mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-30 17:40:05 +08:00
Improved the tensor random number generators:
* Use a mersenne twister whenebver possible instead of the default entropy source since the default one isn't very good at all. * Added the ability to seed the generators with a time based seed to make them non-deterministic.
This commit is contained in:
parent
016c29f207
commit
43eb2ca6e1
@ -53,8 +53,8 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
}
|
||||
template <typename RandomGenerator> EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<RandomGenerator, const Derived>
|
||||
random() const {
|
||||
return nullaryExpr(RandomGenerator());
|
||||
random(const RandomGenerator& gen = RandomGenerator()) const {
|
||||
return nullaryExpr(gen);
|
||||
}
|
||||
|
||||
// Generic unary operation support.
|
||||
|
@ -182,18 +182,45 @@ template <typename T> struct ProdReducer
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Random number generation
|
||||
namespace {
|
||||
int get_random_seed() {
|
||||
#if defined _WIN32
|
||||
SYSTEMTIME st;
|
||||
GetSystemTime(&st);
|
||||
return st.wSecond + 1000 * st.wMilliseconds;
|
||||
#elif defined __APPLE__
|
||||
return mach_absolute_time();
|
||||
#elif defined __CUDA_ARCH__
|
||||
return clock();
|
||||
#else
|
||||
timespec ts;
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
return ts.tv_nsec;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if !defined (EIGEN_USE_GPU) || !defined(__CUDACC__) || !defined(__CUDA_ARCH__)
|
||||
// We're not compiling a cuda kernel
|
||||
template <typename T> struct UniformRandomGenerator {
|
||||
template <typename T> class UniformRandomGenerator {
|
||||
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
UniformRandomGenerator(bool deterministic = true) {
|
||||
if (!deterministic) {
|
||||
srand(get_random_seed());
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Index>
|
||||
T operator()(Index, Index = 0) const {
|
||||
return random<T>();
|
||||
}
|
||||
template<typename Index>
|
||||
typename internal::packet_traits<T>::type packetOp(Index, Index = 0) const {
|
||||
typename internal::packet_traits<T>::type packetOp(Index i, Index j = 0) const {
|
||||
const int packetSize = internal::packet_traits<T>::size;
|
||||
EIGEN_ALIGN_DEFAULT T values[packetSize];
|
||||
for (int i = 0; i < packetSize; ++i) {
|
||||
@ -203,26 +230,95 @@ template <typename T> struct UniformRandomGenerator {
|
||||
}
|
||||
};
|
||||
|
||||
#if __cplusplus > 199711
|
||||
template <> class UniformRandomGenerator<float> {
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
UniformRandomGenerator(bool deterministic = true) {
|
||||
if (!deterministic) {
|
||||
m_generator.seed(get_random_seed());
|
||||
}
|
||||
}
|
||||
UniformRandomGenerator(const UniformRandomGenerator<float>& other) {
|
||||
m_generator.seed(other(0, 0) * UINT_MAX);
|
||||
}
|
||||
|
||||
template<typename Index>
|
||||
float operator()(Index, Index = 0) const {
|
||||
return m_distribution(m_generator);
|
||||
}
|
||||
template<typename Index>
|
||||
typename internal::packet_traits<float>::type packetOp(Index i, Index j = 0) const {
|
||||
const int packetSize = internal::packet_traits<float>::size;
|
||||
EIGEN_ALIGN_DEFAULT float values[packetSize];
|
||||
for (int i = 0; i < packetSize; ++i) {
|
||||
values[i] = this->operator()(i, j);
|
||||
}
|
||||
return internal::pload<typename internal::packet_traits<float>::type>(values);
|
||||
}
|
||||
|
||||
private:
|
||||
UniformRandomGenerator& operator = (const UniformRandomGenerator&);
|
||||
mutable std::mt19937 m_generator;
|
||||
mutable std::uniform_real_distribution<float> m_distribution;
|
||||
};
|
||||
|
||||
template <> class UniformRandomGenerator<double> {
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
UniformRandomGenerator(bool deterministic = true) {
|
||||
if (!deterministic) {
|
||||
m_generator.seed(get_random_seed());
|
||||
}
|
||||
}
|
||||
UniformRandomGenerator(const UniformRandomGenerator<double>& other) {
|
||||
m_generator.seed(other(0, 0) * UINT_MAX);
|
||||
}
|
||||
|
||||
template<typename Index>
|
||||
double operator()(Index, Index = 0) const {
|
||||
return m_distribution(m_generator);
|
||||
}
|
||||
template<typename Index>
|
||||
typename internal::packet_traits<double>::type packetOp(Index i, Index j = 0) const {
|
||||
const int packetSize = internal::packet_traits<double>::size;
|
||||
EIGEN_ALIGN_DEFAULT double values[packetSize];
|
||||
for (int i = 0; i < packetSize; ++i) {
|
||||
values[i] = this->operator()(i, j);
|
||||
}
|
||||
return internal::pload<typename internal::packet_traits<double>::type>(values);
|
||||
}
|
||||
|
||||
private:
|
||||
UniformRandomGenerator& operator = (const UniformRandomGenerator&);
|
||||
mutable std::mt19937 m_generator;
|
||||
mutable std::uniform_real_distribution<double> m_distribution;
|
||||
};
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
// We're compiling a cuda kernel
|
||||
template <typename T> struct UniformRandomGenerator;
|
||||
|
||||
template <> struct UniformRandomGenerator<float> {
|
||||
template <typename T> class UniformRandomGenerator;
|
||||
|
||||
template <> class UniformRandomGenerator<float> {
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
EIGEN_DEVICE_FUNC UniformRandomGenerator() {
|
||||
EIGEN_DEVICE_FUNC UniformRandomGenerator(bool deterministic = true) {
|
||||
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
curand_init(0, tid, 0, &m_state);
|
||||
const int seed = deterministic ? 0 : get_random_seed();
|
||||
curand_init(seed, tid, 0, &m_state);
|
||||
}
|
||||
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
float operator()(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC float operator()(Index, Index = 0) const {
|
||||
return curand_uniform(&m_state);
|
||||
}
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
float4 packetOp(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC float4 packetOp(Index, Index = 0) const {
|
||||
return curand_uniform4(&m_state);
|
||||
}
|
||||
|
||||
@ -230,20 +326,21 @@ template <> struct UniformRandomGenerator<float> {
|
||||
mutable curandStatePhilox4_32_10_t m_state;
|
||||
};
|
||||
|
||||
template <> struct UniformRandomGenerator<double> {
|
||||
|
||||
template <> class UniformRandomGenerator<double> {
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
EIGEN_DEVICE_FUNC UniformRandomGenerator() {
|
||||
EIGEN_DEVICE_FUNC UniformRandomGenerator(bool deterministic = true) {
|
||||
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
curand_init(0, tid, 0, &m_state);
|
||||
const int seed = deterministic ? 0 : get_random_seed();
|
||||
curand_init(seed, tid, 0, &m_state);
|
||||
}
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
double operator()(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC double operator()(Index, Index = 0) const {
|
||||
return curand_uniform_double(&m_state);
|
||||
}
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
double2 packetOp(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC double2 packetOp(Index, Index = 0) const {
|
||||
return curand_uniform2_double(&m_state);
|
||||
}
|
||||
|
||||
@ -256,12 +353,18 @@ template <> struct UniformRandomGenerator<double> {
|
||||
|
||||
#if (!defined (EIGEN_USE_GPU) || !defined(__CUDACC__) || !defined(__CUDA_ARCH__)) && __cplusplus > 199711
|
||||
// We're not compiling a cuda kernel
|
||||
template <typename T> struct NormalRandomGenerator {
|
||||
|
||||
template <typename T> class NormalRandomGenerator {
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
NormalRandomGenerator() : m_distribution(0, 1) {}
|
||||
NormalRandomGenerator(const NormalRandomGenerator& other) : m_distribution(other.m_distribution) { }
|
||||
NormalRandomGenerator(bool deterministic = true) : m_distribution(0, 1) {
|
||||
if (!deterministic) {
|
||||
m_generator.seed(get_random_seed());
|
||||
}
|
||||
}
|
||||
NormalRandomGenerator(const NormalRandomGenerator& other) : m_distribution(other.m_distribution) {
|
||||
m_generator.seed(other(0, 0) * UINT_MAX);
|
||||
}
|
||||
|
||||
template<typename Index>
|
||||
T operator()(Index, Index = 0) const {
|
||||
@ -278,29 +381,30 @@ template <typename T> struct NormalRandomGenerator {
|
||||
}
|
||||
|
||||
mutable std::normal_distribution<T> m_distribution;
|
||||
mutable std::default_random_engine m_generator;
|
||||
mutable std::mt19937 m_generator;
|
||||
};
|
||||
|
||||
#elif defined (EIGEN_USE_GPU) && defined(__CUDACC__) && defined(__CUDA_ARCH__)
|
||||
|
||||
// We're compiling a cuda kernel
|
||||
template <typename T> struct NormalRandomGenerator;
|
||||
|
||||
template <> struct NormalRandomGenerator<float> {
|
||||
template <typename T> class NormalRandomGenerator;
|
||||
|
||||
template <> class NormalRandomGenerator<float> {
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
EIGEN_DEVICE_FUNC NormalRandomGenerator() {
|
||||
EIGEN_DEVICE_FUNC NormalRandomGenerator(bool deterministic = true) {
|
||||
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
curand_init(0, tid, 0, &m_state);
|
||||
const int seed = deterministic ? 0 : get_random_seed();
|
||||
curand_init(seed, tid, 0, &m_state);
|
||||
}
|
||||
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
float operator()(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC float operator()(Index, Index = 0) const {
|
||||
return curand_normal(&m_state);
|
||||
}
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
float4 packetOp(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC float4 packetOp(Index, Index = 0) const {
|
||||
return curand_normal4(&m_state);
|
||||
}
|
||||
|
||||
@ -308,20 +412,21 @@ template <> struct NormalRandomGenerator<float> {
|
||||
mutable curandStatePhilox4_32_10_t m_state;
|
||||
};
|
||||
|
||||
template <> struct NormalRandomGenerator<double> {
|
||||
|
||||
template <> class NormalRandomGenerator<double> {
|
||||
public:
|
||||
static const bool PacketAccess = true;
|
||||
|
||||
EIGEN_DEVICE_FUNC NormalRandomGenerator() {
|
||||
EIGEN_DEVICE_FUNC NormalRandomGenerator(bool deterministic = true) {
|
||||
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
curand_init(0, tid, 0, &m_state);
|
||||
const int seed = deterministic ? 0 : get_random_seed();
|
||||
curand_init(seed, tid, 0, &m_state);
|
||||
}
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
double operator()(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC double operator()(Index, Index = 0) const {
|
||||
return curand_normal_double(&m_state);
|
||||
}
|
||||
template<typename Index> EIGEN_DEVICE_FUNC
|
||||
double2 packetOp(Index, Index = 0) const {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC double2 packetOp(Index, Index = 0) const {
|
||||
return curand_normal2_double(&m_state);
|
||||
}
|
||||
|
||||
@ -329,6 +434,13 @@ template <> struct NormalRandomGenerator<double> {
|
||||
mutable curandStatePhilox4_32_10_t m_state;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
template <typename T> class NormalRandomGenerator {
|
||||
public:
|
||||
NormalRandomGenerator(bool = true) {}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user