ; g h]
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i, i+1), c = m_realQZ.matrixT().coeff(i+1, i+1);
RealScalar e = m_matS.coeff(i, i), f = m_matS.coeff(i, i+1), g = m_matS.coeff(i+1, i), h = m_matS.coeff(i+1, i+1);
RealScalar d = c-a;
RealScalar gb = g*b;
Matrix<RealScalar,2,2> S2;
S2 << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
g*c , (gb+h*d)*a;
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
// T = [a 0]
// [0 b]
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i+1, i+1);
Matrix<RealScalar,2,2> S2 = m_matS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
@ -352,7 +341,7 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
m_alphas.coeffRef(i+1) = ComplexScalar(S2.coeff(1,1) + p, -z);
m_betas.coeffRef(i) =
m_betas.coeffRef(i+1) = a*c*d;
m_betas.coeffRef(i+1) = a*b;
i += 2;
}

View File

@ -552,7 +552,6 @@ namespace Eigen {
m_T.coeffRef(l,l-1) = Scalar(0.0);
}
template<typename MatrixType>
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
{
@ -616,6 +615,37 @@ namespace Eigen {
}
// check if we converged before reaching iterations limit
m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
// For each non triangular 2x2 diagonal block of S,
// reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD.
// This step is not mandatory for QZ, but it does help further extraction of eigenvalues/eigenvectors,
// and is in par with Lapack/Matlab QZ.
if(m_info==Success)
{
for(Index i=0; i<dim-1; ++i)
{
if(m_S.coeff(i+1, i) != Scalar(0))
{
JacobiRotation<Scalar> j_left, j_right;
internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right);
// Apply resulting Jacobi rotations
m_T.applyOnTheLeft(i,i+1,j_left);
m_T.applyOnTheRight(i,i+1,j_right);
m_S.applyOnTheLeft(i,i+1,j_left);
m_S.applyOnTheRight(i,i+1,j_right);
m_T(i,i+1) = Scalar(0);
if(m_computeQZ) {
m_Q.applyOnTheRight(i,i+1,j_left.transpose());
m_Z.applyOnTheLeft(i,i+1,j_right.transpose());
}
i++;
}
}
}
return *this;
} // end compute

View File

@ -419,38 +419,6 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
}
};
template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> *j_left,
JacobiRotation<RealScalar> *j_right)
{
using std::sqrt;
using std::abs;
Matrix<RealScalar,2,2> m;
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(d == RealScalar(0))
{
rot1.s() = RealScalar(0);
rot1.c() = RealScalar(1);
}
else
{
// If d!=0, then t/d cannot overflow because the magnitude of the
// entries forming d are not too small compared to the ones forming t.
RealScalar u = t / d;
RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = RealScalar(1) / tmp;
rot1.c() = u / tmp;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
template<typename _MatrixType, int QRPreconditioner>
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
{

View File

@ -0,0 +1,54 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2013-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REALSVD2X2_H
#define EIGEN_REALSVD2X2_H
namespace Eigen {
namespace internal {
template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> *j_left,
JacobiRotation<RealScalar> *j_right)
{
using std::sqrt;
using std::abs;
Matrix<RealScalar,2,2> m;
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(d == RealScalar(0))
{
rot1.s() = RealScalar(0);
rot1.c() = RealScalar(1);
}
else
{
// If d!=0, then t/d cannot overflow because the magnitude of the
// entries forming d are not too small compared to the ones forming t.
RealScalar u = t / d;
RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = RealScalar(1) / tmp;
rot1.c() = u / tmp;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_REALSVD2X2_H

View File

@ -44,4 +44,8 @@ before-evaluators
7013:f875e75f07e5 # organize a little our default cache sizes, and use a saner default L1 outside of x86 (10% faster on Nexus 5)
7591:09a8e2186610 # 3.3-alpha1
7650:b0f3c8f43025 # help clang inlining
8744:74b789ada92a # Improved the matrix multiplication blocking in the case where mr is not a power of 2 (e.g on Haswell CPUs)
8789:efcb912e4356 # Made the index type a template parameter to evaluateProductBlockingSizes. Use numext::mini and numext::maxi instead of std::min/std::max to compute blocking sizes
8972:81d53c711775 # Don't optimize the processing of the last rows of a matrix matrix product in cases that violate the assumptions made by the optimized code path
8985:d935df21a082 # Remove the rotating kernel.