mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
Defer the decision to vectorize tensor CUDA code to the meta kernel. This makes it possible to decide to vectorize or not depending on the capability of the target cuda architecture. In particular, this enables us to vectorize the processing of fp16 when running on device of capability >= 5.3
This commit is contained in:
parent
748c4c4599
commit
3b76df64fc
@ -147,98 +147,78 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
|
||||
// GPU: the evaluation of the expression is offloaded to a GPU.
|
||||
#if defined(EIGEN_USE_GPU)
|
||||
|
||||
template <typename Expression>
|
||||
class TensorExecutor<Expression, GpuDevice, false> {
|
||||
template <typename Expression, bool Vectorizable>
|
||||
class TensorExecutor<Expression, GpuDevice, Vectorizable> {
|
||||
public:
|
||||
typedef typename Expression::Index Index;
|
||||
static EIGEN_DEVICE_FUNC void run(const Expression& expr, const GpuDevice& device);
|
||||
static void run(const Expression& expr, const GpuDevice& device);
|
||||
};
|
||||
|
||||
template <typename Expression>
|
||||
class TensorExecutor<Expression, GpuDevice, true> {
|
||||
public:
|
||||
typedef typename Expression::Index Index;
|
||||
static EIGEN_DEVICE_FUNC void run(const Expression& expr, const GpuDevice& device);
|
||||
};
|
||||
|
||||
#if defined(__CUDACC__)
|
||||
template <typename Evaluator, typename Index, bool Vectorizable>
|
||||
struct EigenMetaKernelEval {
|
||||
static __device__ EIGEN_ALWAYS_INLINE
|
||||
void run(Evaluator eval, Index first, Index last, Index step_size) {
|
||||
for (Index i = first; i < last; i += step_size) {
|
||||
eval.evalScalar(i);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Evaluator, typename Index>
|
||||
struct EigenMetaKernelEval<Evaluator, Index, true> {
|
||||
static __device__ EIGEN_ALWAYS_INLINE
|
||||
void run(Evaluator eval, Index first, Index last, Index step_size) {
|
||||
const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
|
||||
const Index vectorized_size = (last / PacketSize) * PacketSize;
|
||||
const Index vectorized_step_size = step_size * PacketSize;
|
||||
|
||||
// Use the vector path
|
||||
for (Index i = first * PacketSize; i < vectorized_size;
|
||||
i += vectorized_step_size) {
|
||||
eval.evalPacket(i);
|
||||
}
|
||||
for (Index i = vectorized_size + first; i < last; i += step_size) {
|
||||
eval.evalScalar(i);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Evaluator, typename Index>
|
||||
__global__ void
|
||||
__launch_bounds__(1024)
|
||||
EigenMetaKernel_NonVectorizable(Evaluator memcopied_eval, Index size) {
|
||||
EigenMetaKernel(Evaluator memcopied_eval, Index size) {
|
||||
|
||||
const Index first_index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const Index step_size = blockDim.x * gridDim.x;
|
||||
|
||||
// Cuda memcopies the kernel arguments. That's fine for POD, but for more
|
||||
// complex types such as evaluators we should really conform to the C++
|
||||
// standard and call a proper copy constructor.
|
||||
Evaluator eval(memcopied_eval);
|
||||
|
||||
const Index first_index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const Index step_size = blockDim.x * gridDim.x;
|
||||
|
||||
// Use the scalar path
|
||||
for (Index i = first_index; i < size; i += step_size) {
|
||||
eval.evalScalar(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Evaluator, typename Index>
|
||||
__global__ void
|
||||
__launch_bounds__(1024)
|
||||
EigenMetaKernel_Vectorizable(Evaluator memcopied_eval, Index size) {
|
||||
// Cuda memcopies the kernel arguments. That's fine for POD, but for more
|
||||
// complex types such as evaluators we should really conform to the C++
|
||||
// standard and call a proper copy constructor.
|
||||
Evaluator eval(memcopied_eval);
|
||||
|
||||
const Index first_index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const Index step_size = blockDim.x * gridDim.x;
|
||||
|
||||
// Use the vector path
|
||||
const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
|
||||
const Index vectorized_step_size = step_size * PacketSize;
|
||||
const Index vectorized_size = (size / PacketSize) * PacketSize;
|
||||
for (Index i = first_index * PacketSize; i < vectorized_size;
|
||||
i += vectorized_step_size) {
|
||||
eval.evalPacket(i);
|
||||
}
|
||||
for (Index i = vectorized_size + first_index; i < size; i += step_size) {
|
||||
eval.evalScalar(i);
|
||||
}
|
||||
const bool vectorizable = Evaluator::PacketAccess & Evaluator::IsAligned;
|
||||
EigenMetaKernelEval<Evaluator, Index, vectorizable>::run(eval, first_index, size, step_size);
|
||||
}
|
||||
|
||||
/*static*/
|
||||
template <typename Expression>
|
||||
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
|
||||
{
|
||||
template <typename Expression, bool Vectorizable>
|
||||
inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
|
||||
const Expression& expr, const GpuDevice& device) {
|
||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign)
|
||||
{
|
||||
if (needs_assign) {
|
||||
const int block_size = device.maxCudaThreadsPerBlock();
|
||||
const int max_blocks = numext::mini<int>(device.maxBlocks(), device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size);
|
||||
const int max_blocks = device.getNumCudaMultiProcessors() *
|
||||
device.maxCudaThreadsPerMultiProcessor() / block_size;
|
||||
const Index size = array_prod(evaluator.dimensions());
|
||||
// Create a least one block to ensure we won't crash if we're called with tensors of size 0.
|
||||
// Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
|
||||
const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, (size + block_size - 1) / block_size), 1);
|
||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||
}
|
||||
evaluator.cleanup();
|
||||
}
|
||||
|
||||
|
||||
/*static*/
|
||||
template<typename Expression>
|
||||
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
|
||||
{
|
||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign)
|
||||
{
|
||||
const int block_size = device.maxCudaThreadsPerBlock();
|
||||
const int max_blocks = numext::mini<int>(device.maxBlocks(), device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size);
|
||||
const Index size = array_prod(evaluator.dimensions());
|
||||
// Create a least one block to ensure we won't crash if we're called with tensors of size 0.
|
||||
const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, (size + block_size - 1) / block_size), 1);
|
||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||
LAUNCH_CUDA_KERNEL(
|
||||
(EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>),
|
||||
num_blocks, block_size, 0, device, evaluator, size);
|
||||
}
|
||||
evaluator.cleanup();
|
||||
}
|
||||
@ -246,6 +226,7 @@ EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(c
|
||||
#endif // __CUDACC__
|
||||
#endif // EIGEN_USE_GPU
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
Loading…
Reference in New Issue
Block a user