mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
Added support for broadcasting
This commit is contained in:
parent
9ac3c821ea
commit
3d298da269
@ -42,6 +42,7 @@
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h"
|
||||
|
@ -204,6 +204,12 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived());
|
||||
}
|
||||
|
||||
template <typename Broadcast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorBroadcastingOp<const Broadcast, const Derived>
|
||||
broadcast(const Broadcast& broadcast) const {
|
||||
return TensorBroadcastingOp<const Broadcast, const Derived>(derived(), broadcast);
|
||||
}
|
||||
|
||||
// Morphing operators.
|
||||
template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorReshapingOp<const NewDimensions, const Derived>
|
||||
|
186
unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h
Normal file
186
unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h
Normal file
@ -0,0 +1,186 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorBroadcasting
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor broadcasting class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename Broadcast, typename XprType>
|
||||
struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
||||
typedef typename traits<XprType>::Index Index;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
};
|
||||
|
||||
template<typename Broadcast, typename XprType>
|
||||
struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorBroadcastingOp<Broadcast, XprType>& type;
|
||||
};
|
||||
|
||||
template<typename Broadcast, typename XprType>
|
||||
struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type>
|
||||
{
|
||||
typedef TensorBroadcastingOp<Broadcast, XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
|
||||
template<typename Broadcast, typename XprType>
|
||||
class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, WriteAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Scalar Scalar;
|
||||
typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Packet Packet;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
typedef typename Eigen::internal::nested<TensorBroadcastingOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorBroadcastingOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Index Index;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast)
|
||||
: m_xpr(expr), m_broadcast(broadcast) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Broadcast& broadcast() const { return m_broadcast; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const Broadcast m_broadcast;
|
||||
};
|
||||
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename Broadcast, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
{
|
||||
typedef TensorBroadcastingOp<Broadcast, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
||||
typedef DSizes<Index, NumDims> Dimensions;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device)
|
||||
{
|
||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||
const Broadcast& broadcast = op.broadcast();
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
eigen_assert(input_dims[i] > 0);
|
||||
m_dimensions[i] = input_dims[i] * broadcast[i];
|
||||
}
|
||||
|
||||
m_inputStrides[0] = 1;
|
||||
m_outputStrides[0] = 1;
|
||||
for (int i = 1; i < NumDims; ++i) {
|
||||
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
||||
}
|
||||
}
|
||||
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
// TODO: attempt to speed this up. The integer divisions and modulo are slow
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
Index inputIndex = 0;
|
||||
for (int i = NumDims - 1; i > 0; --i) {
|
||||
const Index idx = index / m_outputStrides[i];
|
||||
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
||||
index -= idx * m_outputStrides[i];
|
||||
}
|
||||
inputIndex += (index % m_impl.dimensions()[0]);
|
||||
return m_impl.coeff(inputIndex);
|
||||
}
|
||||
|
||||
// Ignore the LoadMode and always use unaligned loads since we can't guarantee
|
||||
// the alignment at compile time.
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
static const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||
|
||||
const Index originalIndex = index;
|
||||
|
||||
Index inputIndex = 0;
|
||||
for (int i = NumDims - 1; i > 0; --i) {
|
||||
const Index idx = index / m_outputStrides[i];
|
||||
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
||||
index -= idx * m_outputStrides[i];
|
||||
}
|
||||
const Index innermostLoc = index % m_impl.dimensions()[0];
|
||||
inputIndex += innermostLoc;
|
||||
|
||||
// Todo: this could be extended to the second dimension if we're not
|
||||
// broadcasting alongside the first dimension, and so on.
|
||||
if (innermostLoc + packetSize <= m_impl.dimensions()[0]) {
|
||||
return m_impl.template packet<Unaligned>(inputIndex);
|
||||
} else {
|
||||
EIGEN_ALIGN_DEFAULT CoeffReturnType values[packetSize];
|
||||
values[0] = m_impl.coeff(inputIndex);
|
||||
for (int i = 1; i < packetSize; ++i) {
|
||||
values[i] = coeff(originalIndex+i);
|
||||
}
|
||||
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||
return rslt;
|
||||
}
|
||||
}
|
||||
|
||||
Scalar* data() const { return NULL; }
|
||||
|
||||
protected:
|
||||
Dimensions m_dimensions;
|
||||
array<Index, NumDims> m_outputStrides;
|
||||
array<Index, NumDims> m_inputStrides;
|
||||
TensorEvaluator<ArgType, Device> m_impl;
|
||||
};
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
|
@ -22,6 +22,7 @@ template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
|
||||
template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
|
||||
template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
|
||||
template<typename XprType> class TensorReductionOp;
|
||||
template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
|
||||
template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
|
||||
template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
|
||||
template<typename NewDimensions, typename XprType> class TensorReshapingOp;
|
||||
|
@ -109,6 +109,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test(cxx11_tensor_intdiv "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_lvalue "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_map "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_broadcasting "-std=c++0x")
|
||||
# ei_add_test(cxx11_tensor_morphing "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_padding "-std=c++0x")
|
||||
# ei_add_test(cxx11_tensor_shuffling "-std=c++0x")
|
||||
|
114
unsupported/test/cxx11_tensor_broadcasting.cpp
Normal file
114
unsupported/test/cxx11_tensor_broadcasting.cpp
Normal file
@ -0,0 +1,114 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
|
||||
static void test_simple_broadcasting()
|
||||
{
|
||||
Tensor<float, 4> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
array<ptrdiff_t, 4> broadcasts;
|
||||
broadcasts[0] = 1;
|
||||
broadcasts[1] = 1;
|
||||
broadcasts[2] = 1;
|
||||
broadcasts[3] = 1;
|
||||
|
||||
Tensor<float, 4> no_broadcast;
|
||||
no_broadcast = tensor.broadcast(broadcasts);
|
||||
|
||||
VERIFY_IS_EQUAL(no_broadcast.dimension(0), 2);
|
||||
VERIFY_IS_EQUAL(no_broadcast.dimension(1), 3);
|
||||
VERIFY_IS_EQUAL(no_broadcast.dimension(2), 5);
|
||||
VERIFY_IS_EQUAL(no_broadcast.dimension(3), 7);
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
VERIFY_IS_EQUAL(tensor(i,j,k,l), no_broadcast(i,j,k,l));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
broadcasts[0] = 2;
|
||||
broadcasts[1] = 3;
|
||||
broadcasts[2] = 1;
|
||||
broadcasts[3] = 4;
|
||||
Tensor<float, 4> broadcast;
|
||||
broadcast = tensor.broadcast(broadcasts);
|
||||
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(0), 4);
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(2), 5);
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(3), 28);
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
for (int j = 0; j < 9; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 28; ++l) {
|
||||
VERIFY_IS_EQUAL(tensor(i%2,j%3,k%5,l%7), broadcast(i,j,k,l));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void test_vectorized_broadcasting()
|
||||
{
|
||||
Tensor<float, 3> tensor(8,3,5);
|
||||
tensor.setRandom();
|
||||
array<ptrdiff_t, 3> broadcasts;
|
||||
broadcasts[0] = 2;
|
||||
broadcasts[1] = 3;
|
||||
broadcasts[2] = 4;
|
||||
|
||||
Tensor<float, 3> broadcast;
|
||||
broadcast = tensor.broadcast(broadcasts);
|
||||
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(0), 16);
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(2), 20);
|
||||
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
for (int j = 0; j < 9; ++j) {
|
||||
for (int k = 0; k < 20; ++k) {
|
||||
VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tensor.resize(11,3,5);
|
||||
tensor.setRandom();
|
||||
broadcast = tensor.broadcast(broadcasts);
|
||||
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(0), 22);
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
|
||||
VERIFY_IS_EQUAL(broadcast.dimension(2), 20);
|
||||
|
||||
for (int i = 0; i < 22; ++i) {
|
||||
for (int j = 0; j < 9; ++j) {
|
||||
for (int k = 0; k < 20; ++k) {
|
||||
VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_cxx11_tensor_broadcasting()
|
||||
{
|
||||
CALL_SUBTEST(test_simple_broadcasting());
|
||||
CALL_SUBTEST(test_vectorized_broadcasting());
|
||||
}
|
Loading…
Reference in New Issue
Block a user