mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
misc cleaning / eigenization
This commit is contained in:
parent
fcd074c928
commit
40eac2d8a0
@ -238,8 +238,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
wa3 = diag.cwiseProduct(x);
|
||||
xnorm = wa3.stableNorm();
|
||||
xnorm = diag.cwiseProduct(x).stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
@ -269,8 +268,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwiseProduct(wa1);
|
||||
pnorm = wa3.stableNorm();
|
||||
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
if (iter == 1)
|
||||
@ -489,8 +487,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
wa3 = diag.cwiseProduct(x);
|
||||
xnorm = wa3.stableNorm();
|
||||
xnorm = diag.cwiseProduct(x).stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
@ -520,8 +517,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwiseProduct(wa1);
|
||||
pnorm = wa3.stableNorm();
|
||||
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
if (iter == 1)
|
||||
|
@ -261,8 +261,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
wa3 = diag.cwiseProduct(x);
|
||||
xnorm = wa3.stableNorm();
|
||||
xnorm = diag.cwiseProduct(x).stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
@ -297,8 +296,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwiseProduct(wa1);
|
||||
pnorm = wa3.stableNorm();
|
||||
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
if (iter == 1)
|
||||
@ -515,8 +513,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
wa3 = diag.cwiseProduct(x);
|
||||
xnorm = wa3.stableNorm();
|
||||
xnorm = diag.cwiseProduct(x).stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
@ -545,8 +542,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwiseProduct(wa1);
|
||||
pnorm = wa3.stableNorm();
|
||||
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
if (iter == 1)
|
||||
|
@ -4,11 +4,11 @@
|
||||
|
||||
template<typename Scalar>
|
||||
void ei_chkder(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
Matrix< Scalar, Dynamic, Dynamic > &fjac,
|
||||
const Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
const Matrix< Scalar, Dynamic, Dynamic > &fjac,
|
||||
Matrix< Scalar, Dynamic, 1 > &xp,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvecp,
|
||||
const Matrix< Scalar, Dynamic, 1 > &fvecp,
|
||||
int mode,
|
||||
Matrix< Scalar, Dynamic, 1 > &err
|
||||
)
|
||||
|
@ -16,7 +16,7 @@ void ei_covar(
|
||||
Matrix< Scalar, Dynamic, 1 > wa(n);
|
||||
assert(ipvt.size()==n);
|
||||
|
||||
/* form the inverse of r in the full upper triangle of r. */
|
||||
/* form the inverse of r in the full upper triangle of r. */
|
||||
l = -1;
|
||||
for (k = 0; k < n; ++k)
|
||||
if (ei_abs(r(k,k)) > tolr) {
|
||||
@ -24,27 +24,21 @@ void ei_covar(
|
||||
for (j = 0; j <= k-1; ++j) {
|
||||
temp = r(k,k) * r(j,k);
|
||||
r(j,k) = 0.;
|
||||
for (i = 0; i <= j; ++i)
|
||||
r(i,k) -= temp * r(i,j);
|
||||
r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
|
||||
}
|
||||
l = k;
|
||||
}
|
||||
|
||||
/* form the full upper triangle of the inverse of (r transpose)*r */
|
||||
/* in the full upper triangle of r. */
|
||||
/* form the full upper triangle of the inverse of (r transpose)*r */
|
||||
/* in the full upper triangle of r. */
|
||||
for (k = 0; k <= l; ++k) {
|
||||
for (j = 0; j <= k-1; ++j) {
|
||||
temp = r(j,k);
|
||||
for (i = 0; i <= j; ++i)
|
||||
r(i,j) += temp * r(i,k);
|
||||
}
|
||||
temp = r(k,k);
|
||||
for (i = 0; i <= k; ++i)
|
||||
r(i,k) = temp * r(i,k);
|
||||
for (j = 0; j <= k-1; ++j)
|
||||
r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
|
||||
r.col(k).head(k+1) *= r(k,k);
|
||||
}
|
||||
|
||||
/* form the full lower triangle of the covariance matrix */
|
||||
/* in the strict lower triangle of r and in wa. */
|
||||
/* form the full lower triangle of the covariance matrix */
|
||||
/* in the strict lower triangle of r and in wa. */
|
||||
for (j = 0; j < n; ++j) {
|
||||
jj = ipvt[j];
|
||||
sing = j > l;
|
||||
@ -60,11 +54,8 @@ void ei_covar(
|
||||
wa[jj] = r(j,j);
|
||||
}
|
||||
|
||||
/* symmetrize the covariance matrix in r. */
|
||||
for (j = 0; j < n; ++j) {
|
||||
for (i = 0; i <= j; ++i)
|
||||
r(i,j) = r(j,i);
|
||||
r(j,j) = wa[j];
|
||||
}
|
||||
/* symmetrize the covariance matrix in r. */
|
||||
r.corner(TopLeft,n,n).template triangularView<StrictlyUpper>() = r.corner(TopLeft,n,n).transpose();
|
||||
r.diagonal() = wa;
|
||||
}
|
||||
|
||||
|
@ -36,8 +36,7 @@ void ei_dogleg(
|
||||
}
|
||||
|
||||
/* test whether the gauss-newton direction is acceptable. */
|
||||
wa2 = diag.cwiseProduct(x);
|
||||
qnorm = wa2.stableNorm();
|
||||
qnorm = diag.cwiseProduct(x).stableNorm();
|
||||
if (qnorm <= delta)
|
||||
return;
|
||||
|
||||
@ -48,9 +47,7 @@ void ei_dogleg(
|
||||
|
||||
wa1.fill(0.);
|
||||
for (j = 0; j < n; ++j) {
|
||||
temp = qtb[j];
|
||||
for (i = j; i < n; ++i)
|
||||
wa1[i] += qrfac(j,i) * temp;
|
||||
wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
|
||||
wa1[j] /= diag[j];
|
||||
}
|
||||
|
||||
|
@ -10,10 +10,11 @@ int ei_fdjac1(
|
||||
{
|
||||
/* Local variables */
|
||||
Scalar h;
|
||||
int i, j, k;
|
||||
int j, k;
|
||||
Scalar eps, temp;
|
||||
int msum;
|
||||
int iflag;
|
||||
int start, length;
|
||||
|
||||
/* Function Body */
|
||||
const Scalar epsmch = epsilon<Scalar>();
|
||||
@ -55,11 +56,10 @@ int ei_fdjac1(
|
||||
x[j] = wa2[j];
|
||||
h = eps * ei_abs(wa2[j]);
|
||||
if (h == 0.) h = eps;
|
||||
for (i = 0; i < n; ++i) {
|
||||
fjac(i,j) = 0.;
|
||||
if (i >= j - mu && i <= j + ml)
|
||||
fjac(i,j) = (wa1[i] - fvec[i]) / h;
|
||||
}
|
||||
fjac.col(j).setZero();
|
||||
start = std::max(0,j-mu);
|
||||
length = std::min(n-1, j+ml) - start + 1;
|
||||
fjac.col(j).segment(start, length) = ( wa1.segment(start, length)-fvec.segment(start, length))/h;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -164,7 +164,7 @@ void ei_lmpar2(
|
||||
|
||||
{
|
||||
/* Local variables */
|
||||
int i, j;
|
||||
int j;
|
||||
Scalar fp;
|
||||
Scalar parc, parl;
|
||||
int iter;
|
||||
@ -183,9 +183,11 @@ void ei_lmpar2(
|
||||
|
||||
/* compute and store in x the gauss-newton direction. if the */
|
||||
/* jacobian is rank-deficient, obtain a least squares solution. */
|
||||
|
||||
// const int rank = qr.nonzeroPivots(); // exactly double(0.)
|
||||
const int rank = qr.rank(); // use a threshold
|
||||
wa1 = qtb; wa1.segment(rank,n-rank).setZero();
|
||||
wa1 = qtb;
|
||||
wa1.tail(n-rank).setZero();
|
||||
qr.matrixQR().corner(TopLeft, rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
|
||||
|
||||
x = qr.colsPermutation()*wa1;
|
||||
@ -255,10 +257,12 @@ void ei_lmpar2(
|
||||
|
||||
/* compute the newton correction. */
|
||||
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
|
||||
// we could almost use this here, but the diagonal is outside qr, in sdiag[]
|
||||
// qr.matrixQR().corner(TopLeft, n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] /= sdiag[j];
|
||||
temp = wa1[j];
|
||||
for (i = j+1; i < n; ++i)
|
||||
for (int i = j+1; i < n; ++i)
|
||||
wa1[i] -= s(i,j) * temp;
|
||||
}
|
||||
temp = wa1.blueNorm();
|
||||
|
@ -1,4 +1,5 @@
|
||||
|
||||
// TODO : once qrsolv2 is removed, use ColPivHouseholderQR or PermutationMatrix instead of ipvt
|
||||
template <typename Scalar>
|
||||
void ei_qrsolv(
|
||||
Matrix< Scalar, Dynamic, Dynamic > &s,
|
||||
@ -15,6 +16,7 @@ void ei_qrsolv(
|
||||
Scalar temp;
|
||||
int n = s.cols();
|
||||
Matrix< Scalar, Dynamic, 1 > wa(n);
|
||||
PlanarRotation<Scalar> givens;
|
||||
|
||||
/* Function Body */
|
||||
// the following will only change the lower triangular part of s, including
|
||||
@ -25,9 +27,7 @@ void ei_qrsolv(
|
||||
x = s.diagonal();
|
||||
wa = qtb;
|
||||
|
||||
for (j = 0; j < n; ++j)
|
||||
for (i = j+1; i < n; ++i)
|
||||
s(i,j) = s(j,i);
|
||||
s.corner(TopLeft,n,n).template triangularView<StrictlyLower>() = s.corner(TopLeft,n,n).transpose();
|
||||
|
||||
/* eliminate the diagonal matrix d using a givens rotation. */
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -37,7 +37,7 @@ void ei_qrsolv(
|
||||
l = ipvt[j];
|
||||
if (diag[l] == 0.)
|
||||
break;
|
||||
sdiag.segment(j,n-j).setZero();
|
||||
sdiag.tail(n-j).setZero();
|
||||
sdiag[j] = diag[l];
|
||||
|
||||
/* the transformations to eliminate the row of d */
|
||||
@ -47,7 +47,6 @@ void ei_qrsolv(
|
||||
for (k = j; k < n; ++k) {
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* appropriate element in the current row of d. */
|
||||
PlanarRotation<Scalar> givens;
|
||||
givens.makeGivens(-s(k,k), sdiag[k]);
|
||||
|
||||
/* compute the modified diagonal element of r and */
|
||||
@ -70,8 +69,8 @@ void ei_qrsolv(
|
||||
/* singular, then obtain a least squares solution. */
|
||||
int nsing;
|
||||
for (nsing=0; nsing<n && sdiag[nsing]!=0; nsing++);
|
||||
wa.segment(nsing,n-nsing).setZero();
|
||||
|
||||
wa.tail(n-nsing).setZero();
|
||||
s.corner(TopLeft, nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
|
||||
|
||||
// restore
|
||||
|
Loading…
Reference in New Issue
Block a user