mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
parent
6def9fd52b
commit
3f5591981f
@ -66,9 +66,9 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
|||||||
}
|
}
|
||||||
|
|
||||||
// unordered insertion
|
// unordered insertion
|
||||||
for(int k=0; k<nnz; ++k)
|
for(Index k=0; k<nnz; ++k)
|
||||||
{
|
{
|
||||||
int i = indices[k];
|
Index i = indices[k];
|
||||||
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
||||||
mask[i] = false;
|
mask[i] = false;
|
||||||
}
|
}
|
||||||
@ -76,8 +76,8 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
|||||||
#if 0
|
#if 0
|
||||||
// alternative ordered insertion code:
|
// alternative ordered insertion code:
|
||||||
|
|
||||||
int t200 = rows/(log2(200)*1.39);
|
Index t200 = rows/(log2(200)*1.39);
|
||||||
int t = (rows*100)/139;
|
Index t = (rows*100)/139;
|
||||||
|
|
||||||
// FIXME reserve nnz non zeros
|
// FIXME reserve nnz non zeros
|
||||||
// FIXME implement fast sort algorithms for very small nnz
|
// FIXME implement fast sort algorithms for very small nnz
|
||||||
@ -90,9 +90,9 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
|||||||
if(true)
|
if(true)
|
||||||
{
|
{
|
||||||
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
||||||
for(int k=0; k<nnz; ++k)
|
for(Index k=0; k<nnz; ++k)
|
||||||
{
|
{
|
||||||
int i = indices[k];
|
Index i = indices[k];
|
||||||
res.insertBackByOuterInner(j,i) = values[i];
|
res.insertBackByOuterInner(j,i) = values[i];
|
||||||
mask[i] = false;
|
mask[i] = false;
|
||||||
}
|
}
|
||||||
@ -100,7 +100,7 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
|||||||
else
|
else
|
||||||
{
|
{
|
||||||
// dense path
|
// dense path
|
||||||
for(int i=0; i<rows; ++i)
|
for(Index i=0; i<rows; ++i)
|
||||||
{
|
{
|
||||||
if(mask[i])
|
if(mask[i])
|
||||||
{
|
{
|
||||||
|
@ -125,7 +125,7 @@ class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNes
|
|||||||
inline Scalar value() const { return Base::value() * m_factor; }
|
inline Scalar value() const { return Base::value() * m_factor; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
int m_outer;
|
Index m_outer;
|
||||||
Scalar m_factor;
|
Scalar m_factor;
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -155,7 +155,7 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, R
|
|||||||
{
|
{
|
||||||
for(Index c=0; c<rhs.cols(); ++c)
|
for(Index c=0; c<rhs.cols(); ++c)
|
||||||
{
|
{
|
||||||
int n = lhs.outerSize();
|
Index n = lhs.outerSize();
|
||||||
for(Index j=0; j<n; ++j)
|
for(Index j=0; j<n; ++j)
|
||||||
{
|
{
|
||||||
typename Res::Scalar tmp(0);
|
typename Res::Scalar tmp(0);
|
||||||
|
@ -402,7 +402,7 @@ class SparseMatrix
|
|||||||
* \sa insertBack, insertBackByOuterInner */
|
* \sa insertBack, insertBackByOuterInner */
|
||||||
inline void startVec(Index outer)
|
inline void startVec(Index outer)
|
||||||
{
|
{
|
||||||
eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially");
|
eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
|
||||||
eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
|
eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
|
||||||
m_outerIndex[outer+1] = m_outerIndex[outer];
|
m_outerIndex[outer+1] = m_outerIndex[outer];
|
||||||
}
|
}
|
||||||
@ -480,7 +480,7 @@ class SparseMatrix
|
|||||||
if(m_innerNonZeros != 0)
|
if(m_innerNonZeros != 0)
|
||||||
return;
|
return;
|
||||||
m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
|
m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
|
||||||
for (int i = 0; i < m_outerSize; i++)
|
for (Index i = 0; i < m_outerSize; i++)
|
||||||
{
|
{
|
||||||
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
|
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
|
||||||
}
|
}
|
||||||
@ -752,8 +752,8 @@ class SparseMatrix
|
|||||||
else
|
else
|
||||||
for (Index i=0; i<m.outerSize(); ++i)
|
for (Index i=0; i<m.outerSize(); ++i)
|
||||||
{
|
{
|
||||||
int p = m.m_outerIndex[i];
|
Index p = m.m_outerIndex[i];
|
||||||
int pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
|
Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
|
||||||
Index k=p;
|
Index k=p;
|
||||||
for (; k<pe; ++k)
|
for (; k<pe; ++k)
|
||||||
s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
|
s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
|
||||||
@ -1022,7 +1022,7 @@ void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates()
|
|||||||
wi.fill(-1);
|
wi.fill(-1);
|
||||||
Index count = 0;
|
Index count = 0;
|
||||||
// for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
|
// for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
|
||||||
for(int j=0; j<outerSize(); ++j)
|
for(Index j=0; j<outerSize(); ++j)
|
||||||
{
|
{
|
||||||
Index start = count;
|
Index start = count;
|
||||||
Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
|
Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
|
||||||
|
@ -27,7 +27,7 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
|
|||||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||||
Index rows = lhs.innerSize();
|
Index rows = lhs.innerSize();
|
||||||
Index cols = rhs.outerSize();
|
Index cols = rhs.outerSize();
|
||||||
//int size = lhs.outerSize();
|
//Index size = lhs.outerSize();
|
||||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||||
|
|
||||||
// allocate a temporary buffer
|
// allocate a temporary buffer
|
||||||
|
@ -154,16 +154,16 @@ initSparse(double density,
|
|||||||
sparseMat.finalize();
|
sparseMat.finalize();
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename Scalar> void
|
template<typename Scalar,int Options,typename Index> void
|
||||||
initSparse(double density,
|
initSparse(double density,
|
||||||
Matrix<Scalar,Dynamic,1>& refVec,
|
Matrix<Scalar,Dynamic,1>& refVec,
|
||||||
SparseVector<Scalar>& sparseVec,
|
SparseVector<Scalar,Options,Index>& sparseVec,
|
||||||
std::vector<int>* zeroCoords = 0,
|
std::vector<int>* zeroCoords = 0,
|
||||||
std::vector<int>* nonzeroCoords = 0)
|
std::vector<int>* nonzeroCoords = 0)
|
||||||
{
|
{
|
||||||
sparseVec.reserve(int(refVec.size()*density));
|
sparseVec.reserve(int(refVec.size()*density));
|
||||||
sparseVec.setZero();
|
sparseVec.setZero();
|
||||||
for(int i=0; i<refVec.size(); i++)
|
for(Index i=0; i<refVec.size(); i++)
|
||||||
{
|
{
|
||||||
Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0);
|
Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0);
|
||||||
if (v!=Scalar(0))
|
if (v!=Scalar(0))
|
||||||
|
@ -244,6 +244,7 @@ void test_sparse_product()
|
|||||||
CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) );
|
CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) );
|
||||||
CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) );
|
CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) );
|
||||||
CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
|
CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
|
||||||
|
CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) );
|
||||||
CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
|
CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -9,14 +9,14 @@
|
|||||||
|
|
||||||
#include "sparse.h"
|
#include "sparse.h"
|
||||||
|
|
||||||
template<typename Scalar> void sparse_vector(int rows, int cols)
|
template<typename Scalar,typename Index> void sparse_vector(int rows, int cols)
|
||||||
{
|
{
|
||||||
double densityMat = (std::max)(8./(rows*cols), 0.01);
|
double densityMat = (std::max)(8./(rows*cols), 0.01);
|
||||||
double densityVec = (std::max)(8./float(rows), 0.1);
|
double densityVec = (std::max)(8./float(rows), 0.1);
|
||||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||||
typedef SparseVector<Scalar> SparseVectorType;
|
typedef SparseVector<Scalar,0,Index> SparseVectorType;
|
||||||
typedef SparseMatrix<Scalar> SparseMatrixType;
|
typedef SparseMatrix<Scalar,0,Index> SparseMatrixType;
|
||||||
Scalar eps = 1e-6;
|
Scalar eps = 1e-6;
|
||||||
|
|
||||||
SparseMatrixType m1(rows,rows);
|
SparseMatrixType m1(rows,rows);
|
||||||
@ -101,9 +101,10 @@ template<typename Scalar> void sparse_vector(int rows, int cols)
|
|||||||
void test_sparse_vector()
|
void test_sparse_vector()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
CALL_SUBTEST_1( sparse_vector<double>(8, 8) );
|
CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) ));
|
||||||
CALL_SUBTEST_2( sparse_vector<std::complex<double> >(16, 16) );
|
CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(16, 16) ));
|
||||||
CALL_SUBTEST_1( sparse_vector<double>(299, 535) );
|
CALL_SUBTEST_1(( sparse_vector<double,long int>(299, 535) ));
|
||||||
|
CALL_SUBTEST_1(( sparse_vector<double,short>(299, 535) ));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user