Fix documentation for SparseLU

This commit is contained in:
Desire NUENTSA 2013-01-21 15:39:18 +01:00
parent d2dd5063b6
commit 3d9150870d
6 changed files with 19 additions and 10 deletions

View File

@ -52,8 +52,9 @@ int etree_find (int i, IndexVector& pp)
}
/** Compute the column elimination tree of a sparse matrix
* NOTE : The matrix is supposed to be in column-major format.
*
* \param mat The matrix in column-major format.
* \param parent The elimination tree
* \param firstRowElt The column index of the first element in each row
*/
template <typename MatrixType, typename IndexVector>
int coletree(const MatrixType& mat, IndexVector& parent, IndexVector& firstRowElt)
@ -161,7 +162,8 @@ void nr_etdfs (int n, IndexVector& parent, IndexVector& first_kid, IndexVector&
/**
* Post order a tree
* \brief Post order a tree
* \param n the number of nodes
* \param parent Input tree
* \param post postordered tree
*/

View File

@ -122,8 +122,10 @@ int SparseLUBase<Scalar,Index>::expand(VectorType& vec, int& length, int nbElts
* \param annz number of initial nonzeros in the matrix
* \param lwork if lwork=-1, this routine returns an estimated size of the required memory
* \param glu persistent data to facilitate multiple factors : will be deleted later ??
* \param fillratio estimated ratio of fill in the factors
* \param panel_size Size of a panel
* \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success
* NOTE Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation
* \note Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LUMemInit(int m, int n, int annz, int lwork, int fillratio, int panel_size, GlobalLU_t& glu)
@ -182,9 +184,10 @@ int SparseLUBase<Scalar,Index>::LUMemInit(int m, int n, int annz, int lwork, int
/**
* \brief Expand the existing storage
* \param vec vector to expand
* \param [in,out]maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
* \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
* \param nbElts current number of elements in the vector.
* \param glu Global data structure
* \param memtype Type of the element to expand
* \param num_expansions Number of expansions
* \return 0 on success, > 0 size of the memory allocated so far
*/
template <typename Scalar, typename Index>

View File

@ -35,6 +35,7 @@ namespace Eigen {
*
* This routine applied to a symmetric elimination tree.
* It assumes that the matrix has been reordered according to the postorder of the etree
* \param n The number of columns
* \param et elimination tree
* \param relax_columns Maximum number of columns allowed in a relaxed snode
* \param descendants Number of descendants of each node in the etree

View File

@ -208,9 +208,11 @@ void SparseLUBase<Scalar,Index>::LU_dfs_kernel(const int jj, IndexVector& perm_r
* \param[out] panel_lsub Subscripts of the row in the panel
* \param[out] segrep Segment representative i.e first nonzero row of each segment
* \param[out] repfnz First nonzero location in each row
* \param[out] xprune
* \param[out] marker
*
* \param[out] xprune The pruned elimination tree
* \param[out] marker work vector
* \param parent The elimination tree
* \param xplore work vector
* \param glu The global data structure
*
*/

View File

@ -47,7 +47,7 @@ namespace Eigen {
* Note: If you absolutely want to use a given pivot order, then set u=0.0.
*
* \param jcol The current column of L
* \param u diagonal pivoting threshold
* \param diagpivotthresh diagonal pivoting threshold
* \param[in,out] perm_r Row permutation (threshold pivoting)
* \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
* \param[out] pivrow The pivot row

View File

@ -35,6 +35,7 @@ namespace Eigen {
*
* This routine is applied to a column elimination tree.
* It assumes that the matrix has been reordered according to the postorder of the etree
* \param n the number of columns
* \param et elimination tree
* \param relax_columns Maximum number of columns allowed in a relaxed snode
* \param descendants Number of descendants of each node in the etree