Make stableNorm and blueNorm compatible with 2D matrices.

This commit is contained in:
Gael Guennebaud 2018-04-04 15:13:31 +02:00
parent 4213b63f5c
commit 403f09ccef
2 changed files with 80 additions and 38 deletions

View File

@ -50,6 +50,71 @@ inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& sc
ssq += (bl*invScale).squaredNorm();
}
template<typename VectorType, typename RealScalar>
void stable_norm_impl_inner_step(const VectorType &vec, RealScalar& ssq, RealScalar& scale, RealScalar& invScale)
{
typedef typename VectorType::Scalar Scalar;
const Index blockSize = 4096;
typedef typename internal::nested_eval<VectorType,2>::type VectorTypeCopy;
typedef typename internal::remove_all<VectorTypeCopy>::type VectorTypeCopyClean;
const VectorTypeCopy copy(vec);
enum {
CanAlign = ( (int(VectorTypeCopyClean::Flags)&DirectAccessBit)
|| (int(internal::evaluator<VectorTypeCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
&& (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
};
typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<VectorTypeCopyClean>::Alignment>,
typename VectorTypeCopyClean::ConstSegmentReturnType>::type SegmentWrapper;
Index n = vec.size();
Index bi = internal::first_default_aligned(copy);
if (bi>0)
internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale);
for (; bi<n; bi+=blockSize)
internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale);
}
template<typename VectorType>
typename VectorType::RealScalar
stable_norm_impl(const VectorType &vec, typename enable_if<VectorType::IsVectorAtCompileTime>::type* = 0 )
{
using std::sqrt;
using std::abs;
Index n = vec.size();
if(n==1)
return abs(vec.coeff(0));
typedef typename VectorType::RealScalar RealScalar;
RealScalar scale(0);
RealScalar invScale(1);
RealScalar ssq(0); // sum of squares
stable_norm_impl_inner_step(vec, ssq, scale, invScale);
return scale * sqrt(ssq);
}
template<typename MatrixType>
typename MatrixType::RealScalar
stable_norm_impl(const MatrixType &mat, typename enable_if<!MatrixType::IsVectorAtCompileTime>::type* = 0 )
{
using std::sqrt;
typedef typename MatrixType::RealScalar RealScalar;
RealScalar scale(0);
RealScalar invScale(1);
RealScalar ssq(0); // sum of squares
for(Index j=0; j<mat.outerSize(); ++j)
stable_norm_impl_inner_step(mat.innerVector(j), ssq, scale, invScale);
return scale * sqrt(ssq);
}
template<typename Derived>
inline typename NumTraits<typename traits<Derived>::Scalar>::Real
blueNorm_impl(const EigenBase<Derived>& _vec)
@ -98,12 +163,16 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
RealScalar asml = RealScalar(0);
RealScalar amed = RealScalar(0);
RealScalar abig = RealScalar(0);
for(typename Derived::InnerIterator it(vec, 0); it; ++it)
for(Index j=0; j<vec.outerSize(); ++j)
{
RealScalar ax = abs(it.value());
if(ax > ab2) abig += numext::abs2(ax*s2m);
else if(ax < b1) asml += numext::abs2(ax*s1m);
else amed += numext::abs2(ax);
for(typename Derived::InnerIterator it(vec, j); it; ++it)
{
RealScalar ax = abs(it.value());
if(ax > ab2) abig += numext::abs2(ax*s2m);
else if(ax < b1) asml += numext::abs2(ax*s1m);
else amed += numext::abs2(ax);
}
}
if(amed!=amed)
return amed; // we got a NaN
@ -156,36 +225,7 @@ template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::stableNorm() const
{
using std::sqrt;
using std::abs;
const Index blockSize = 4096;
RealScalar scale(0);
RealScalar invScale(1);
RealScalar ssq(0); // sum of square
typedef typename internal::nested_eval<Derived,2>::type DerivedCopy;
typedef typename internal::remove_all<DerivedCopy>::type DerivedCopyClean;
const DerivedCopy copy(derived());
enum {
CanAlign = ( (int(DerivedCopyClean::Flags)&DirectAccessBit)
|| (int(internal::evaluator<DerivedCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
&& (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
};
typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<DerivedCopyClean>::Alignment>,
typename DerivedCopyClean::ConstSegmentReturnType>::type SegmentWrapper;
Index n = size();
if(n==1)
return abs(this->coeff(0));
Index bi = internal::first_default_aligned(copy);
if (bi>0)
internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale);
for (; bi<n; bi+=blockSize)
internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale);
return scale * sqrt(ssq);
return internal::stable_norm_impl(derived());
}
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
@ -213,7 +253,10 @@ template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::hypotNorm() const
{
return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
if(size()==1)
return numext::abs(coeff(0,0));
else
return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
}
} // end namespace Eigen

View File

@ -204,8 +204,6 @@ void test_hypot()
factor = internal::random<Scalar>();
Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
std::cout << big << " " << small << "\n";
Scalar one (1),
zero (0),
sqrt2 (std::sqrt(2)),
@ -234,6 +232,7 @@ void test_stable_norm()
CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( stable_norm(Vector4d()) );
CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
CALL_SUBTEST_3( stable_norm(MatrixXd(internal::random<int>(10,200), internal::random<int>(10,200))) );
CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
CALL_SUBTEST_6( stable_norm(VectorXcf(internal::random<int>(10,2000))) );