Move iterators to internal, improve doc, make unit test c++03 friendly

This commit is contained in:
Gael Guennebaud 2018-10-03 15:13:15 +02:00
parent 8a1e98240e
commit 3e64b1fc86
5 changed files with 371 additions and 260 deletions

View File

@ -572,15 +572,25 @@ template<typename Derived> class DenseBase
}
EIGEN_DEVICE_FUNC void reverseInPlace();
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** STL-like \link https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator RandomAccessIterator \endlink
* iterator type as returned by the begin() and end() methods.
*/
typedef random_access_iterator_type iterator;
/** This is the const version of iterator (aka read-only) */
typedef random_access_iterator_type const_iterator;
#else
typedef typename internal::conditional< (Flags&DirectAccessBit)==DirectAccessBit,
PointerBasedStlIterator<Derived>,
DenseStlIterator<Derived>
internal::pointer_based_stl_iterator<Derived>,
internal::generic_randaccess_stl_iterator<Derived>
>::type iterator;
typedef typename internal::conditional< (Flags&DirectAccessBit)==DirectAccessBit,
PointerBasedStlIterator<const Derived>,
DenseStlIterator<const Derived>
internal::pointer_based_stl_iterator<const Derived>,
internal::generic_randaccess_stl_iterator<const Derived>
>::type const_iterator;
#endif
inline iterator begin();
inline const_iterator begin() const;
inline const_iterator cbegin() const;

View File

@ -9,20 +9,17 @@
namespace Eigen {
namespace internal {
template<typename XprType,typename Derived>
class IndexedBasedStlIteratorBase
class indexed_based_stl_iterator_base
{
public:
typedef Index difference_type;
typedef std::random_access_iterator_tag iterator_category;
IndexedBasedStlIteratorBase() : mp_xpr(0), m_index(0) {}
IndexedBasedStlIteratorBase(XprType& xpr, Index index) : mp_xpr(&xpr), m_index(index) {}
void swap(IndexedBasedStlIteratorBase& other) {
std::swap(mp_xpr,other.mp_xpr);
std::swap(m_index,other.m_index);
}
indexed_based_stl_iterator_base() : mp_xpr(0), m_index(0) {}
indexed_based_stl_iterator_base(XprType& xpr, Index index) : mp_xpr(&xpr), m_index(index) {}
Derived& operator++() { ++m_index; return derived(); }
Derived& operator--() { --m_index; return derived(); }
@ -30,22 +27,22 @@ public:
Derived operator++(int) { Derived prev(derived()); operator++(); return prev;}
Derived operator--(int) { Derived prev(derived()); operator--(); return prev;}
friend Derived operator+(const IndexedBasedStlIteratorBase& a, Index b) { Derived ret(a.derived()); ret += b; return ret; }
friend Derived operator-(const IndexedBasedStlIteratorBase& a, Index b) { Derived ret(a.derived()); ret -= b; return ret; }
friend Derived operator+(Index a, const IndexedBasedStlIteratorBase& b) { Derived ret(b.derived()); ret += a; return ret; }
friend Derived operator-(Index a, const IndexedBasedStlIteratorBase& b) { Derived ret(b.derived()); ret -= a; return ret; }
friend Derived operator+(const indexed_based_stl_iterator_base& a, Index b) { Derived ret(a.derived()); ret += b; return ret; }
friend Derived operator-(const indexed_based_stl_iterator_base& a, Index b) { Derived ret(a.derived()); ret -= b; return ret; }
friend Derived operator+(Index a, const indexed_based_stl_iterator_base& b) { Derived ret(b.derived()); ret += a; return ret; }
friend Derived operator-(Index a, const indexed_based_stl_iterator_base& b) { Derived ret(b.derived()); ret -= a; return ret; }
Derived& operator+=(Index b) { m_index += b; return derived(); }
Derived& operator-=(Index b) { m_index -= b; return derived(); }
difference_type operator-(const IndexedBasedStlIteratorBase& other) const { eigen_assert(mp_xpr == other.mp_xpr);return m_index - other.m_index; }
difference_type operator-(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr);return m_index - other.m_index; }
bool operator==(const IndexedBasedStlIteratorBase& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; }
bool operator!=(const IndexedBasedStlIteratorBase& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; }
bool operator< (const IndexedBasedStlIteratorBase& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; }
bool operator<=(const IndexedBasedStlIteratorBase& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; }
bool operator> (const IndexedBasedStlIteratorBase& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; }
bool operator>=(const IndexedBasedStlIteratorBase& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; }
bool operator==(const indexed_based_stl_iterator_base& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; }
bool operator!=(const indexed_based_stl_iterator_base& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; }
bool operator< (const indexed_based_stl_iterator_base& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; }
bool operator<=(const indexed_based_stl_iterator_base& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; }
bool operator> (const indexed_based_stl_iterator_base& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; }
bool operator>=(const indexed_based_stl_iterator_base& other) { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; }
protected:
@ -57,7 +54,7 @@ protected:
};
template<typename XprType>
class PointerBasedStlIterator
class pointer_based_stl_iterator
{
enum { is_lvalue = internal::is_lvalue<XprType>::value };
public:
@ -67,8 +64,8 @@ public:
typedef typename internal::conditional<bool(is_lvalue), value_type*, const value_type*>::type pointer;
typedef typename internal::conditional<bool(is_lvalue), value_type&, const value_type&>::type reference;
PointerBasedStlIterator() : m_ptr(0) {}
PointerBasedStlIterator(XprType& xpr, Index index) : m_incr(xpr.innerStride())
pointer_based_stl_iterator() : m_ptr(0) {}
pointer_based_stl_iterator(XprType& xpr, Index index) : m_incr(xpr.innerStride())
{
m_ptr = xpr.data() + index * m_incr.value();
}
@ -77,30 +74,30 @@ public:
reference operator[](Index i) const { return *(m_ptr+i*m_incr.value()); }
pointer operator->() const { return m_ptr; }
PointerBasedStlIterator& operator++() { m_ptr += m_incr.value(); return *this; }
PointerBasedStlIterator& operator--() { m_ptr -= m_incr.value(); return *this; }
pointer_based_stl_iterator& operator++() { m_ptr += m_incr.value(); return *this; }
pointer_based_stl_iterator& operator--() { m_ptr -= m_incr.value(); return *this; }
PointerBasedStlIterator operator++(int) { PointerBasedStlIterator prev(*this); operator++(); return prev;}
PointerBasedStlIterator operator--(int) { PointerBasedStlIterator prev(*this); operator--(); return prev;}
pointer_based_stl_iterator operator++(int) { pointer_based_stl_iterator prev(*this); operator++(); return prev;}
pointer_based_stl_iterator operator--(int) { pointer_based_stl_iterator prev(*this); operator--(); return prev;}
friend PointerBasedStlIterator operator+(const PointerBasedStlIterator& a, Index b) { PointerBasedStlIterator ret(a); ret += b; return ret; }
friend PointerBasedStlIterator operator-(const PointerBasedStlIterator& a, Index b) { PointerBasedStlIterator ret(a); ret -= b; return ret; }
friend PointerBasedStlIterator operator+(Index a, const PointerBasedStlIterator& b) { PointerBasedStlIterator ret(b); ret += a; return ret; }
friend PointerBasedStlIterator operator-(Index a, const PointerBasedStlIterator& b) { PointerBasedStlIterator ret(b); ret -= a; return ret; }
friend pointer_based_stl_iterator operator+(const pointer_based_stl_iterator& a, Index b) { pointer_based_stl_iterator ret(a); ret += b; return ret; }
friend pointer_based_stl_iterator operator-(const pointer_based_stl_iterator& a, Index b) { pointer_based_stl_iterator ret(a); ret -= b; return ret; }
friend pointer_based_stl_iterator operator+(Index a, const pointer_based_stl_iterator& b) { pointer_based_stl_iterator ret(b); ret += a; return ret; }
friend pointer_based_stl_iterator operator-(Index a, const pointer_based_stl_iterator& b) { pointer_based_stl_iterator ret(b); ret -= a; return ret; }
PointerBasedStlIterator& operator+=(Index b) { m_ptr += b*m_incr.value(); return *this; }
PointerBasedStlIterator& operator-=(Index b) { m_ptr -= b*m_incr.value(); return *this; }
pointer_based_stl_iterator& operator+=(Index b) { m_ptr += b*m_incr.value(); return *this; }
pointer_based_stl_iterator& operator-=(Index b) { m_ptr -= b*m_incr.value(); return *this; }
difference_type operator-(const PointerBasedStlIterator& other) const {
difference_type operator-(const pointer_based_stl_iterator& other) const {
return (m_ptr - other.m_ptr)/m_incr.value();
}
bool operator==(const PointerBasedStlIterator& other) { return m_ptr == other.m_ptr; }
bool operator!=(const PointerBasedStlIterator& other) { return m_ptr != other.m_ptr; }
bool operator< (const PointerBasedStlIterator& other) { return m_ptr < other.m_ptr; }
bool operator<=(const PointerBasedStlIterator& other) { return m_ptr <= other.m_ptr; }
bool operator> (const PointerBasedStlIterator& other) { return m_ptr > other.m_ptr; }
bool operator>=(const PointerBasedStlIterator& other) { return m_ptr >= other.m_ptr; }
bool operator==(const pointer_based_stl_iterator& other) { return m_ptr == other.m_ptr; }
bool operator!=(const pointer_based_stl_iterator& other) { return m_ptr != other.m_ptr; }
bool operator< (const pointer_based_stl_iterator& other) { return m_ptr < other.m_ptr; }
bool operator<=(const pointer_based_stl_iterator& other) { return m_ptr <= other.m_ptr; }
bool operator> (const pointer_based_stl_iterator& other) { return m_ptr > other.m_ptr; }
bool operator>=(const pointer_based_stl_iterator& other) { return m_ptr >= other.m_ptr; }
protected:
@ -109,7 +106,7 @@ protected:
};
template<typename XprType>
class DenseStlIterator : public IndexedBasedStlIteratorBase<XprType, DenseStlIterator<XprType> >
class generic_randaccess_stl_iterator : public indexed_based_stl_iterator_base<XprType, generic_randaccess_stl_iterator<XprType> >
{
public:
typedef typename XprType::Scalar value_type;
@ -121,7 +118,7 @@ protected:
is_lvalue = internal::is_lvalue<XprType>::value
};
typedef IndexedBasedStlIteratorBase<XprType,DenseStlIterator> Base;
typedef indexed_based_stl_iterator_base<XprType,generic_randaccess_stl_iterator> Base;
using Base::m_index;
using Base::mp_xpr;
@ -135,67 +132,22 @@ public:
typedef typename internal::conditional<bool(is_lvalue), value_type *, const value_type *>::type pointer;
typedef typename internal::conditional<bool(is_lvalue), value_type&, read_only_ref_t>::type reference;
DenseStlIterator() : Base() {}
DenseStlIterator(XprType& xpr, Index index) : Base(xpr,index) {}
generic_randaccess_stl_iterator() : Base() {}
generic_randaccess_stl_iterator(XprType& xpr, Index index) : Base(xpr,index) {}
reference operator*() const { return (*mp_xpr)(m_index); }
reference operator[](Index i) const { return (*mp_xpr)(m_index+i); }
pointer operator->() const { return &((*mp_xpr)(m_index)); }
};
template<typename XprType,typename Derived>
void swap(IndexedBasedStlIteratorBase<XprType,Derived>& a, IndexedBasedStlIteratorBase<XprType,Derived>& b) {
a.swap(b);
}
template<typename Derived>
inline typename DenseBase<Derived>::iterator DenseBase<Derived>::begin()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return iterator(derived(), 0);
}
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::begin() const
{
return cbegin();
}
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::cbegin() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return const_iterator(derived(), 0);
}
template<typename Derived>
inline typename DenseBase<Derived>::iterator DenseBase<Derived>::end()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return iterator(derived(), size());
}
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::end() const
{
return cend();
}
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::cend() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return const_iterator(derived(), size());
}
template<typename XprType, DirectionType Direction>
class SubVectorStlIterator : public IndexedBasedStlIteratorBase<XprType, SubVectorStlIterator<XprType,Direction> >
class subvector_stl_iterator : public indexed_based_stl_iterator_base<XprType, subvector_stl_iterator<XprType,Direction> >
{
protected:
enum { is_lvalue = internal::is_lvalue<XprType>::value };
typedef IndexedBasedStlIteratorBase<XprType,SubVectorStlIterator> Base;
typedef indexed_based_stl_iterator_base<XprType,subvector_stl_iterator> Base;
using Base::m_index;
using Base::mp_xpr;
@ -207,20 +159,81 @@ public:
typedef value_type* pointer;
typedef value_type reference;
SubVectorStlIterator() : Base() {}
SubVectorStlIterator(XprType& xpr, Index index) : Base(xpr,index) {}
subvector_stl_iterator() : Base() {}
subvector_stl_iterator(XprType& xpr, Index index) : Base(xpr,index) {}
reference operator*() const { return (*mp_xpr).template subVector<Direction>(m_index); }
reference operator[](Index i) const { return (*mp_xpr).template subVector<Direction>(m_index+i); }
pointer operator->() const { return &((*mp_xpr).template subVector<Direction>(m_index)); }
};
} // namespace internal
/** returns an iterator to the first element of the 1D vector or array
* \only_for_vectors
* \sa end(), cbegin()
*/
template<typename Derived>
inline typename DenseBase<Derived>::iterator DenseBase<Derived>::begin()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return iterator(derived(), 0);
}
/** const version of begin() */
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::begin() const
{
return cbegin();
}
/** returns a read-only const_iterator to the first element of the 1D vector or array
* \only_for_vectors
* \sa cend(), begin()
*/
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::cbegin() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return const_iterator(derived(), 0);
}
/** returns an iterator to the element following the last element of the 1D vector or array
* \only_for_vectors
* \sa begin(), cend()
*/
template<typename Derived>
inline typename DenseBase<Derived>::iterator DenseBase<Derived>::end()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return iterator(derived(), size());
}
/** const version of end() */
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::end() const
{
return cend();
}
/** returns a read-only const_iterator to the element following the last element of the 1D vector or array
* \only_for_vectors
* \sa begin(), cend()
*/
template<typename Derived>
inline typename DenseBase<Derived>::const_iterator DenseBase<Derived>::cend() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return const_iterator(derived(), size());
}
template<typename XprType, DirectionType Direction>
class SubVectorsProxy
{
public:
typedef SubVectorStlIterator<XprType, Direction> iterator;
typedef SubVectorStlIterator<const XprType, Direction> const_iterator;
typedef internal::subvector_stl_iterator<XprType, Direction> iterator;
typedef internal::subvector_stl_iterator<const XprType, Direction> const_iterator;
SubVectorsProxy(XprType& xpr) : m_xpr(xpr) {}

View File

@ -133,11 +133,11 @@ template<typename ExpressionType> class ArrayWrapper;
template<typename ExpressionType> class MatrixWrapper;
template<typename Derived> class SolverBase;
template<typename XprType> class InnerIterator;
template<typename XprType> class DenseStlIterator;
template<typename XprType> class PointerBasedStlIterator;
template<typename XprType, DirectionType Direction> class SubVectorsProxy;
namespace internal {
template<typename XprType> class generic_randaccess_stl_iterator;
template<typename XprType> class pointer_based_stl_iterator;
template<typename DecompositionType> struct kernel_retval_base;
template<typename DecompositionType> struct kernel_retval;
template<typename DecompositionType> struct image_retval_base;

View File

@ -43,11 +43,11 @@ reshaped(NRowsType nRows, NColsType nCols) const;
/// \tparam Order specifies whether the coefficients should be processed in column-major-order (ColMajor), in row-major-order (RowMajor),
/// or follows the \em natural order of the nested expression (AutoOrder). The default is ColMajor.
///
/// This overloads is essentially a shortcut for `A.reshaped<Order>(AutoSize,fix<1>).
/// This overloads is essentially a shortcut for `A.reshaped<Order>(AutoSize,fix<1>)`.
///
/// - If Order==ColMajor (the default), then it returns a column-vector from the stacked columns of \c *this.
/// - If Order==RowMajor, then it returns a column-vector from the stacked rows of \c *this.
/// - If Order==AutoOrder, then it returns a column-vector with elements stacked following the storage order of \c *this.
/// - If `Order==ColMajor` (the default), then it returns a column-vector from the stacked columns of \c *this.
/// - If `Order==RowMajor`, then it returns a column-vector from the stacked rows of \c *this.
/// - If `Order==AutoOrder`, then it returns a column-vector with elements stacked following the storage order of \c *this.
/// This mode is the recommended one when the particular ordering of the element is not relevant.
///
/// Example:

View File

@ -17,20 +17,42 @@ make_reverse_iterator( Iterator i )
return std::reverse_iterator<Iterator>(i);
}
template<typename XprType>
bool is_PointerBasedStlIterator(const PointerBasedStlIterator<XprType> &) { return true; }
#if !EIGEN_HAS_CXX11
template<class ForwardIt>
ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt)
{
if (firstIt != lastIt) {
ForwardIt next = firstIt;
while (++next != lastIt) {
if (*next < *firstIt)
return next;
firstIt = next;
}
}
return lastIt;
}
template<class ForwardIt>
bool is_sorted(ForwardIt firstIt, ForwardIt lastIt)
{
return ::is_sorted_until(firstIt, lastIt) == lastIt;
}
#else
using std::is_sorted;
#endif
template<typename XprType>
bool is_DenseStlIterator(const DenseStlIterator<XprType> &) { return true; }
bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; }
template<typename XprType>
bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; }
template<typename Scalar, int Rows, int Cols>
void test_range_for_loop(int rows=Rows, int cols=Cols)
void test_stl_iterators(int rows=Rows, int cols=Cols)
{
using std::begin;
using std::end;
typedef Matrix<Scalar,Rows,1> VectorType;
#if EIGEN_HAS_CXX11
typedef Matrix<Scalar,1,Cols> RowVectorType;
#endif
typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
VectorType v = VectorType::Random(rows);
@ -41,53 +63,90 @@ void test_range_for_loop(int rows=Rows, int cols=Cols)
Index i, j;
VERIFY( is_PointerBasedStlIterator(v.begin()) );
VERIFY( is_PointerBasedStlIterator(v.end()) );
VERIFY( is_PointerBasedStlIterator(cv.begin()) );
VERIFY( is_PointerBasedStlIterator(cv.end()) );
// Check we got a fast pointer-based iterator when expected
{
VERIFY( is_pointer_based_stl_iterator(v.begin()) );
VERIFY( is_pointer_based_stl_iterator(v.end()) );
VERIFY( is_pointer_based_stl_iterator(cv.begin()) );
VERIFY( is_pointer_based_stl_iterator(cv.end()) );
j = internal::random<Index>(0,A.cols()-1);
VERIFY( is_PointerBasedStlIterator(A.col(j).begin()) );
VERIFY( is_PointerBasedStlIterator(A.col(j).end()) );
VERIFY( is_PointerBasedStlIterator(cA.col(j).begin()) );
VERIFY( is_PointerBasedStlIterator(cA.col(j).end()) );
j = internal::random<Index>(0,A.cols()-1);
VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) );
VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) );
VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) );
VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) );
i = internal::random<Index>(0,A.rows()-1);
VERIFY( is_PointerBasedStlIterator(A.row(i).begin()) );
VERIFY( is_PointerBasedStlIterator(A.row(i).end()) );
VERIFY( is_PointerBasedStlIterator(cA.row(i).begin()) );
VERIFY( is_PointerBasedStlIterator(cA.row(i).end()) );
i = internal::random<Index>(0,A.rows()-1);
VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) );
VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) );
VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) );
VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) );
VERIFY( is_PointerBasedStlIterator(A.reshaped().begin()) );
VERIFY( is_PointerBasedStlIterator(A.reshaped().end()) );
VERIFY( is_PointerBasedStlIterator(cA.reshaped().begin()) );
VERIFY( is_PointerBasedStlIterator(cA.reshaped().end()) );
VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) );
VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) );
VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) );
VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) );
VERIFY( is_PointerBasedStlIterator(B.template reshaped<AutoOrder>().begin()) );
VERIFY( is_PointerBasedStlIterator(B.template reshaped<AutoOrder>().end()) );
VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) );
VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) );
VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) );
VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) );
}
VERIFY( is_DenseStlIterator(A.template reshaped<RowMajor>().begin()) );
VERIFY( is_DenseStlIterator(A.template reshaped<RowMajor>().end()) );
#if EIGEN_HAS_CXX11
i = 0;
for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
// check swappable
{
using std::swap;
// pointer-based
{
VectorType v_copy = v;
auto a = v.begin();
auto b = v.end()-1;
swap(a,b);
VERIFY_IS_EQUAL(v,v_copy);
VERIFY_IS_EQUAL(*b,*v.begin());
VERIFY_IS_EQUAL(*b,v(0));
VERIFY_IS_EQUAL(*a,v.end()[-1]);
VERIFY_IS_EQUAL(*a,v(last));
}
j = internal::random<Index>(0,A.cols()-1);
i = 0;
for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
// generic
{
RowMatrixType B_copy = B;
auto Br = B.reshaped();
auto a = Br.begin();
auto b = Br.end()-1;
swap(a,b);
VERIFY_IS_EQUAL(B,B_copy);
VERIFY_IS_EQUAL(*b,*Br.begin());
VERIFY_IS_EQUAL(*b,Br(0));
VERIFY_IS_EQUAL(*a,Br.end()[-1]);
VERIFY_IS_EQUAL(*a,Br(last));
}
}
i = 0;
for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
// check non-const iterator with for-range loops
{
i = 0;
for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
j = 0;
i = internal::random<Index>(0,A.rows()-1);
for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
j = internal::random<Index>(0,A.cols()-1);
i = 0;
for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
i = 0;
for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
i = 0;
for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
// check const_iterator
j = 0;
i = internal::random<Index>(0,A.rows()-1);
for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
i = 0;
for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
}
// same for const_iterator
{
i = 0;
for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }
@ -100,49 +159,51 @@ void test_range_for_loop(int rows=Rows, int cols=Cols)
for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
}
Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
i = 0;
for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
VectorType w(v.size());
i = 0;
for(auto& x : w) { x = v(i++); }
VERIFY_IS_EQUAL(v,w);
// check reshaped() on row-major
{
j = internal::random<Index>(0,A.cols()-1);
auto it = A.col(j).begin();
for(i=0;i<rows;++i) {
VERIFY_IS_EQUAL(it[i],A(i,j));
i = 0;
Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
}
// check write access
{
VectorType w(v.size());
i = 0;
for(auto& x : w) { x = v(i++); }
VERIFY_IS_EQUAL(v,w);
}
// check for dangling pointers
{
// no dangling because pointer-based
{
j = internal::random<Index>(0,A.cols()-1);
auto it = A.col(j).begin();
for(i=0;i<rows;++i) {
VERIFY_IS_EQUAL(it[i],A(i,j));
}
}
// no dangling because pointer-based
{
i = internal::random<Index>(0,A.rows()-1);
auto it = A.row(i).begin();
for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
}
{
j = internal::random<Index>(0,A.cols()-1);
// this would produce a dangling pointer:
// auto it = (A+2*A).col(j).begin();
// we need to name the temporary expression:
auto tmp = (A+2*A).col(j);
auto it = tmp.begin();
for(i=0;i<rows;++i) {
VERIFY_IS_APPROX(it[i],3*A(i,j));
}
}
}
{
i = internal::random<Index>(0,A.rows()-1);
auto it = A.row(i).begin();
for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
}
{
j = internal::random<Index>(0,A.cols()-1);
// this would produce a dangling pointer:
// auto it = (A+2*A).col(j).begin();
// we need to name the temporary expression:
auto tmp = (A+2*A).col(j);
auto it = tmp.begin();
for(i=0;i<rows;++i) {
VERIFY_IS_APPROX(it[i],3*A(i,j));
}
}
// {
// j = internal::random<Index>(0,A.cols()-1);
// auto it = (A+2*A).col(j).begin();
// for(i=0;i<rows;++i) {
// VERIFY_IS_APPROX(it[i],3*A(i,j));
// }
// }
#endif
if(rows>=3) {
@ -155,108 +216,125 @@ void test_range_for_loop(int rows=Rows, int cols=Cols)
VERIFY_IS_EQUAL((A.allCols().begin()+cols/2)[1], A.col(cols/2+1));
}
if(rows>=2)
// check std::sort
{
v(1) = v(0)-Scalar(1);
VERIFY(!std::is_sorted(begin(v),end(v)));
}
std::sort(begin(v),end(v));
VERIFY(std::is_sorted(begin(v),end(v)));
VERIFY(!std::is_sorted(make_reverse_iterator(end(v)),make_reverse_iterator(begin(v))));
// first check that is_sorted returns false when required
if(rows>=2)
{
v(1) = v(0)-Scalar(1);
#if EIGEN_HAS_CXX11
VERIFY(!is_sorted(std::begin(v),std::end(v)));
#else
VERIFY(!is_sorted(v.cbegin(),v.cend()));
#endif
}
// std::sort with pointer-based iterator and default increment
{
j = internal::random<Index>(0,A.cols()-1);
// std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
typename ColMatrixType::ColXpr Acol = A.col(j);
std::sort(begin(Acol),end(Acol));
VERIFY(std::is_sorted(Acol.cbegin(),Acol.cend()));
A.setRandom();
// on a vector
{
std::sort(v.begin(),v.end());
VERIFY(is_sorted(v.begin(),v.end()));
VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin())));
}
std::sort(A.col(j).begin(),A.col(j).end());
VERIFY(std::is_sorted(A.col(j).cbegin(),A.col(j).cend()));
A.setRandom();
}
// std::sort with pointer-based iterator and runtime increment
{
i = internal::random<Index>(0,A.rows()-1);
typename ColMatrixType::RowXpr Arow = A.row(i);
VERIFY_IS_EQUAL( std::distance(begin(Arow),end(Arow)), cols);
std::sort(begin(Arow),end(Arow));
VERIFY(std::is_sorted(Arow.cbegin(),Arow.cend()));
A.setRandom();
std::sort(A.row(i).begin(),A.row(i).end());
VERIFY(std::is_sorted(A.row(i).cbegin(),A.row(i).cend()));
A.setRandom();
}
// std::sort with generic iterator
{
auto B1 = B.reshaped();
std::sort(begin(B1),end(B1));
VERIFY(std::is_sorted(B1.cbegin(),B1.cend()));
B.setRandom();
// assertion because nested expressions are different
// std::sort(B.reshaped().begin(),B.reshaped().end());
// VERIFY(std::is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
// B.setRandom();
// on a column of a column-major matrix -> pointer-based iterator and default increment
{
j = internal::random<Index>(0,A.cols()-1);
// std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
typename ColMatrixType::ColXpr Acol = A.col(j);
std::sort(Acol.begin(),Acol.end());
VERIFY(is_sorted(Acol.cbegin(),Acol.cend()));
A.setRandom();
std::sort(A.col(j).begin(),A.col(j).end());
VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend()));
A.setRandom();
}
// on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
{
i = internal::random<Index>(0,A.rows()-1);
typename ColMatrixType::RowXpr Arow = A.row(i);
VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols);
std::sort(Arow.begin(),Arow.end());
VERIFY(is_sorted(Arow.cbegin(),Arow.cend()));
A.setRandom();
std::sort(A.row(i).begin(),A.row(i).end());
VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend()));
A.setRandom();
}
// with a generic iterator
{
Reshaped<RowMatrixType,RowMatrixType::SizeAtCompileTime,1> B1 = B.reshaped();
std::sort(B1.begin(),B1.end());
VERIFY(is_sorted(B1.cbegin(),B1.cend()));
B.setRandom();
// assertion because nested expressions are different
// std::sort(B.reshaped().begin(),B.reshaped().end());
// VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
// B.setRandom();
}
}
// check with partial_sum
{
j = internal::random<Index>(0,A.cols()-1);
typename ColMatrixType::ColXpr Acol = A.col(j);
std::partial_sum(begin(Acol), end(Acol), begin(v));
std::partial_sum(Acol.begin(), Acol.end(), v.begin());
VERIFY_IS_EQUAL(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));
// inplace
std::partial_sum(begin(Acol), end(Acol), begin(Acol));
std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
VERIFY_IS_EQUAL(v, Acol);
}
// stress random access as required by std::nth_element
if(rows>=3)
{
// stress random access
v.setRandom();
VectorType v1 = v;
std::sort(begin(v1),end(v1));
std::sort(v1.begin(),v1.end());
std::nth_element(v.begin(), v.begin()+rows/2, v.end());
VERIFY_IS_APPROX(v1(rows/2), v(rows/2));
v.setRandom();
v1 = v;
std::sort(begin(v1)+rows/2,end(v1));
std::sort(v1.begin()+rows/2,v1.end());
std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
}
#if EIGEN_HAS_CXX11
j = 0;
for(auto c : A.allCols()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
j = 0;
for(auto c : B.allCols()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
// check rows/cols iterators with range-for loops
{
j = 0;
for(auto c : A.allCols()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
j = 0;
for(auto c : B.allCols()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
j = 0;
for(auto c : B.allCols()) {
i = 0;
for(auto& x : c) {
VERIFY_IS_EQUAL(x, B(i,j));
x = A(i,j);
++i;
j = 0;
for(auto c : B.allCols()) {
i = 0;
for(auto& x : c) {
VERIFY_IS_EQUAL(x, B(i,j));
x = A(i,j);
++i;
}
++j;
}
++j;
VERIFY_IS_APPROX(A,B);
B.setRandom();
i = 0;
for(auto r : A.allRows()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
i = 0;
for(auto r : B.allRows()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
}
VERIFY_IS_APPROX(A,B);
B = Bc; // restore B
i = 0;
for(auto r : A.allRows()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
i = 0;
for(auto r : B.allRows()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
// check rows/cols iterators with STL algorithms
{
RowVectorType row = RowVectorType::Random(cols);
A.rowwise() = row;
@ -265,6 +343,16 @@ void test_range_for_loop(int rows=Rows, int cols=Cols)
VectorType col = VectorType::Random(rows);
A.colwise() = col;
VERIFY( std::all_of(A.allCols().begin(), A.allCols().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.norm(),col.norm()); }) );
i = internal::random<Index>(0,A.rows()-1);
A.setRandom();
A.row(i).setZero();
VERIFY_IS_EQUAL( std::find_if(A.allRows().begin(), A.allRows().end(), [](typename ColMatrixType::RowXpr x) { return x.norm() == Scalar(0); })-A.allRows().begin(), i );
j = internal::random<Index>(0,A.cols()-1);
A.setRandom();
A.col(j).setZero();
VERIFY_IS_EQUAL( std::find_if(A.allCols().begin(), A.allCols().end(), [](typename ColMatrixType::ColXpr x) { return x.norm() == Scalar(0); })-A.allCols().begin(), j );
}
#endif
@ -273,9 +361,9 @@ void test_range_for_loop(int rows=Rows, int cols=Cols)
EIGEN_DECLARE_TEST(stl_iterators)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(( test_range_for_loop<double,2,3>() ));
CALL_SUBTEST_1(( test_range_for_loop<float,7,5>() ));
CALL_SUBTEST_1(( test_range_for_loop<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
CALL_SUBTEST_1(( test_range_for_loop<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() ));
CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() ));
CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
}
}