More extensive unit tests for recent array-wise functors

This commit is contained in:
Deanna Hood 2015-03-18 03:11:03 +10:00
parent 8878e1c1de
commit 41b717de25

View File

@ -197,7 +197,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
Scalar s1 = internal::random<Scalar>(); Scalar s1 = internal::random<Scalar>();
// these tests are mostly to check possible compilation issues. // these tests are mostly to check possible compilation issues with free-functions.
VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.sin(), sin(m1));
VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1));
VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1));
@ -207,26 +207,44 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
VERIFY_IS_APPROX(m1.log(), log(m1));
VERIFY_IS_APPROX(m1.log10(), log10(m1));
VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1));
VERIFY_IS_APPROX(m1.round(), round(m1)); VERIFY_IS_APPROX(m1.round(), round(m1));
VERIFY_IS_APPROX(m1.floor(), floor(m1)); VERIFY_IS_APPROX(m1.floor(), floor(m1));
VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); VERIFY_IS_APPROX(m1.ceil(), ceil(m1));
VERIFY_IS_APPROX(m1.isNaN(), isNaN(m1)); VERIFY((m1.isNaN() == isNaN(m1)).all());
VERIFY_IS_APPROX(m1.isInf(), isInf(m1)); VERIFY((m1.isInf() == isInf(m1)).all());
VERIFY_IS_APPROX(m1.isFinite(), isFinite(m1)); VERIFY((m1.isFinite() == isFinite(m1)).all());
VERIFY_IS_APPROX(inverse(m1.inverse()), m1); VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
VERIFY_IS_APPROX(abs2(m1.abs2()), pow(abs(m1),2*2)); VERIFY_IS_APPROX(m1.abs(), abs(m1));
VERIFY_IS_APPROX(m1.square().sqrt(), sqrt(square(m1))); VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
VERIFY_IS_APPROX(cube(m1.cube()), pow((m1),3*3)); VERIFY_IS_APPROX(m1.square(), square(m1));
VERIFY_IS_APPROX(m1.cube(), cube(m1));
VERIFY(!(m1>m2),(m1<=m2));
VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
VERIFY_IS_APPROX(m1.abs().sqrt(), sqrt(abs(m1)));
VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1))); // avoid NaNs with abs() so verification doesn't fail
m3 = m1.abs();
VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1)));
VERIFY_IS_APPROX(m3.log(), log(m3));
VERIFY_IS_APPROX(m3.log10(), log10(m3));
VERIFY((!(m1>m2) == (m1<=m2)).all());
VERIFY_IS_APPROX(sin(m1.asin()), m1);
VERIFY_IS_APPROX(cos(m1.acos()), m1);
VERIFY_IS_APPROX(tan(m1.atan()), m1);
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
VERIFY_IS_APPROX(arg(m1), ((ArrayType)(m1<0))*std::acos(-1.0));
VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
VERIFY(isNaN(m1*0.0/0.0).all());
VERIFY(isInf(m1/0.0).all());
VERIFY((isFinite(m1) && !isFinite(m1*0.0/0.0) && !isFinite(m1/0.0)).all());
VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
VERIFY_IS_APPROX(m3, sqrt(abs2(m1)));
VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1));
@ -235,7 +253,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
// shift argument of logarithm so that it is not zero // shift argument of logarithm so that it is not zero
Scalar smallNumber = NumTraits<Scalar>::dummy_precision(); Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
VERIFY_IS_APPROX((m1.abs() + smallNumber).log() , log(abs(m1) + smallNumber)); VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber));
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp(), exp(m1));
@ -243,13 +261,15 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(m1.pow(2), m1.square());
VERIFY_IS_APPROX(pow(m1,2), m1.square()); VERIFY_IS_APPROX(pow(m1,2), m1.square());
VERIFY_IS_APPROX(m1.pow(3), m1.cube());
VERIFY_IS_APPROX(pow(m1,3), m1.cube());
ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
m3 = m1.abs();
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
// scalar by array division // scalar by array division
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
@ -260,14 +280,16 @@ template<typename ArrayType> void array_real(const ArrayType& m)
// check inplace transpose // check inplace transpose
m3 = m1; m3 = m1;
m3.transposeInPlace(); m3.transposeInPlace();
VERIFY_IS_APPROX(m3,m1.transpose()); VERIFY_IS_APPROX(m3, m1.transpose());
m3.transposeInPlace(); m3.transposeInPlace();
VERIFY_IS_APPROX(m3,m1); VERIFY_IS_APPROX(m3, m1);
} }
template<typename ArrayType> void array_complex(const ArrayType& m) template<typename ArrayType> void array_complex(const ArrayType& m)
{ {
typedef typename ArrayType::Index Index; typedef typename ArrayType::Index Index;
typedef typename ArrayType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows(); Index rows = m.rows();
Index cols = m.cols(); Index cols = m.cols();
@ -275,29 +297,72 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
ArrayType m1 = ArrayType::Random(rows, cols), ArrayType m1 = ArrayType::Random(rows, cols),
m2(rows, cols); m2(rows, cols);
Array<RealScalar, -1, -1> m3(rows, cols);
Scalar s1 = internal::random<Scalar>();
for (Index i = 0; i < m.rows(); ++i) for (Index i = 0; i < m.rows(); ++i)
for (Index j = 0; j < m.cols(); ++j) for (Index j = 0; j < m.cols(); ++j)
m2(i,j) = sqrt(m1(i,j)); m2(i,j) = sqrt(m1(i,j));
VERIFY_IS_APPROX(m1.sqrt(), m2); // these tests are mostly to check possible compilation issues with free-functions.
VERIFY_IS_APPROX(m1.sqrt(), Eigen::sqrt(m1));
VERIFY_IS_APPROX(m1.log(), log(m1));
VERIFY_IS_APPROX(m1.log10(), log10(m1));
VERIFY_IS_APPROX(m1.arg(), arg(m1));
VERIFY_IS_APPROX(abs2(m1.abs2()), pow(abs(m1),2*2));
VERIFY_IS_APPROX(m1.isNaN(), isNaN(m1));
VERIFY_IS_APPROX(m1.isInf(), isInf(m1));
VERIFY_IS_APPROX(m1.isFinite(), isFinite(m1));
VERIFY_IS_APPROX(m1.square().sqrt(), sqrt(square(m1)));
VERIFY_IS_APPROX(cube(m1.cube()), pow((m1),3*3));
VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
VERIFY_IS_APPROX(inverse(m1.inverse()), m1);
VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.sin(), sin(m1));
VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1));
VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1));
VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
VERIFY_IS_APPROX(m1.arg(), arg(m1));
VERIFY((m1.isNaN() == isNaN(m1)).all());
VERIFY((m1.isInf() == isInf(m1)).all());
VERIFY((m1.isFinite() == isFinite(m1)).all());
VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
VERIFY_IS_APPROX(m1.log(), log(m1));
VERIFY_IS_APPROX(m1.log10(), log10(m1));
VERIFY_IS_APPROX(m1.abs(), abs(m1));
VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1));
VERIFY_IS_APPROX(m1.square(), square(m1));
VERIFY_IS_APPROX(m1.cube(), cube(m1));
VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
VERIFY_IS_APPROX(m1.exp(), exp(m1));
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
for (Index i = 0; i < m.rows(); ++i)
for (Index j = 0; j < m.cols(); ++j)
m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j)));
VERIFY_IS_APPROX(arg(m1), m3);
std::complex<RealScalar> zero(0.0,0.0);
VERIFY(isNaN(m1*zero/zero).all());
VERIFY(isInf(m1/zero).all());
VERIFY((isFinite(m1) && !isFinite(m1*zero/zero) && !isFinite(m1/zero)).all());
VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1))));
VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));
// scalar by array division
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
s1 += Scalar(tiny);
m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
// check inplace transpose
m2 = m1;
m2.transposeInPlace();
VERIFY_IS_APPROX(m2, m1.transpose());
m2.transposeInPlace();
VERIFY_IS_APPROX(m2, m1);
} }