Split computation of real Schur form in EigenSolver to its own class.

This is done with the minimal amount of work, so the result is very rough.
This commit is contained in:
Jitse Niesen 2010-04-01 12:32:56 +01:00
parent 8cfa672fe0
commit 3a14a13533
3 changed files with 414 additions and 282 deletions

View File

@ -36,6 +36,7 @@ namespace Eigen {
*/
#include "src/Eigenvalues/Tridiagonalization.h"
#include "src/Eigenvalues/RealSchur.h"
#include "src/Eigenvalues/EigenSolver.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver.h"
#include "src/Eigenvalues/HessenbergDecomposition.h"

View File

@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -25,7 +26,7 @@
#ifndef EIGEN_EIGENSOLVER_H
#define EIGEN_EIGENSOLVER_H
#include "./HessenbergDecomposition.h"
#include "./RealSchur.h"
/** \eigenvalues_module \ingroup Eigenvalues_Module
* \nonstableyet
@ -246,10 +247,7 @@ template<typename _MatrixType> class EigenSolver
EigenSolver& compute(const MatrixType& matrix);
private:
typedef Matrix<RealScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> RealVectorType;
void orthes(MatrixType& matH, RealVectorType& ort);
void hqr2(MatrixType& matH);
void hqr2_step2(MatrixType& matH);
protected:
MatrixType m_eivec;
@ -310,16 +308,15 @@ template<typename MatrixType>
EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix)
{
assert(matrix.cols() == matrix.rows());
int n = matrix.cols();
m_eivalues.resize(n,1);
// Reduce to Hessenberg form.
HessenbergDecomposition<MatrixType> hd(matrix);
MatrixType matH = hd.matrixH();
m_eivec = hd.matrixQ();
// Reduce to real Schur form.
RealSchur<MatrixType> rs(matrix);
MatrixType matH = rs.matrixT();
m_eivec = rs.matrixU();
m_eivalues = rs.eigenvalues();
// Reduce Hessenberg to real Schur form.
hqr2(matH);
// Compute eigenvectors.
hqr2_step2(matH);
m_isInitialized = true;
return *this;
@ -345,289 +342,29 @@ std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
}
// Nonsymmetric reduction from Hessenberg to real Schur form.
template<typename MatrixType>
void EigenSolver<MatrixType>::hqr2(MatrixType& matH)
void EigenSolver<MatrixType>::hqr2_step2(MatrixType& matH)
{
// This is derived from the Algol procedure hqr2,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
const int nn = m_eivec.cols();
const int low = 0;
const int high = nn-1;
const Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
Scalar p, q, r=0, s=0, t, w, x, y, z=0;
// Initialize
int nn = m_eivec.cols();
int n = nn-1;
int low = 0;
int high = nn-1;
Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
Scalar exshift = 0.0;
Scalar p=0,q=0,r=0,s=0,z=0,t,w,x,y;
// Store roots isolated by balanc and compute matrix norm
// FIXME to be efficient the following would requires a triangular reduxion code
// Scalar norm = matH.upper().cwiseAbs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwiseAbs().sum();
// inefficient! this is already computed in RealSchur
Scalar norm = 0.0;
for (int j = 0; j < nn; ++j)
{
// FIXME what's the purpose of the following since the condition is always false
if ((j < low) || (j > high))
{
m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0);
}
norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwiseAbs().sum();
}
// Outer loop over eigenvalue index
int iter = 0;
while (n >= low)
{
// Look for single small sub-diagonal element
int l = n;
while (l > low)
{
s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
if (s == 0.0)
s = norm;
if (ei_abs(matH.coeff(l,l-1)) < eps * s)
break;
l--;
}
// Check for convergence
// One root found
if (l == n)
{
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0);
n--;
iter = 0;
}
else if (l == n-1) // Two roots found
{
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5);
q = p * p + w;
z = ei_sqrt(ei_abs(q));
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
x = matH.coeff(n,n);
// Scalar pair
if (q >= 0)
{
if (p >= 0)
z = p + z;
else
z = p - z;
m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0);
m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
x = matH.coeff(n,n-1);
s = ei_abs(x) + ei_abs(z);
p = x / s;
q = z / s;
r = ei_sqrt(p * p+q * q);
p = p / r;
q = q / r;
// Row modification
for (int j = n-1; j < nn; ++j)
{
z = matH.coeff(n-1,j);
matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
}
// Column modification
for (int i = 0; i <= n; ++i)
{
z = matH.coeff(i,n-1);
matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
}
// Accumulate transformations
for (int i = low; i <= high; ++i)
{
z = m_eivec.coeff(i,n-1);
m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
}
}
else // Complex pair
{
m_eivalues.coeffRef(n-1) = Complex(x + p, z);
m_eivalues.coeffRef(n) = Complex(x + p, -z);
}
n = n - 2;
iter = 0;
}
else // No convergence yet
{
// Form shift
x = matH.coeff(n,n);
y = 0.0;
w = 0.0;
if (l < n)
{
y = matH.coeff(n-1,n-1);
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
}
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
for (int i = low; i <= n; ++i)
matH.coeffRef(i,i) -= x;
s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
x = y = Scalar(0.75) * s;
w = Scalar(-0.4375) * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30)
{
s = Scalar((y - x) / 2.0);
s = s * s + w;
if (s > 0)
{
s = ei_sqrt(s);
if (y < x)
s = -s;
s = Scalar(x - w / ((y - x) / 2.0 + s));
for (int i = low; i <= n; ++i)
matH.coeffRef(i,i) -= s;
exshift += s;
x = y = w = Scalar(0.964);
}
}
iter = iter + 1; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
int m = n-2;
while (m >= l)
{
z = matH.coeff(m,m);
r = x - z;
s = y - z;
p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
q = matH.coeff(m+1,m+1) - z - r - s;
r = matH.coeff(m+2,m+1);
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
p = p / s;
q = q / s;
r = r / s;
if (m == l) {
break;
}
if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
ei_abs(matH.coeff(m+1,m+1)))))
{
break;
}
m--;
}
for (int i = m+2; i <= n; ++i)
{
matH.coeffRef(i,i-2) = 0.0;
if (i > m+2)
matH.coeffRef(i,i-3) = 0.0;
}
// Double QR step involving rows l:n and columns m:n
for (int k = m; k <= n-1; ++k)
{
int notlast = (k != n-1);
if (k != m) {
p = matH.coeff(k,k-1);
q = matH.coeff(k+1,k-1);
r = notlast ? matH.coeff(k+2,k-1) : Scalar(0);
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
if (x != 0.0)
{
p = p / x;
q = q / x;
r = r / x;
}
}
if (x == 0.0)
break;
s = ei_sqrt(p * p + q * q + r * r);
if (p < 0)
s = -s;
if (s != 0)
{
if (k != m)
matH.coeffRef(k,k-1) = -s * x;
else if (l != m)
matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
p = p + s;
x = p / s;
y = q / s;
z = r / s;
q = q / p;
r = r / p;
// Row modification
for (int j = k; j < nn; ++j)
{
p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
if (notlast)
{
p = p + r * matH.coeff(k+2,j);
matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
}
matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
}
// Column modification
for (int i = 0; i <= std::min(n,k+3); ++i)
{
p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
if (notlast)
{
p = p + z * matH.coeff(i,k+2);
matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
}
matH.coeffRef(i,k) = matH.coeff(i,k) - p;
matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
}
// Accumulate transformations
for (int i = low; i <= high; ++i)
{
p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
if (notlast)
{
p = p + z * m_eivec.coeff(i,k+2);
m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
}
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Backsubstitute to find vectors of upper triangular form
if (norm == 0.0)
{
return;
}
for (n = nn-1; n >= 0; n--)
for (int n = nn-1; n >= 0; n--)
{
p = m_eivalues.coeff(n).real();
q = m_eivalues.coeff(n).imag();

View File

@ -0,0 +1,394 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_REAL_SCHUR_H
#define EIGEN_REAL_SCHUR_H
#include "./HessenbergDecomposition.h"
/** \eigenvalues_module \ingroup Eigenvalues_Module
* \nonstableyet
*
* \class RealSchur
*
* \brief Performs a real Schur decomposition of a square matrix
*/
template<typename _MatrixType> class RealSchur
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef std::complex<typename NumTraits<Scalar>::Real> Complex;
typedef Matrix<Complex, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
/** \brief Constructor; computes Schur decomposition of given matrix. */
RealSchur(const MatrixType& matrix)
: matH(matrix.rows(),matrix.cols()),
m_eivec(matrix.rows(),matrix.cols()),
m_eivalues(matrix.rows()),
m_isInitialized(false)
{
compute(matrix);
}
/** \brief Returns the orthogonal matrix in the Schur decomposition. */
const MatrixType& matrixU() const
{
ei_assert(m_isInitialized && "RealSchur is not initialized.");
return m_eivec;
}
/** \brief Returns the quasi-triangular matrix in the Schur decomposition. */
const MatrixType& matrixT() const
{
ei_assert(m_isInitialized && "RealSchur is not initialized.");
return matH;
}
/** \brief Returns vector of eigenvalues.
*
* This function will likely be removed. */
const EigenvalueType& eigenvalues() const
{
ei_assert(m_isInitialized && "RealSchur is not initialized.");
return m_eivalues;
}
/** \brief Computes Schur decomposition of given matrix. */
void compute(const MatrixType& matrix);
private:
MatrixType matH;
MatrixType m_eivec;
EigenvalueType m_eivalues;
bool m_isInitialized;
void hqr2();
};
template<typename MatrixType>
void RealSchur<MatrixType>::compute(const MatrixType& matrix)
{
assert(matrix.cols() == matrix.rows());
// Reduce to Hessenberg form
// TODO skip Q if skipU = true
HessenbergDecomposition<MatrixType> hess(matrix);
matH = hess.matrixH();
m_eivec = hess.matrixQ();
// Reduce to Real Schur form
hqr2();
m_isInitialized = true;
}
template<typename MatrixType>
void RealSchur<MatrixType>::hqr2()
{
// This is derived from the Algol procedure hqr2,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
// Initialize
int nn = m_eivec.cols();
int n = nn-1;
const int low = 0;
const int high = nn-1;
const Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
Scalar exshift = 0.0;
Scalar p=0,q=0,r=0,s=0,z=0,w,x,y;
// Store roots isolated by balanc and compute matrix norm
// FIXME to be efficient the following would requires a triangular reduxion code
// Scalar norm = matH.upper().cwiseAbs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwiseAbs().sum();
Scalar norm = 0.0;
for (int j = 0; j < nn; ++j)
{
// FIXME what's the purpose of the following since the condition is always false
if ((j < low) || (j > high))
{
m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0);
}
norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwiseAbs().sum();
}
// Outer loop over eigenvalue index
int iter = 0;
while (n >= low)
{
// Look for single small sub-diagonal element
int l = n;
while (l > low)
{
s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
if (s == 0.0)
s = norm;
if (ei_abs(matH.coeff(l,l-1)) < eps * s)
break;
l--;
}
// Check for convergence
// One root found
if (l == n)
{
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0);
n--;
iter = 0;
}
else if (l == n-1) // Two roots found
{
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5);
q = p * p + w;
z = ei_sqrt(ei_abs(q));
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
x = matH.coeff(n,n);
// Scalar pair
if (q >= 0)
{
if (p >= 0)
z = p + z;
else
z = p - z;
m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0);
m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
x = matH.coeff(n,n-1);
s = ei_abs(x) + ei_abs(z);
p = x / s;
q = z / s;
r = ei_sqrt(p * p+q * q);
p = p / r;
q = q / r;
// Row modification
for (int j = n-1; j < nn; ++j)
{
z = matH.coeff(n-1,j);
matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
}
// Column modification
for (int i = 0; i <= n; ++i)
{
z = matH.coeff(i,n-1);
matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
}
// Accumulate transformations
for (int i = low; i <= high; ++i)
{
z = m_eivec.coeff(i,n-1);
m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
}
}
else // Complex pair
{
m_eivalues.coeffRef(n-1) = Complex(x + p, z);
m_eivalues.coeffRef(n) = Complex(x + p, -z);
}
n = n - 2;
iter = 0;
}
else // No convergence yet
{
// Form shift
x = matH.coeff(n,n);
y = 0.0;
w = 0.0;
if (l < n)
{
y = matH.coeff(n-1,n-1);
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
}
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
for (int i = low; i <= n; ++i)
matH.coeffRef(i,i) -= x;
s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
x = y = Scalar(0.75) * s;
w = Scalar(-0.4375) * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30)
{
s = Scalar((y - x) / 2.0);
s = s * s + w;
if (s > 0)
{
s = ei_sqrt(s);
if (y < x)
s = -s;
s = Scalar(x - w / ((y - x) / 2.0 + s));
for (int i = low; i <= n; ++i)
matH.coeffRef(i,i) -= s;
exshift += s;
x = y = w = Scalar(0.964);
}
}
iter = iter + 1; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
int m = n-2;
while (m >= l)
{
z = matH.coeff(m,m);
r = x - z;
s = y - z;
p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
q = matH.coeff(m+1,m+1) - z - r - s;
r = matH.coeff(m+2,m+1);
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
p = p / s;
q = q / s;
r = r / s;
if (m == l) {
break;
}
if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
ei_abs(matH.coeff(m+1,m+1)))))
{
break;
}
m--;
}
for (int i = m+2; i <= n; ++i)
{
matH.coeffRef(i,i-2) = 0.0;
if (i > m+2)
matH.coeffRef(i,i-3) = 0.0;
}
// Double QR step involving rows l:n and columns m:n
for (int k = m; k <= n-1; ++k)
{
int notlast = (k != n-1);
if (k != m) {
p = matH.coeff(k,k-1);
q = matH.coeff(k+1,k-1);
r = notlast ? matH.coeff(k+2,k-1) : Scalar(0);
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
if (x != 0.0)
{
p = p / x;
q = q / x;
r = r / x;
}
}
if (x == 0.0)
break;
s = ei_sqrt(p * p + q * q + r * r);
if (p < 0)
s = -s;
if (s != 0)
{
if (k != m)
matH.coeffRef(k,k-1) = -s * x;
else if (l != m)
matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
p = p + s;
x = p / s;
y = q / s;
z = r / s;
q = q / p;
r = r / p;
// Row modification
for (int j = k; j < nn; ++j)
{
p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
if (notlast)
{
p = p + r * matH.coeff(k+2,j);
matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
}
matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
}
// Column modification
for (int i = 0; i <= std::min(n,k+3); ++i)
{
p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
if (notlast)
{
p = p + z * matH.coeff(i,k+2);
matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
}
matH.coeffRef(i,k) = matH.coeff(i,k) - p;
matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
}
// Accumulate transformations
for (int i = low; i <= high; ++i)
{
p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
if (notlast)
{
p = p + z * m_eivec.coeff(i,k+2);
m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
}
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
}
#endif // EIGEN_REAL_SCHUR_H