2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-03-19 18:40:38 +08:00

the min/max macros to detect unprotected min/max were undefined by some std header,

so let's declare them after and do the respective fixes ;)
This commit is contained in:
Gael Guennebaud 2011-08-19 14:18:05 +02:00
parent 5734ee6df4
commit 42e2578ef9
29 changed files with 74 additions and 59 deletions

@ -566,7 +566,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
Scalar scale = mat.cwiseAbs().maxCoeff();
scale = std::max(scale,Scalar(1));
scale = (std::max)(scale,Scalar(1));
MatrixType scaledMat = mat / scale;
// Compute the eigenvalues
@ -646,7 +646,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
Scalar scale = mat.cwiseAbs().maxCoeff();
scale = std::max(scale,Scalar(1));
scale = (std::max)(scale,Scalar(1));
MatrixType scaledMat = mat / scale;
// Compute the eigenvalues

@ -48,7 +48,7 @@ template<typename MatrixType> void householder(const MatrixType& m)
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic> VBlockMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp(std::max(rows,cols));
Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols));
Scalar* tmp = &_tmp.coeffRef(0,0);
Scalar beta;

@ -66,7 +66,7 @@ void jacobisvd_compare_to_full(const MatrixType& m,
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = std::min(rows, cols);
Index diagSize = (std::min)(rows, cols);
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);

@ -64,7 +64,7 @@ template<typename MatrixType> void lu_non_invertible()
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
RMatrixType;
Index rank = internal::random<Index>(1, std::min(rows, cols)-1);
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
// The image of the zero matrix should consist of a single (zero) column vector
VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
@ -84,8 +84,8 @@ template<typename MatrixType> void lu_non_invertible()
MatrixType u(rows,cols);
u = lu.matrixLU().template triangularView<Upper>();
RMatrixType l = RMatrixType::Identity(rows,rows);
l.block(0,0,rows,std::min(rows,cols)).template triangularView<StrictlyLower>()
= lu.matrixLU().block(0,0,rows,std::min(rows,cols));
l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
= lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);

@ -23,9 +23,6 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#define min(A,B) please_protect_your_min_with_parentheses
#define max(A,B) please_protect_your_max_with_parentheses
#include <cstdlib>
#include <cerrno>
#include <ctime>
@ -33,6 +30,15 @@
#include <string>
#include <vector>
#include <typeinfo>
#include <limits>
#include <algorithm>
#include <sstream>
#include <complex>
#include <deque>
#include <queue>
#define min(A,B) please_protect_your_min_with_parentheses
#define max(A,B) please_protect_your_max_with_parentheses
// the following file is automatically generated by cmake
#include "split_test_helper.h"

@ -38,7 +38,7 @@ bool equalsIdentity(const MatrixType& A)
}
}
for (Index i = 0; i < A.rows(); ++i) {
for (Index j = 0; j < std::min(i, A.cols()); ++j) {
for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
offDiagOK = offDiagOK && (A(i,j) == zero);
}
}

@ -128,7 +128,7 @@ template<typename Scalar> void packetmath()
{
data1[i] = internal::random<Scalar>()/RealScalar(PacketSize);
data2[i] = internal::random<Scalar>()/RealScalar(PacketSize);
refvalue = std::max(refvalue,internal::abs(data1[i]));
refvalue = (std::max)(refvalue,internal::abs(data1[i]));
}
internal::pstore(data2, internal::pload<Packet>(data1));
@ -264,16 +264,16 @@ template<typename Scalar> void packetmath_real()
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = std::min(ref[0],data1[i]);
ref[0] = (std::min)(ref[0],data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
CHECK_CWISE2(std::min, internal::pmin);
CHECK_CWISE2(std::max, internal::pmax);
CHECK_CWISE2((std::min), internal::pmin);
CHECK_CWISE2((std::max), internal::pmax);
CHECK_CWISE1(internal::abs, internal::pabs);
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = std::max(ref[0],data1[i]);
ref[0] = (std::max)(ref[0],data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
for (int i=0; i<PacketSize; ++i)

@ -58,7 +58,7 @@ template<typename MatrixType> void inverse_general_4x4(int repeat)
MatrixType inv = m.inverse();
double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / NumTraits<Scalar>::epsilon() );
error_sum += error;
error_max = std::max(error_max, error);
error_max = (std::max)(error_max, error);
}
std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
double error_avg = error_sum / repeat;

@ -29,7 +29,7 @@ template<typename Derived1, typename Derived2>
bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
{
return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
* std::max(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
* (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
}
template<typename MatrixType> void product(const MatrixType& m)
@ -102,7 +102,7 @@ template<typename MatrixType> void product(const MatrixType& m)
// test the previous tests were not screwed up because operator* returns 0
// (we use the more accurate default epsilon)
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
{
VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
}
@ -111,7 +111,7 @@ template<typename MatrixType> void product(const MatrixType& m)
res = square;
res.noalias() += m1 * m2.transpose();
VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
{
VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
}
@ -123,7 +123,7 @@ template<typename MatrixType> void product(const MatrixType& m)
res = square;
res.noalias() -= m1 * m2.transpose();
VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
{
VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
}
@ -147,7 +147,7 @@ template<typename MatrixType> void product(const MatrixType& m)
res2 = square2;
res2.noalias() += m1.transpose() * m2;
VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1)
if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
{
VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
}

@ -31,7 +31,7 @@ template<typename MatrixType> void qr()
typedef typename MatrixType::Index Index;
Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
Index rank = internal::random<Index>(1, std::min(rows, cols)-1);
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
@ -64,7 +64,7 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
{
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
int rank = internal::random<int>(1, std::min(int(Rows), int(Cols))-1);
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
Matrix<Scalar,Rows,Cols> m1;
createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);

@ -31,7 +31,7 @@ template<typename MatrixType> void qr()
typedef typename MatrixType::Index Index;
Index rows = internal::random<Index>(20,200), cols = internal::random<int>(20,200), cols2 = internal::random<int>(20,200);
Index rank = internal::random<Index>(1, std::min(rows, cols)-1);
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;

@ -43,8 +43,8 @@ template<typename MatrixType> void matrixRedux(const MatrixType& m)
{
s += m1(i,j);
p *= m1(i,j);
minc = std::min(internal::real(minc), internal::real(m1(i,j)));
maxc = std::max(internal::real(maxc), internal::real(m1(i,j)));
minc = (std::min)(internal::real(minc), internal::real(m1(i,j)));
maxc = (std::max)(internal::real(maxc), internal::real(m1(i,j)));
}
const Scalar mean = s/Scalar(RealScalar(rows*cols));
@ -86,8 +86,8 @@ template<typename VectorType> void vectorRedux(const VectorType& w)
{
s += v[j];
p *= v[j];
minc = std::min(minc, internal::real(v[j]));
maxc = std::max(maxc, internal::real(v[j]));
minc = (std::min)(minc, internal::real(v[j]));
maxc = (std::max)(maxc, internal::real(v[j]));
}
VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.head(i).sum()), Scalar(1));
VERIFY_IS_APPROX(p, v.head(i).prod());
@ -103,8 +103,8 @@ template<typename VectorType> void vectorRedux(const VectorType& w)
{
s += v[j];
p *= v[j];
minc = std::min(minc, internal::real(v[j]));
maxc = std::max(maxc, internal::real(v[j]));
minc = (std::min)(minc, internal::real(v[j]));
maxc = (std::max)(maxc, internal::real(v[j]));
}
VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.tail(size-i).sum()), Scalar(1));
VERIFY_IS_APPROX(p, v.tail(size-i).prod());
@ -120,8 +120,8 @@ template<typename VectorType> void vectorRedux(const VectorType& w)
{
s += v[j];
p *= v[j];
minc = std::min(minc, internal::real(v[j]));
maxc = std::max(maxc, internal::real(v[j]));
minc = (std::min)(minc, internal::real(v[j]));
maxc = (std::max)(maxc, internal::real(v[j]));
}
VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
VERIFY_IS_APPROX(p, v.segment(i, size-2*i).prod());
@ -140,7 +140,7 @@ template<typename VectorType> void vectorRedux(const VectorType& w)
void test_redux()
{
// the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
int maxsize = std::min(100,EIGEN_TEST_MAX_SIZE);
int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
EIGEN_UNUSED_VARIABLE(maxsize);
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );

@ -29,6 +29,15 @@
#include "main.h"
#if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC && !defined(__clang__)
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
#include <tr1/unordered_map>
#define EIGEN_UNORDERED_MAP_SUPPORT
namespace std {

@ -34,7 +34,7 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = std::max(8./(rows*cols), 0.01);
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
Scalar eps = 1e-6;
@ -207,7 +207,7 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
initSparse<Scalar>(density, refMat2, m2);
int j0 = internal::random<int>(0,rows-2);
int j1 = internal::random<int>(0,rows-2);
int n0 = internal::random<int>(1,rows-std::max(j0,j1));
int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));

@ -58,7 +58,7 @@ template<typename SparseMatrixType> void sparse_product()
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = std::max(8./(rows*cols), 0.01);
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;

@ -47,7 +47,7 @@ initSPD(double density,
template<typename Scalar> void sparse_solvers(int rows, int cols)
{
double density = std::max(8./(rows*cols), 0.01);
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
// Scalar eps = 1e-6;

@ -26,8 +26,8 @@
template<typename Scalar> void sparse_vector(int rows, int cols)
{
double densityMat = std::max(8./(rows*cols), 0.01);
double densityVec = std::max(8./float(rows), 0.1);
double densityMat = (std::max)(8./(rows*cols), 0.01);
double densityVec = (std::max)(8./float(rows), 0.1);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef SparseVector<Scalar> SparseVectorType;

@ -68,8 +68,8 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
Index rows = m.rows();
Index cols = m.cols();
Scalar big = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::max() * RealScalar(1e-4));
Scalar small = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::min() * RealScalar(1e4));
Scalar big = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
Scalar small = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
MatrixType vzero = MatrixType::Zero(rows, cols),
vrand = MatrixType::Random(rows, cols),

@ -242,7 +242,7 @@ void bug_159()
void test_triangular()
{
int maxsize = std::min(EIGEN_TEST_MAX_SIZE,20);
int maxsize = (std::min)(EIGEN_TEST_MAX_SIZE,20);
for(int i = 0; i < g_repeat ; i++)
{
int r = internal::random<int>(2,maxsize); EIGEN_UNUSED_VARIABLE(r);

@ -331,7 +331,7 @@ class FFT
// if the vector is strided, then we need to copy it to a packed temporary
Matrix<src_type,1,Dynamic> tmp;
if ( resize_input ) {
size_t ncopy = std::min(src.size(),src.size() + resize_input);
size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
tmp.setZero(src.size() + resize_input);
if ( realfft && HasFlag(HalfSpectrum) ) {
// pad at the Nyquist bin

@ -231,7 +231,7 @@ private:
template<typename BVH, typename Minimizer>
typename Minimizer::Scalar BVMinimize(const BVH &tree, Minimizer &minimizer)
{
return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), std::numeric_limits<typename Minimizer::Scalar>::max());
return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), (std::numeric_limits<typename Minimizer::Scalar>::max)());
}
/** Given two BVH's, runs the query on their cartesian product encapsulated by \a minimizer.
@ -264,7 +264,7 @@ typename Minimizer::Scalar BVMinimize(const BVH1 &tree1, const BVH2 &tree2, Mini
ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
Scalar minimum = std::numeric_limits<Scalar>::max();
Scalar minimum = (std::numeric_limits<Scalar>::max)();
todo.push(std::make_pair(Scalar(), std::make_pair(tree1.getRootIndex(), tree2.getRootIndex())));
while(!todo.empty()) {

@ -259,7 +259,7 @@ void MatrixExponential<MatrixType>::computeUV(float)
pade5(m_M);
} else {
const float maxnorm = 3.925724783138660f;
m_squarings = max(0, (int)ceil(log2(m_l1norm / maxnorm)));
m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = m_M / pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings)));
pade7(A);
}
@ -281,7 +281,7 @@ void MatrixExponential<MatrixType>::computeUV(double)
pade9(m_M);
} else {
const double maxnorm = 5.371920351148152;
m_squarings = max(0, (int)ceil(log2(m_l1norm / maxnorm)));
m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = m_M / pow(Scalar(2), Scalar(m_squarings));
pade13(A);
}

@ -90,13 +90,13 @@ struct BallPointStuff //this class provides functions to be both an intersector
}
double minimumOnVolume(const BoxType &r) { ++calls; return r.squaredExteriorDistance(p); }
double minimumOnObject(const BallType &b) { ++calls; return std::max(0., (b.center - p).squaredNorm() - SQR(b.radius)); }
double minimumOnObject(const BallType &b) { ++calls; return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius)); }
double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return r1.squaredExteriorDistance(r2); }
double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR(std::max(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); }
double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR((std::max)(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); }
double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.squaredExteriorDistance(v); }
double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR(std::max(0., (b.center - v).norm() - b.radius)); }
double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR((std::max)(0., (b.center - v).norm() - b.radius)); }
VectorType p;
int calls;

@ -27,7 +27,7 @@
template<typename Scalar,typename Index> void cg(int size)
{
double density = std::max(8./(size*size), 0.01);
double density = (std::max)(8./(size*size), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;

@ -36,7 +36,7 @@ double binom(int n, int k)
template <typename Derived, typename OtherDerived>
double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
{
return std::sqrt((A - B).cwiseAbs2().sum() / std::min(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
}
template <typename T>

@ -67,7 +67,7 @@ template<typename SparseMatrixType> void sparse_extra(const SparseMatrixType& re
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = std::max(8./(rows*cols), 0.01);
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
Scalar eps = 1e-6;

@ -33,7 +33,7 @@ template<typename Scalar,typename Index> void sparse_ldlt(int rows, int cols)
{
static bool odd = true;
odd = !odd;
double density = std::max(8./(rows*cols), 0.01);
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;

@ -31,7 +31,7 @@
template<typename Scalar,typename Index> void sparse_llt(int rows, int cols)
{
double density = std::max(8./(rows*cols), 0.01);
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;

@ -35,7 +35,7 @@
template<typename Scalar> void sparse_lu(int rows, int cols)
{
double density = std::max(8./(rows*cols), 0.01);
double density = (std::max)(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;