- rework the coefficients API

- make vectors use a separate loop unroller, so that copying a
row-vector into a col-vector is now possible
- add much more documentation
- misc improvements
This commit is contained in:
Benoit Jacob 2007-12-24 11:14:25 +00:00
parent e937583655
commit 3cd2a125b2
24 changed files with 485 additions and 111 deletions

View File

@ -26,6 +26,28 @@
#ifndef EIGEN_BLOCK_H
#define EIGEN_BLOCK_H
/** \class Block
*
* \brief Expression of a fixed-size block
*
* \param MatrixType the type of the object in which we are taking a block
* \param BlockRows the number of rows of the block we are taking
* \param BlockCols the number of columns of the block we are taking
*
* This class represents an expression of a fixed-size block. It is the return
* type of MatrixBase::block() and most of the time this is the only way it
* is used.
*
* However, if you want to directly maniputate fixed-size block expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating this:
* \include class_Block.cpp
* Output: \verbinclude class_Block.out
*
* \sa MatrixBase::block(), class DynBlock
*/
template<typename MatrixType, int BlockRows, int BlockCols> class Block
: public MatrixBase<typename MatrixType::Scalar,
Block<MatrixType, BlockRows, BlockCols> >
@ -71,6 +93,18 @@ template<typename MatrixType, int BlockRows, int BlockCols> class Block
const int m_startRow, m_startCol;
};
/** \returns a fixed-size expression of a block in *this.
*
* \param blockRows the number of rows in the block
* \param blockCols the number of columns in the block
* \param startRow the first row in the block
* \param startCol the first column in the block
*
* Example: \include MatrixBase_block.cpp
* Output: \verbinclude MatrixBase_block.out
*
* \sa class Block, dynBlock()
*/
template<typename Scalar, typename Derived>
template<int BlockRows, int BlockCols>
Block<Derived, BlockRows, BlockCols> MatrixBase<Scalar, Derived>

View File

@ -26,6 +26,26 @@
#ifndef EIGEN_CAST_H
#define EIGEN_CAST_H
/** \class Cast
*
* \brief Expression with casted scalar type
*
* \param NewScalar the new scalar type
* \param MatrixType the type of the object in which we are casting the scalar type
*
* This class represents an expression where we are casting the scalar type to a new
* type. It is the return type of MatrixBase::cast() and most of the time this is the
* only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating this:
* \include class_Cast.cpp
* Output: \verbinclude class_Cast.out
*
* \sa MatrixBase::cast()
*/
template<typename NewScalar, typename MatrixType> class Cast : NoOperatorEquals,
public MatrixBase<NewScalar, Cast<NewScalar, MatrixType> >
{
@ -56,7 +76,15 @@ template<typename NewScalar, typename MatrixType> class Cast : NoOperatorEquals,
};
/** \returns an expression of *this with the \a Scalar type casted to
* \a NewScalar. */
* \a NewScalar.
*
* \param NewScalar the type we are casting the scalars to
*
* Example: \include MatrixBase_cast.cpp
* Output: \verbinclude MatrixBase_cast.out
*
* \sa class Cast
*/
template<typename Scalar, typename Derived>
template<typename NewScalar>
const Cast<NewScalar, Derived>

View File

@ -26,105 +26,225 @@
#ifndef EIGEN_COEFFS_H
#define EIGEN_COEFFS_H
/** Short version: don't use this function, use
* \link operator()(int,int) const \endlink instead.
*
* Long version: this function is similar to
* \link operator()(int,int) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(int,int) const \endlink.
*
* \sa operator()(int,int) const, coeffRef(int,int), coeff(int) const
*/
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::coeff(int row, int col, AssertLevel assertLevel = InternalDebugging) const
::coeff(int row, int col) const
{
eigen_assert(assertLevel, row >= 0 && row < rows()
&& col >= 0 && col < cols());
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return static_cast<const Derived *>(this)->_coeff(row, col);
}
/** \returns the coefficient at given the given row and column.
*
* \sa operator()(int,int), operator[](int) const
*/
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::operator()(int row, int col) const { return coeff(row, col, UserDebugging); }
::operator()(int row, int col) const
{
assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return static_cast<const Derived *>(this)->_coeff(row, col);
}
/** Short version: don't use this function, use
* \link operator()(int,int) \endlink instead.
*
* Long version: this function is similar to
* \link operator()(int,int) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(int,int) \endlink.
*
* \sa operator()(int,int), coeff(int, int) const, coeffRef(int)
*/
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::coeffRef(int row, int col, AssertLevel assertLevel = InternalDebugging)
::coeffRef(int row, int col)
{
eigen_assert(assertLevel, row >= 0 && row < rows()
&& col >= 0 && col < cols());
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return static_cast<Derived *>(this)->_coeffRef(row, col);
}
/** \returns a reference to the coefficient at given the given row and column.
*
* \sa operator()(int,int) const, operator[](int)
*/
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::operator()(int row, int col) { return coeffRef(row, col, UserDebugging); }
::operator()(int row, int col)
{
assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return static_cast<Derived *>(this)->_coeffRef(row, col);
}
/** Short version: don't use this function, use
* \link operator[](int) const \endlink instead.
*
* Long version: this function is similar to
* \link operator[](int) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](int) const \endlink.
*
* \sa operator[](int) const, coeffRef(int), coeff(int,int) const
*/
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::coeff(int index, AssertLevel assertLevel = InternalDebugging) const
::coeff(int index) const
{
eigen_assert(assertLevel, IsVector);
eigen_internal_assert(IsVector);
if(RowsAtCompileTime == 1)
{
eigen_assert(assertLevel, index >= 0 && index < cols());
eigen_internal_assert(index >= 0 && index < cols());
return coeff(0, index);
}
else
{
eigen_assert(assertLevel, index >= 0 && index < rows());
eigen_internal_assert(index >= 0 && index < rows());
return coeff(index, 0);
}
}
/** \returns the coefficient at given index.
*
* \only_for_vectors
*
* \sa operator[](int), operator()(int,int) const, x() const, y() const,
* z() const, w() const
*/
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::operator[](int index) const { return coeff(index, UserDebugging); }
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::coeffRef(int index, AssertLevel assertLevel = InternalDebugging)
::operator[](int index) const
{
eigen_assert(assertLevel, IsVector);
assert(IsVector);
if(RowsAtCompileTime == 1)
{
eigen_assert(assertLevel, index >= 0 && index < cols());
assert(index >= 0 && index < cols());
return coeff(0, index);
}
else
{
assert(index >= 0 && index < rows());
return coeff(index, 0);
}
}
/** Short version: don't use this function, use
* \link operator[](int) \endlink instead.
*
* Long version: this function is similar to
* \link operator[](int) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](int) \endlink.
*
* \sa operator[](int), coeff(int) const, coeffRef(int,int)
*/
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::coeffRef(int index)
{
eigen_internal_assert(IsVector);
if(RowsAtCompileTime == 1)
{
eigen_internal_assert(index >= 0 && index < cols());
return coeffRef(0, index);
}
else
{
eigen_assert(assertLevel, index >= 0 && index < rows());
eigen_internal_assert(index >= 0 && index < rows());
return coeffRef(index, 0);
}
}
/** \returns a reference to the coefficient at given index.
*
* \only_for_vectors
*
* \sa operator[](int) const, operator()(int,int), x(), y(), z(), w()
*/
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::operator[](int index) { return coeffRef(index, UserDebugging); }
::operator[](int index)
{
assert(IsVector);
if(RowsAtCompileTime == 1)
{
assert(index >= 0 && index < cols());
return coeffRef(0, index);
}
else
{
assert(index >= 0 && index < rows());
return coeffRef(index, 0);
}
}
/** equivalent to operator[](0). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::x() const { return coeff(0, UserDebugging); }
::x() const { return (*this)[0]; }
/** equivalent to operator[](1). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::y() const { return coeff(1, UserDebugging); }
::y() const { return (*this)[1]; }
/** equivalent to operator[](2). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::z() const { return coeff(2, UserDebugging); }
::z() const { return (*this)[2]; }
/** equivalent to operator[](3). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar MatrixBase<Scalar, Derived>
::w() const { return coeff(3, UserDebugging); }
::w() const { return (*this)[3]; }
/** equivalent to operator[](0). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::x() { return coeffRef(0, UserDebugging); }
::x() { return (*this)[0]; }
/** equivalent to operator[](1). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::y() { return coeffRef(1, UserDebugging); }
::y() { return (*this)[1]; }
/** equivalent to operator[](2). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::z() { return coeffRef(2, UserDebugging); }
::z() { return (*this)[2]; }
/** equivalent to operator[](3). \only_for_vectors */
template<typename Scalar, typename Derived>
Scalar& MatrixBase<Scalar, Derived>
::w() { return coeffRef(3, UserDebugging); }
::w() { return (*this)[3]; }
#endif // EIGEN_COEFFS_H

View File

@ -26,6 +26,26 @@
#ifndef EIGEN_COLUMN_H
#define EIGEN_COLUMN_H
/** \class Column
*
* \brief Expression of a column
*
* \param MatrixType the type of the object in which we are taking a column
*
* This class represents an expression of a column. It is the return
* type of MatrixBase::col() and most of the time this is the only way it
* is used.
*
* However, if you want to directly maniputate column expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating this:
* \include class_Column.cpp
* Output: \verbinclude class_Column.out
*
* \sa MatrixBase::col()
*/
template<typename MatrixType> class Column
: public MatrixBase<typename MatrixType::Scalar, Column<MatrixType> >
{
@ -67,8 +87,12 @@ template<typename MatrixType> class Column
const int m_col;
};
/** \returns an expression of the \a i-th column of *this.
* \sa row(int) */
/** \returns an expression of the \a i-th column of *this. Note that the numbering starts at 0.
*
* Example: \include MatrixBase_col.cpp
* Output: \verbinclude MatrixBase_col.out
*
* \sa row(), class Column */
template<typename Scalar, typename Derived>
Column<Derived>
MatrixBase<Scalar, Derived>::col(int i) const

View File

@ -30,9 +30,11 @@
*
* \brief Expression of a dynamic-size block
*
* \param MatrixType the type of the object in which we are taking a block
*
* This class represents an expression of a dynamic-size block. It is the return
* type of MatrixBase::dynBlock() and most of the time this is the only way this
* class is used.
* type of MatrixBase::dynBlock() and most of the time this is the only way it
* is used.
*
* However, if you want to directly maniputate dynamic-size block expressions,
* for instance if you want to write a function returning such an expression, you
@ -40,8 +42,7 @@
*
* Here is an example illustrating this:
* \include class_DynBlock.cpp
* Output:
* \verbinclude class_DynBlock.out
* Output: \verbinclude class_DynBlock.out
*
* \sa MatrixBase::dynBlock()
*/
@ -101,12 +102,10 @@ template<typename MatrixType> class DynBlock
* \param blockRows the number of rows in the block
* \param blockCols the number of columns in the block
*
* Example:
* \include MatrixBase_dynBlock.cpp
* Output:
* \verbinclude MatrixBase_dynBlock.out
* Example: \include MatrixBase_dynBlock.cpp
* Output: \verbinclude MatrixBase_dynBlock.out
*
* \sa class DynBlock
* \sa class DynBlock, block()
*/
template<typename Scalar, typename Derived>
DynBlock<Derived> MatrixBase<Scalar, Derived>

View File

@ -55,12 +55,17 @@
template<typename Scalar, typename Derived> class MatrixBase
{
public:
/** The number of rows and of columns at compile-time. These are just
* copies of the values provided by the \a Derived type. If a value
* is not known at compile-time, it is set to the \a Dynamic constant.
* \sa rows(), cols(), SizeAtCompileTime */
static const int RowsAtCompileTime = Derived::_RowsAtCompileTime,
ColsAtCompileTime = Derived::_ColsAtCompileTime;
/** The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa rows(), cols(), ColsAtCompileTime, SizeAtCompileTime */
static const int RowsAtCompileTime = Derived::_RowsAtCompileTime;
/** The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa rows(), cols(), RowsAtCompileTime, SizeAtCompileTime */
static const int ColsAtCompileTime = Derived::_ColsAtCompileTime;
/** This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
@ -77,9 +82,9 @@ template<typename Scalar, typename Derived> class MatrixBase
/** This is the "reference type" used to pass objects of type MatrixBase as arguments
* to functions. If this MatrixBase type represents an expression, then \a Ref
* is just this MatrixBase type itself, i.e. expressions are just passed by value
* and the compiler is supposed to be clever enough to optimize that. If, on the
* other hand, this MatrixBase type is an actual matrix or vector, then \a Ref is
* a typedef MatrixRef, which is like a reference, so that matrices and vectors
* and the compiler is usually clever enough to optimize that. If, on the
* other hand, this MatrixBase type is an actual matrix or vector type, then \a Ref is
* a typedef to MatrixRef, which works as a reference, so that matrices and vectors
* are passed by reference, not by value. \sa ref()*/
typedef typename ForwardDecl<Derived>::Ref Ref;
@ -195,16 +200,16 @@ template<typename Scalar, typename Derived> class MatrixBase
Derived& operator/=(const std::complex<float>& other);
Derived& operator/=(const std::complex<double>& other);
Scalar coeff(int row, int col, AssertLevel assertLevel) const;
Scalar coeff(int row, int col) const;
Scalar operator()(int row, int col) const;
Scalar& coeffRef(int row, int col, AssertLevel assertLevel);
Scalar& coeffRef(int row, int col);
Scalar& operator()(int row, int col);
Scalar coeff(int index, AssertLevel assertLevel) const;
Scalar coeff(int index) const;
Scalar operator[](int index) const;
Scalar& coeffRef(int index, AssertLevel assertLevel);
Scalar& coeffRef(int index);
Scalar& operator[](int index);
Scalar x() const;

View File

@ -28,27 +28,27 @@
#define EIGEN_OPERATOREQUALS_H
template<typename Derived1, typename Derived2, int UnrollCount, int Rows>
struct OperatorEqualsUnroller
struct MatrixOperatorEqualsUnroller
{
static const int col = (UnrollCount-1) / Rows;
static const int row = (UnrollCount-1) % Rows;
static void run(Derived1 &dst, const Derived2 &src)
{
OperatorEqualsUnroller<Derived1, Derived2, UnrollCount-1, Rows>::run(dst, src);
MatrixOperatorEqualsUnroller<Derived1, Derived2, UnrollCount-1, Rows>::run(dst, src);
dst.coeffRef(row, col) = src.coeff(row, col);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Derived1, typename Derived2, int UnrollCount>
struct OperatorEqualsUnroller<Derived1, Derived2, UnrollCount, 0>
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, UnrollCount, 0>
{
static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int Rows>
struct OperatorEqualsUnroller<Derived1, Derived2, 1, Rows>
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, 1, Rows>
{
static void run(Derived1 &dst, const Derived2 &src)
{
@ -57,7 +57,41 @@ struct OperatorEqualsUnroller<Derived1, Derived2, 1, Rows>
};
template<typename Derived1, typename Derived2, int Rows>
struct OperatorEqualsUnroller<Derived1, Derived2, Dynamic, Rows>
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, Dynamic, Rows>
{
static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int UnrollCount>
struct VectorOperatorEqualsUnroller
{
static const int index = UnrollCount - 1;
static void run(Derived1 &dst, const Derived2 &src)
{
VectorOperatorEqualsUnroller<Derived1, Derived2, UnrollCount-1>::run(dst, src);
dst.coeffRef(index) = src.coeff(index);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Derived1, typename Derived2>
struct VectorOperatorEqualsUnroller<Derived1, Derived2, 0>
{
static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2>
struct VectorOperatorEqualsUnroller<Derived1, Derived2, 1>
{
static void run(Derived1 &dst, const Derived2 &src)
{
dst.coeffRef(0) = src.coeff(0);
}
};
template<typename Derived1, typename Derived2>
struct VectorOperatorEqualsUnroller<Derived1, Derived2, Dynamic>
{
static void run(Derived1 &, const Derived2 &) {}
};
@ -67,16 +101,31 @@ template<typename OtherDerived>
Derived& MatrixBase<Scalar, Derived>
::operator=(const MatrixBase<Scalar, OtherDerived>& other)
{
assert(rows() == other.rows() && cols() == other.cols());
if(EIGEN_UNROLLED_LOOPS && SizeAtCompileTime != Dynamic && SizeAtCompileTime <= 25)
OperatorEqualsUnroller
<Derived, OtherDerived, SizeAtCompileTime, RowsAtCompileTime>::run
(*static_cast<Derived*>(this), *static_cast<const OtherDerived*>(&other));
else
for(int j = 0; j < cols(); j++) //traverse in column-dominant order
for(int i = 0; i < rows(); i++)
coeffRef(i, j) = other.coeff(i, j);
return *static_cast<Derived*>(this);
if(IsVector && OtherDerived::IsVector) // copying a vector expression into a vector
{
assert(size() == other.size());
if(EIGEN_UNROLLED_LOOPS && SizeAtCompileTime != Dynamic && SizeAtCompileTime <= 25)
VectorOperatorEqualsUnroller
<Derived, OtherDerived, SizeAtCompileTime>::run
(*static_cast<Derived*>(this), *static_cast<const OtherDerived*>(&other));
else
for(int i = 0; i < size(); i++)
coeffRef(i) = other.coeff(i);
return *static_cast<Derived*>(this);
}
else // all other cases (typically, but not necessarily, copying a matrix)
{
assert(rows() == other.rows() && cols() == other.cols());
if(EIGEN_UNROLLED_LOOPS && SizeAtCompileTime != Dynamic && SizeAtCompileTime <= 25)
MatrixOperatorEqualsUnroller
<Derived, OtherDerived, SizeAtCompileTime, RowsAtCompileTime>::run
(*static_cast<Derived*>(this), *static_cast<const OtherDerived*>(&other));
else
for(int j = 0; j < cols(); j++) //traverse in column-dominant order
for(int i = 0; i < rows(); i++)
coeffRef(i, j) = other.coeff(i, j);
return *static_cast<Derived*>(this);
}
}
#endif // EIGEN_OPERATOREQUALS_H

View File

@ -26,6 +26,26 @@
#ifndef EIGEN_ROW_H
#define EIGEN_ROW_H
/** \class Row
*
* \brief Expression of a row
*
* \param MatrixType the type of the object in which we are taking a row
*
* This class represents an expression of a row. It is the return
* type of MatrixBase::row() and most of the time this is the only way it
* is used.
*
* However, if you want to directly maniputate row expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating this:
* \include class_Row.cpp
* Output: \verbinclude class_Row.out
*
* \sa MatrixBase::row()
*/
template<typename MatrixType> class Row
: public MatrixBase<typename MatrixType::Scalar, Row<MatrixType> >
{
@ -75,8 +95,12 @@ template<typename MatrixType> class Row
const int m_row;
};
/** \returns an expression of the \a i-th row of *this.
* \sa col(int)*/
/** \returns an expression of the \a i-th row of *this. Note that the numbering starts at 0.
*
* Example: \include MatrixBase_row.cpp
* Output: \verbinclude MatrixBase_row.out
*
* \sa col(), class Row */
template<typename Scalar, typename Derived>
Row<Derived>
MatrixBase<Scalar, Derived>::row(int i) const

View File

@ -34,18 +34,17 @@
#undef minor
#define USING_EIGEN_DATA_TYPES \
#define USING_PART_OF_NAMESPACE_EIGEN \
EIGEN_USING_MATRIX_TYPEDEFS \
using Eigen::Matrix;
using Eigen::Matrix; \
using Eigen::MatrixBase;
#ifdef EIGEN_INTERNAL_DEBUGGING
#define EIGEN_ASSERT_LEVEL 2
#define eigen_internal_assert(x) assert(x);
#else
#define EIGEN_ASSERT_LEVEL 1
#define eigen_internal_assert(x)
#endif
#define eigen_assert(assertLevel, x) if(assertLevel <= EIGEN_ASSERT_LEVEL) assert(x);
#ifdef NDEBUG
#define EIGEN_ONLY_USED_FOR_DEBUG(x) (void)x
#else
@ -121,12 +120,6 @@ struct ForwardDecl<Matrix<_Scalar, _Rows, _Cols> >
const int Dynamic = -1;
enum AssertLevel
{
UserDebugging = 1,
InternalDebugging = 2
};
//classes inheriting NoOperatorEquals don't generate a default operator=.
class NoOperatorEquals
{

View File

@ -35,7 +35,9 @@ DETAILS_AT_TOP = NO
INHERIT_DOCS = YES
SEPARATE_MEMBER_PAGES = NO
TAB_SIZE = 8
ALIASES =
ALIASES = \
"only_for_vectors=This is only for vectors (either row-vectors or column-vectors), \
as determined by \link MatrixBase::IsVector \endlink."
OPTIMIZE_OUTPUT_FOR_C = NO
OPTIMIZE_OUTPUT_JAVA = NO
BUILTIN_STL_SUPPORT = NO
@ -51,8 +53,8 @@ EXTRACT_STATIC = NO
EXTRACT_LOCAL_CLASSES = NO
EXTRACT_LOCAL_METHODS = NO
EXTRACT_ANON_NSPACES = NO
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
HIDE_UNDOC_MEMBERS = NO
HIDE_UNDOC_CLASSES = NO
HIDE_FRIEND_COMPOUNDS = YES
HIDE_IN_BODY_DOCS = NO
INTERNAL_DOCS = NO
@ -61,7 +63,7 @@ HIDE_SCOPE_NAMES = YES
SHOW_INCLUDE_FILES = YES
INLINE_INFO = YES
SORT_MEMBER_DOCS = YES
SORT_BRIEF_DOCS = NO
SORT_BRIEF_DOCS = YES
SORT_BY_SCOPE_NAME = NO
GENERATE_TODOLIST = YES
GENERATE_TESTLIST = YES
@ -77,7 +79,7 @@ FILE_VERSION_FILTER =
#---------------------------------------------------------------------------
QUIET = NO
WARNINGS = YES
WARN_IF_UNDOCUMENTED = YES
WARN_IF_UNDOCUMENTED = NO
WARN_IF_DOC_ERROR = YES
WARN_NO_PARAMDOC = NO
WARN_FORMAT = "$file:$line: $text"
@ -254,21 +256,21 @@ PERL_PATH = /usr/bin/perl
#---------------------------------------------------------------------------
# Configuration options related to the dot tool
#---------------------------------------------------------------------------
CLASS_DIAGRAMS = YES
MSCGEN_PATH =
HIDE_UNDOC_RELATIONS = YES
HAVE_DOT = YES
CLASS_GRAPH = YES
CLASS_DIAGRAMS = NO
MSCGEN_PATH = NO
HIDE_UNDOC_RELATIONS = NO
HAVE_DOT = NO
CLASS_GRAPH = NO
COLLABORATION_GRAPH = NO
GROUP_GRAPHS = YES
GROUP_GRAPHS = NO
UML_LOOK = NO
TEMPLATE_RELATIONS = NO
INCLUDE_GRAPH = YES
INCLUDED_BY_GRAPH = YES
INCLUDE_GRAPH = NO
INCLUDED_BY_GRAPH = NO
CALL_GRAPH = NO
CALLER_GRAPH = NO
GRAPHICAL_HIERARCHY = YES
DIRECTORY_GRAPH = YES
GRAPHICAL_HIERARCHY = NO
DIRECTORY_GRAPH = NO
DOT_IMAGE_FORMAT = png
DOT_PATH =
DOTFILE_DIRS =
@ -276,8 +278,8 @@ DOT_GRAPH_MAX_NODES = 50
MAX_DOT_GRAPH_DEPTH = 1000
DOT_TRANSPARENT = NO
DOT_MULTI_TARGETS = NO
GENERATE_LEGEND = YES
DOT_CLEANUP = YES
GENERATE_LEGEND = NO
DOT_CLEANUP = NO
#---------------------------------------------------------------------------
# Configuration::additions related to the search engine
#---------------------------------------------------------------------------

View File

@ -3,7 +3,7 @@
#include <Eigen/Core.h>
using namespace std;
USING_EIGEN_DATA_TYPES
USING_PART_OF_NAMESPACE_EIGEN
int main(int argc, char *argv[])
{

View File

@ -1,18 +1,18 @@
#include <Eigen/Core.h>
USING_EIGEN_DATA_TYPES
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Scalar, typename Derived>
void foo(const Eigen::MatrixBase<Scalar, Derived>& m)
void foo(const MatrixBase<Scalar, Derived>& m)
{
cout << "Here's m:" << endl << m << endl;
}
template<typename Scalar, typename Derived>
Eigen::ScalarMultiple<Derived>
twice(const Eigen::MatrixBase<Scalar, Derived>& m)
twice(const MatrixBase<Scalar, Derived>& m)
{
return 2 * m;
}

View File

@ -0,0 +1,23 @@
#include <Eigen/Core.h>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Scalar, typename Derived>
Eigen::Block<Derived, 2, 2>
topLeft2x2Corner(MatrixBase<Scalar, Derived>& m)
{
return Eigen::Block<Derived, 2, 2>(m.ref(), 0, 0);
// note: tempting as it is, writing "m.block<2,2>(0,0)" here
// causes a compile error with g++ 4.2, apparently due to
// g++ getting confused by the many template types and
// template arguments involved.
}
int main(int, char**)
{
Matrix3d m = Matrix3d::identity();
cout << topLeft2x2Corner(m) << endl;
topLeft2x2Corner(m) *= 2;
cout << "Now the matrix m is:" << endl << m << endl;
return 0;
}

View File

@ -0,0 +1,23 @@
#include <Eigen/Core.h>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Scalar, typename Derived>
Eigen::Cast<double, Derived>
castToDouble(const MatrixBase<Scalar, Derived>& m)
{
return Eigen::Cast<double, Derived>(m.ref());
// note: tempting as it is, writing "m.cast<double>()" here
// causes a compile error with g++ 4.2, apparently due to
// g++ getting confused by the many template types and
// template arguments involved.
}
int main(int, char**)
{
Matrix2i m = Matrix2i::random();
cout << "Here's the matrix m. It has coefficients of type int."
<< endl << m << endl;
cout << "Here's 0.05*m:" << endl << 0.05 * castToDouble(m) << endl;
return 0;
}

View File

@ -0,0 +1,19 @@
#include <Eigen/Core.h>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Scalar, typename Derived>
Eigen::Column<Derived>
firstColumn(MatrixBase<Scalar, Derived>& m)
{
return m.col(0);
}
int main(int, char**)
{
Matrix4d m = Matrix4d::identity();
cout << firstColumn(m) << endl;
firstColumn(m) *= 5;
cout << "Now the matrix m is:" << endl << m << endl;
return 0;
}

View File

@ -1,10 +1,10 @@
#include <Eigen/Core.h>
USING_EIGEN_DATA_TYPES
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Scalar, typename Derived>
Eigen::DynBlock<Derived>
topLeftCorner(const Eigen::MatrixBase<Scalar, Derived>& m, int rows, int cols)
topLeftCorner(MatrixBase<Scalar, Derived>& m, int rows, int cols)
{
return m.dynBlock(0, 0, rows, cols);
}

View File

@ -0,0 +1,19 @@
#include <Eigen/Core.h>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Scalar, typename Derived>
Eigen::Row<Derived>
firstRow(MatrixBase<Scalar, Derived>& m)
{
return m.row(0);
}
int main(int, char**)
{
Matrix4d m = Matrix4d::identity();
cout << firstRow(m) << endl;
firstRow(m) *= 5;
cout << "Now the matrix m is:" << endl << m << endl;
return 0;
}

View File

@ -0,0 +1,3 @@
Matrix4d m = Matrix4d::diagonal(Vector4d(1,2,3,4));
m.block<2, 2>(2, 0) = m.block<2, 2>(2, 2);
cout << m << endl;

View File

@ -0,0 +1,3 @@
Matrix2d md = Matrix2d::identity() * 0.45;
Matrix2f mf = Matrix2f::identity();
cout << md + mf.cast<double>() << endl;

View File

@ -0,0 +1,3 @@
Matrix3d m = Matrix3d::identity();
m.col(1) = Vector3d(4,5,6);
cout << m << endl;

View File

@ -1,3 +1,3 @@
Matrix4d m = Matrix4d::identity();
m.dynBlock(2,0,2,2) = m.dynBlock(0,0,2,2);
Matrix3d m = Matrix3d::diagonal(Vector3d(1,2,3));
m.dynBlock(1, 0, 2, 1) = m.dynBlock(1, 1, 2, 1);
cout << m << endl;

View File

@ -0,0 +1,3 @@
Matrix3d m = Matrix3d::identity();
m.row(1) = Vector3d(4,5,6);
cout << m << endl;

View File

@ -1,5 +1,5 @@
#include <Eigen/Core.h>
USING_EIGEN_DATA_TYPES
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
int main(int, char**)
{

View File

@ -1,6 +1,6 @@
#include <Eigen/Core.h>
USING_EIGEN_DATA_TYPES
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;