Add support for MIPS SIMD (MSA)

This commit is contained in:
Alexey Frunze 2018-07-06 16:04:30 -07:00
parent 44ea5f7623
commit 3875fb05aa
7 changed files with 2481 additions and 1 deletions

View File

@ -256,6 +256,12 @@ if(NOT MSVC)
message(STATUS "Enabling VSX in tests/examples")
endif()
option(EIGEN_TEST_MSA "Enable/Disable MSA in tests/examples" OFF)
if(EIGEN_TEST_MSA)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mmsa")
message(STATUS "Enabling MSA in tests/examples")
endif()
option(EIGEN_TEST_NEON "Enable/Disable Neon in tests/examples" OFF)
if(EIGEN_TEST_NEON)
if(EIGEN_TEST_FMA)

View File

@ -0,0 +1,759 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Wave Computing, Inc.
// Written by:
// Chris Larsen
// Alexey Frunze (afrunze@wavecomp.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_MSA_H
#define EIGEN_COMPLEX_MSA_H
#include <iostream>
namespace Eigen {
namespace internal {
//---------- float ----------
struct Packet2cf {
EIGEN_STRONG_INLINE Packet2cf() {
}
EIGEN_STRONG_INLINE explicit Packet2cf(const std::complex<float>& a,
const std::complex<float>& b) {
Packet4f t = { std::real(a), std::imag(a), std::real(b), std::imag(b) };
v = t;
}
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {
}
EIGEN_STRONG_INLINE Packet2cf(const Packet2cf& a) : v(a.v) {
}
EIGEN_STRONG_INLINE Packet2cf& operator=(const Packet2cf& b) {
v = b.v;
return *this;
}
EIGEN_STRONG_INLINE Packet2cf conjugate(void) const {
return Packet2cf((Packet4f)__builtin_msa_bnegi_d((v2u64)v, 63));
}
EIGEN_STRONG_INLINE Packet2cf& operator*=(const Packet2cf& b) {
Packet4f v1, v2;
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
v1 = (Packet4f)__builtin_msa_ilvev_w((v4i32)v, (v4i32)v);
// Get the imag values of a | a1_im | a1_im | a2_im | a2_im |
v2 = (Packet4f)__builtin_msa_ilvod_w((v4i32)v, (v4i32)v);
// Multiply the real a with b
v1 = pmul(v1, b.v);
// Multiply the imag a with b
v2 = pmul(v2, b.v);
// Conjugate v2
v2 = Packet2cf(v2).conjugate().v;
// Swap real/imag elements in v2.
v2 = (Packet4f)__builtin_msa_shf_w((v4i32)v2, EIGEN_MSA_SHF_I8(1, 0, 3, 2));
// Add and return the result
v = padd(v1, v2);
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator*(const Packet2cf& b) const {
return Packet2cf(*this) *= b;
}
EIGEN_STRONG_INLINE Packet2cf& operator+=(const Packet2cf& b) {
v = padd(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator+(const Packet2cf& b) const {
return Packet2cf(*this) += b;
}
EIGEN_STRONG_INLINE Packet2cf& operator-=(const Packet2cf& b) {
v = psub(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator-(const Packet2cf& b) const {
return Packet2cf(*this) -= b;
}
EIGEN_STRONG_INLINE Packet2cf& operator/=(const Packet2cf& b) {
*this *= b.conjugate();
Packet4f s = pmul<Packet4f>(b.v, b.v);
s = padd(s, (Packet4f)__builtin_msa_shf_w((v4i32)s, EIGEN_MSA_SHF_I8(1, 0, 3, 2)));
v = pdiv(v, s);
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator/(const Packet2cf& b) const {
return Packet2cf(*this) /= b;
}
EIGEN_STRONG_INLINE Packet2cf operator-(void) const {
return Packet2cf(pnegate(v));
}
Packet4f v;
};
inline std::ostream& operator<<(std::ostream& os, const Packet2cf& value) {
os << "[ (" << value.v[0] << ", " << value.v[1]
<< "i),"
" ("
<< value.v[2] << ", " << value.v[3] << "i) ]";
return os;
}
template <>
struct packet_traits<std::complex<float> > : default_packet_traits {
typedef Packet2cf type;
typedef Packet2cf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0,
HasBlend = 1
};
};
template <>
struct unpacket_traits<Packet2cf> {
typedef std::complex<float> type;
enum { size = 2, alignment = Aligned16 };
typedef Packet2cf half;
};
template <>
EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from) {
EIGEN_MSA_DEBUG;
float f0 = from.real(), f1 = from.imag();
Packet4f v0 = { f0, f0, f0, f0 };
Packet4f v1 = { f1, f1, f1, f1 };
return Packet2cf((Packet4f)__builtin_msa_ilvr_w((Packet4i)v1, (Packet4i)v0));
}
template <>
EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a + b;
}
template <>
EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a - b;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return -a;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return a.conjugate();
}
template <>
EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a * b;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pand<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(pand(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf por<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(por(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pxor<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(pxor(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(pandnot(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from));
}
template <>
EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from));
}
template <>
EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) {
EIGEN_MSA_DEBUG;
return pset1<Packet2cf>(*from);
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<float> >(std::complex<float>* to,
const Packet2cf& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_STORE pstore<float>((float*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to,
const Packet2cf& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_STORE pstoreu<float>((float*)to, from.v);
}
template <>
EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(
const std::complex<float>* from, Index stride) {
EIGEN_MSA_DEBUG;
return Packet2cf(from[0 * stride], from[1 * stride]);
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to,
const Packet2cf& from,
Index stride) {
EIGEN_MSA_DEBUG;
*to = std::complex<float>(from.v[0], from.v[1]);
to += stride;
*to = std::complex<float>(from.v[2], from.v[3]);
}
template <>
EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float>* addr) {
EIGEN_MSA_DEBUG;
prefetch(reinterpret_cast<const float*>(addr));
}
template <>
EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return std::complex<float>(a.v[0], a.v[1]);
}
template <>
EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return Packet2cf((Packet4f)__builtin_msa_shf_w((v4i32)a.v, EIGEN_MSA_SHF_I8(2, 3, 0, 1)));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return Packet2cf((Packet4f)__builtin_msa_shf_w((v4i32)a.v, EIGEN_MSA_SHF_I8(1, 0, 3, 2)));
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
Packet4f value = (Packet4f)preverse((Packet2d)a.v);
value += a.v;
return std::complex<float>(value[0], value[1]);
}
template <>
EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs) {
EIGEN_MSA_DEBUG;
Packet4f sum1, sum2, sum;
// Add the first two 64-bit float32x2_t of vecs[0]
sum1 = (Packet4f)__builtin_msa_ilvr_d((v2i64)vecs[1].v, (v2i64)vecs[0].v);
sum2 = (Packet4f)__builtin_msa_ilvl_d((v2i64)vecs[1].v, (v2i64)vecs[0].v);
sum = padd(sum1, sum2);
return Packet2cf(sum);
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return std::complex<float>((a.v[0] * a.v[2]) - (a.v[1] * a.v[3]),
(a.v[0] * a.v[3]) + (a.v[1] * a.v[2]));
}
template <int Offset>
struct palign_impl<Offset, Packet2cf> {
EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second) {
if (Offset == 1) {
first.v = (Packet4f)__builtin_msa_sldi_b((v16i8)second.v, (v16i8)first.v, Offset * 8);
}
}
};
template <>
struct conj_helper<Packet2cf, Packet2cf, false, true> {
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y,
const Packet2cf& c) const {
return padd(pmul(x, y), c);
}
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const {
return internal::pmul(a, pconj(b));
}
};
template <>
struct conj_helper<Packet2cf, Packet2cf, true, false> {
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y,
const Packet2cf& c) const {
return padd(pmul(x, y), c);
}
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const {
return internal::pmul(pconj(a), b);
}
};
template <>
struct conj_helper<Packet2cf, Packet2cf, true, true> {
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y,
const Packet2cf& c) const {
return padd(pmul(x, y), c);
}
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const {
return pconj(internal::pmul(a, b));
}
};
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf, Packet4f)
template <>
EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a / b;
}
inline std::ostream& operator<<(std::ostream& os, const PacketBlock<Packet2cf, 2>& value) {
os << "[ " << value.packet[0] << ", " << std::endl << " " << value.packet[1] << " ]";
return os;
}
EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet2cf, 2>& kernel) {
EIGEN_MSA_DEBUG;
Packet4f tmp =
(Packet4f)__builtin_msa_ilvl_d((v2i64)kernel.packet[1].v, (v2i64)kernel.packet[0].v);
kernel.packet[0].v =
(Packet4f)__builtin_msa_ilvr_d((v2i64)kernel.packet[1].v, (v2i64)kernel.packet[0].v);
kernel.packet[1].v = tmp;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket,
const Packet2cf& elsePacket) {
return (Packet2cf)(Packet4f)pblend<Packet2d>(ifPacket, (Packet2d)thenPacket.v,
(Packet2d)elsePacket.v);
}
//---------- double ----------
struct Packet1cd {
EIGEN_STRONG_INLINE Packet1cd() {
}
EIGEN_STRONG_INLINE explicit Packet1cd(const std::complex<double>& a) {
v[0] = std::real(a);
v[1] = std::imag(a);
}
EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {
}
EIGEN_STRONG_INLINE Packet1cd(const Packet1cd& a) : v(a.v) {
}
EIGEN_STRONG_INLINE Packet1cd& operator=(const Packet1cd& b) {
v = b.v;
return *this;
}
EIGEN_STRONG_INLINE Packet1cd conjugate(void) const {
static const v2u64 p2ul_CONJ_XOR = { 0x0, 0x8000000000000000 };
return (Packet1cd)pxor(v, (Packet2d)p2ul_CONJ_XOR);
}
EIGEN_STRONG_INLINE Packet1cd& operator*=(const Packet1cd& b) {
Packet2d v1, v2;
// Get the real values of a | a1_re | a1_re
v1 = (Packet2d)__builtin_msa_ilvev_d((v2i64)v, (v2i64)v);
// Get the imag values of a | a1_im | a1_im
v2 = (Packet2d)__builtin_msa_ilvod_d((v2i64)v, (v2i64)v);
// Multiply the real a with b
v1 = pmul(v1, b.v);
// Multiply the imag a with b
v2 = pmul(v2, b.v);
// Conjugate v2
v2 = Packet1cd(v2).conjugate().v;
// Swap real/imag elements in v2.
v2 = (Packet2d)__builtin_msa_shf_w((v4i32)v2, EIGEN_MSA_SHF_I8(2, 3, 0, 1));
// Add and return the result
v = padd(v1, v2);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator*(const Packet1cd& b) const {
return Packet1cd(*this) *= b;
}
EIGEN_STRONG_INLINE Packet1cd& operator+=(const Packet1cd& b) {
v = padd(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator+(const Packet1cd& b) const {
return Packet1cd(*this) += b;
}
EIGEN_STRONG_INLINE Packet1cd& operator-=(const Packet1cd& b) {
v = psub(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator-(const Packet1cd& b) const {
return Packet1cd(*this) -= b;
}
EIGEN_STRONG_INLINE Packet1cd& operator/=(const Packet1cd& b) {
*this *= b.conjugate();
Packet2d s = pmul<Packet2d>(b.v, b.v);
s = padd(s, preverse<Packet2d>(s));
v = pdiv(v, s);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator/(const Packet1cd& b) const {
return Packet1cd(*this) /= b;
}
EIGEN_STRONG_INLINE Packet1cd operator-(void) const {
return Packet1cd(pnegate(v));
}
Packet2d v;
};
inline std::ostream& operator<<(std::ostream& os, const Packet1cd& value) {
os << "[ (" << value.v[0] << ", " << value.v[1] << "i) ]";
return os;
}
template <>
struct packet_traits<std::complex<double> > : default_packet_traits {
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template <>
struct unpacket_traits<Packet1cd> {
typedef std::complex<double> type;
enum { size = 1, alignment = Aligned16 };
typedef Packet1cd half;
};
template <>
EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from) {
EIGEN_MSA_DEBUG;
return Packet1cd(from);
}
template <>
EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a + b;
}
template <>
EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a - b;
}
template <>
EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return -a;
}
template <>
EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return a.conjugate();
}
template <>
EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a * b;
}
template <>
EIGEN_STRONG_INLINE Packet1cd pand<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(pand(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd por<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(por(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pxor<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(pxor(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(pandnot(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) {
EIGEN_MSA_DEBUG;
return pset1<Packet1cd>(*from);
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<double> >(std::complex<double>* to,
const Packet1cd& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_STORE pstore<double>((double*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double>* to,
const Packet1cd& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_STORE pstoreu<double>((double*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double>* addr) {
EIGEN_MSA_DEBUG;
prefetch(reinterpret_cast<const double*>(addr));
}
template <>
EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(
const std::complex<double>* from, Index stride __attribute__((unused))) {
EIGEN_MSA_DEBUG;
Packet1cd res;
res.v[0] = std::real(from[0]);
res.v[1] = std::imag(from[0]);
return res;
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to,
const Packet1cd& from,
Index stride
__attribute__((unused))) {
EIGEN_MSA_DEBUG;
pstore(to, from);
}
template <>
EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return std::complex<double>(a.v[0], a.v[1]);
}
template <>
EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return a;
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return pfirst(a);
}
template <>
EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs) {
EIGEN_MSA_DEBUG;
return vecs[0];
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return pfirst(a);
}
template <int Offset>
struct palign_impl<Offset, Packet1cd> {
static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/) {
// FIXME is it sure we never have to align a Packet1cd?
// Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes
// boundary...
}
};
template <>
struct conj_helper<Packet1cd, Packet1cd, false, true> {
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y,
const Packet1cd& c) const {
return padd(pmul(x, y), c);
}
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const {
return internal::pmul(a, pconj(b));
}
};
template <>
struct conj_helper<Packet1cd, Packet1cd, true, false> {
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y,
const Packet1cd& c) const {
return padd(pmul(x, y), c);
}
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const {
return internal::pmul(pconj(a), b);
}
};
template <>
struct conj_helper<Packet1cd, Packet1cd, true, true> {
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y,
const Packet1cd& c) const {
return padd(pmul(x, y), c);
}
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const {
return pconj(internal::pmul(a, b));
}
};
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd, Packet2d)
template <>
EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a / b;
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip /*<Packet1cd>*/ (const Packet1cd& x) {
EIGEN_MSA_DEBUG;
return Packet1cd(preverse(Packet2d(x.v)));
}
inline std::ostream& operator<<(std::ostream& os, const PacketBlock<Packet1cd, 2>& value) {
os << "[ " << value.packet[0] << ", " << std::endl << " " << value.packet[1] << " ]";
return os;
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd, 2>& kernel) {
EIGEN_MSA_DEBUG;
Packet2d v1, v2;
v1 = (Packet2d)__builtin_msa_ilvev_d((v2i64)kernel.packet[0].v, (v2i64)kernel.packet[1].v);
// Get the imag values of a
v2 = (Packet2d)__builtin_msa_ilvod_d((v2i64)kernel.packet[0].v, (v2i64)kernel.packet[1].v);
kernel.packet[0].v = v1;
kernel.packet[1].v = v2;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX_MSA_H

View File

@ -0,0 +1,387 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Copyright (C) 2018 Wave Computing, Inc.
// Written by:
// Chris Larsen
// Alexey Frunze (afrunze@wavecomp.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* The sin, cos, exp, and log functions of this file come from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
/* The tanh function of this file is an adaptation of
* template<typename T> T generic_fast_tanh_float(const T&)
* from MathFunctionsImpl.h.
*/
#ifndef EIGEN_MATH_FUNCTIONS_MSA_H
#define EIGEN_MATH_FUNCTIONS_MSA_H
namespace Eigen {
namespace internal {
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
plog<Packet4f>(const Packet4f& _x) {
static _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292e-2f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, -1.1514610310e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, -1.2420140846e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, +1.4249322787e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, -1.6668057665e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, +2.0000714765e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, -2.4999993993e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, +3.3333331174e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
// Convert negative argument into NAN (quiet negative, to be specific).
Packet4f zero = (Packet4f)__builtin_msa_ldi_w(0);
Packet4i neg_mask = __builtin_msa_fclt_w(_x, zero);
Packet4i zero_mask = __builtin_msa_fceq_w(_x, zero);
Packet4f non_neg_x_or_nan = padd(_x, (Packet4f)neg_mask); // Add 0.0 or NAN.
Packet4f x = non_neg_x_or_nan;
// Extract exponent from x = mantissa * 2**exponent, where 1.0 <= mantissa < 2.0.
// N.B. the exponent is one less of what frexpf() would return.
Packet4i e_int = __builtin_msa_ftint_s_w(__builtin_msa_flog2_w(x));
// Multiply x by 2**(-exponent-1) to get 0.5 <= x < 1.0 as from frexpf().
x = __builtin_msa_fexp2_w(x, (Packet4i)__builtin_msa_nori_b((v16u8)e_int, 0));
/*
if (x < SQRTHF) {
x = x + x - 1.0;
} else {
e += 1;
x = x - 1.0;
}
*/
Packet4f xx = padd(x, x);
Packet4i ge_mask = __builtin_msa_fcle_w(p4f_cephes_SQRTHF, x);
e_int = psub(e_int, ge_mask);
x = (Packet4f)__builtin_msa_bsel_v((v16u8)ge_mask, (v16u8)xx, (v16u8)x);
x = psub(x, p4f_1);
Packet4f e = __builtin_msa_ffint_s_w(e_int);
Packet4f x2 = pmul(x, x);
Packet4f x3 = pmul(x2, x);
Packet4f y, y1, y2;
y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
y = pmadd(y, x, p4f_cephes_log_p2);
y1 = pmadd(y1, x, p4f_cephes_log_p5);
y2 = pmadd(y2, x, p4f_cephes_log_p8);
y = pmadd(y, x3, y1);
y = pmadd(y, x3, y2);
y = pmul(y, x3);
y = pmadd(e, p4f_cephes_log_q1, y);
x = __builtin_msa_fmsub_w(x, x2, p4f_half);
x = padd(x, y);
x = pmadd(e, p4f_cephes_log_q2, x);
// x is now the logarithm result candidate. We still need to handle the
// extreme arguments of zero and positive infinity, though.
// N.B. if the argument is +INFINITY, x is NAN because the polynomial terms
// contain infinities of both signs (see the coefficients and code above).
// INFINITY - INFINITY is NAN.
// If the argument is +INFINITY, make it the new result candidate.
// To achieve that we choose the smaller of the result candidate and the
// argument.
// This is correct for all finite pairs of values (the logarithm is smaller
// than the argument).
// This is also correct in the special case when the argument is +INFINITY
// and the result candidate is NAN. This is because the fmin.df instruction
// prefers non-NANs to NANs.
x = __builtin_msa_fmin_w(x, non_neg_x_or_nan);
// If the argument is zero (including -0.0), the result becomes -INFINITY.
Packet4i neg_infs = __builtin_msa_slli_w(zero_mask, 23);
x = (Packet4f)__builtin_msa_bsel_v((v16u8)zero_mask, (v16u8)x, (v16u8)neg_infs);
return x;
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
pexp<Packet4f>(const Packet4f& _x) {
// Limiting single-precision pexp's argument to [-128, +128] lets pexp
// reach 0 and INFINITY naturally.
static _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -128.0f);
static _EIGEN_DECLARE_CONST_Packet4f(exp_hi, +128.0f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507e-3f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073e-3f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894e-2f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
Packet4f x = _x;
// Clamp x.
x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(x, p4f_exp_lo), (v16u8)x,
(v16u8)p4f_exp_lo);
x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_exp_hi, x), (v16u8)x,
(v16u8)p4f_exp_hi);
// Round to nearest integer by adding 0.5 (with x's sign) and truncating.
Packet4f x2_add = (Packet4f)__builtin_msa_binsli_w((v4u32)p4f_half, (v4u32)x, 0);
Packet4f x2 = pmadd(x, p4f_cephes_LOG2EF, x2_add);
Packet4i x2_int = __builtin_msa_ftrunc_s_w(x2);
Packet4f x2_int_f = __builtin_msa_ffint_s_w(x2_int);
x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C1);
x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C2);
Packet4f z = pmul(x, x);
Packet4f y = p4f_cephes_exp_p0;
y = pmadd(y, x, p4f_cephes_exp_p1);
y = pmadd(y, x, p4f_cephes_exp_p2);
y = pmadd(y, x, p4f_cephes_exp_p3);
y = pmadd(y, x, p4f_cephes_exp_p4);
y = pmadd(y, x, p4f_cephes_exp_p5);
y = pmadd(y, z, x);
y = padd(y, p4f_1);
// y *= 2**exponent.
y = __builtin_msa_fexp2_w(y, x2_int);
return y;
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
ptanh<Packet4f>(const Packet4f& _x) {
static _EIGEN_DECLARE_CONST_Packet4f(tanh_tiny, 1e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(tanh_hi, 9.0f);
// The monomial coefficients of the numerator polynomial (odd).
static _EIGEN_DECLARE_CONST_Packet4f(alpha_1, 4.89352455891786e-3f);
static _EIGEN_DECLARE_CONST_Packet4f(alpha_3, 6.37261928875436e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(alpha_5, 1.48572235717979e-5f);
static _EIGEN_DECLARE_CONST_Packet4f(alpha_7, 5.12229709037114e-8f);
static _EIGEN_DECLARE_CONST_Packet4f(alpha_9, -8.60467152213735e-11f);
static _EIGEN_DECLARE_CONST_Packet4f(alpha_11, 2.00018790482477e-13f);
static _EIGEN_DECLARE_CONST_Packet4f(alpha_13, -2.76076847742355e-16f);
// The monomial coefficients of the denominator polynomial (even).
static _EIGEN_DECLARE_CONST_Packet4f(beta_0, 4.89352518554385e-3f);
static _EIGEN_DECLARE_CONST_Packet4f(beta_2, 2.26843463243900e-3f);
static _EIGEN_DECLARE_CONST_Packet4f(beta_4, 1.18534705686654e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(beta_6, 1.19825839466702e-6f);
Packet4f x = pabs(_x);
Packet4i tiny_mask = __builtin_msa_fclt_w(x, p4f_tanh_tiny);
// Clamp the inputs to the range [-9, 9] since anything outside
// this range is -/+1.0f in single-precision.
x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_tanh_hi, x), (v16u8)x,
(v16u8)p4f_tanh_hi);
// Since the polynomials are odd/even, we need x**2.
Packet4f x2 = pmul(x, x);
// Evaluate the numerator polynomial p.
Packet4f p = pmadd(x2, p4f_alpha_13, p4f_alpha_11);
p = pmadd(x2, p, p4f_alpha_9);
p = pmadd(x2, p, p4f_alpha_7);
p = pmadd(x2, p, p4f_alpha_5);
p = pmadd(x2, p, p4f_alpha_3);
p = pmadd(x2, p, p4f_alpha_1);
p = pmul(x, p);
// Evaluate the denominator polynomial q.
Packet4f q = pmadd(x2, p4f_beta_6, p4f_beta_4);
q = pmadd(x2, q, p4f_beta_2);
q = pmadd(x2, q, p4f_beta_0);
// Divide the numerator by the denominator.
p = pdiv(p, q);
// Reinstate the sign.
p = (Packet4f)__builtin_msa_binsli_w((v4u32)p, (v4u32)_x, 0);
// When the argument is very small in magnitude it's more accurate to just return it.
p = (Packet4f)__builtin_msa_bsel_v((v16u8)tiny_mask, (v16u8)p, (v16u8)_x);
return p;
}
template <bool sine>
Packet4f psincos_inner_msa_float(const Packet4f& _x) {
static _EIGEN_DECLARE_CONST_Packet4f(sincos_max_arg, 13176795.0f); // Approx. (2**24) / (4/Pi).
static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1, -0.78515625f);
static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
static _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736e-3f);
static _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611e-1f);
static _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948e-5f);
static _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765e-3f);
static _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827e-2f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4/Pi.
static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
Packet4f x = pabs(_x);
// Translate infinite arguments into NANs.
Packet4f zero_or_nan_if_inf = psub(_x, _x);
x = padd(x, zero_or_nan_if_inf);
// Prevent sin/cos from generating values larger than 1.0 in magnitude
// for very large arguments by setting x to 0.0.
Packet4i small_or_nan_mask = __builtin_msa_fcult_w(x, p4f_sincos_max_arg);
x = pand(x, (Packet4f)small_or_nan_mask);
// Scale x by 4/Pi to find x's octant.
Packet4f y = pmul(x, p4f_cephes_FOPI);
// Get the octant. We'll reduce x by this number of octants or by one more than it.
Packet4i y_int = __builtin_msa_ftrunc_s_w(y);
// x's from even-numbered octants will translate to octant 0: [0, +Pi/4].
// x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0].
// Adjustment for odd-numbered octants: octant = (octant + 1) & (~1).
Packet4i y_int1 = __builtin_msa_addvi_w(y_int, 1);
Packet4i y_int2 = (Packet4i)__builtin_msa_bclri_w((Packet4ui)y_int1, 0);
y = __builtin_msa_ffint_s_w(y_int2);
// Compute the sign to apply to the polynomial.
Packet4i sign_mask = sine ? pxor(__builtin_msa_slli_w(y_int1, 29), (Packet4i)_x)
: __builtin_msa_slli_w(__builtin_msa_addvi_w(y_int, 3), 29);
// Get the polynomial selection mask.
// We'll calculate both (sin and cos) polynomials and then select from the two.
Packet4i poly_mask = __builtin_msa_ceqi_w(__builtin_msa_slli_w(y_int2, 30), 0);
// Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4.
// The magic pass: "Extended precision modular arithmetic"
// x = ((x - y * DP1) - y * DP2) - y * DP3
Packet4f tmp1 = pmul(y, p4f_minus_cephes_DP1);
Packet4f tmp2 = pmul(y, p4f_minus_cephes_DP2);
Packet4f tmp3 = pmul(y, p4f_minus_cephes_DP3);
x = padd(x, tmp1);
x = padd(x, tmp2);
x = padd(x, tmp3);
// Evaluate the cos(x) polynomial.
y = p4f_coscof_p0;
Packet4f z = pmul(x, x);
y = pmadd(y, z, p4f_coscof_p1);
y = pmadd(y, z, p4f_coscof_p2);
y = pmul(y, z);
y = pmul(y, z);
y = __builtin_msa_fmsub_w(y, z, p4f_half);
y = padd(y, p4f_1);
// Evaluate the sin(x) polynomial.
Packet4f y2 = p4f_sincof_p0;
y2 = pmadd(y2, z, p4f_sincof_p1);
y2 = pmadd(y2, z, p4f_sincof_p2);
y2 = pmul(y2, z);
y2 = pmadd(y2, x, x);
// Select the correct result from the two polynomials.
y = sine ? (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y, (v16u8)y2)
: (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y2, (v16u8)y);
// Update the sign.
sign_mask = pxor(sign_mask, (Packet4i)y);
y = (Packet4f)__builtin_msa_binsli_w((v4u32)y, (v4u32)sign_mask, 0);
return y;
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
psin<Packet4f>(const Packet4f& x) {
return psincos_inner_msa_float</* sine */ true>(x);
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
pcos<Packet4f>(const Packet4f& x) {
return psincos_inner_msa_float</* sine */ false>(x);
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d
pexp<Packet2d>(const Packet2d& _x) {
// Limiting double-precision pexp's argument to [-1024, +1024] lets pexp
// reach 0 and INFINITY naturally.
static _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -1024.0);
static _EIGEN_DECLARE_CONST_Packet2d(exp_hi, +1024.0);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
static _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
static _EIGEN_DECLARE_CONST_Packet2d(1, 1.0);
static _EIGEN_DECLARE_CONST_Packet2d(2, 2.0);
Packet2d x = _x;
// Clamp x.
x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(x, p2d_exp_lo), (v16u8)x,
(v16u8)p2d_exp_lo);
x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(p2d_exp_hi, x), (v16u8)x,
(v16u8)p2d_exp_hi);
// Round to nearest integer by adding 0.5 (with x's sign) and truncating.
Packet2d x2_add = (Packet2d)__builtin_msa_binsli_d((v2u64)p2d_half, (v2u64)x, 0);
Packet2d x2 = pmadd(x, p2d_cephes_LOG2EF, x2_add);
Packet2l x2_long = __builtin_msa_ftrunc_s_d(x2);
Packet2d x2_long_d = __builtin_msa_ffint_s_d(x2_long);
x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C1);
x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C2);
x2 = pmul(x, x);
Packet2d px = p2d_cephes_exp_p0;
px = pmadd(px, x2, p2d_cephes_exp_p1);
px = pmadd(px, x2, p2d_cephes_exp_p2);
px = pmul(px, x);
Packet2d qx = p2d_cephes_exp_q0;
qx = pmadd(qx, x2, p2d_cephes_exp_q1);
qx = pmadd(qx, x2, p2d_cephes_exp_q2);
qx = pmadd(qx, x2, p2d_cephes_exp_q3);
x = pdiv(px, psub(qx, px));
x = pmadd(p2d_2, x, p2d_1);
// x *= 2**exponent.
x = __builtin_msa_fexp2_d(x, x2_long);
return x;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_MSA_H

File diff suppressed because it is too large Load Diff

View File

@ -94,7 +94,7 @@
// certain common platform (compiler+architecture combinations) to avoid these problems.
// Only static alignment is really problematic (relies on nonstandard compiler extensions),
// try to keep heap alignment even when we have to disable static alignment.
#if EIGEN_COMP_GNUC && !(EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64 || EIGEN_ARCH_PPC || EIGEN_ARCH_IA64)
#if EIGEN_COMP_GNUC && !(EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64 || EIGEN_ARCH_PPC || EIGEN_ARCH_IA64 || EIGEN_ARCH_MIPS)
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1
#elif EIGEN_ARCH_ARM_OR_ARM64 && EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_MOST(4, 6)
// Old versions of GCC on ARM, at least 4.4, were once seen to have buggy static alignment support.

View File

@ -468,6 +468,7 @@ namespace Architecture
AltiVec = 0x2,
VSX = 0x3,
NEON = 0x4,
MSA = 0x5,
#if defined EIGEN_VECTORIZE_SSE
Target = SSE
#elif defined EIGEN_VECTORIZE_ALTIVEC
@ -476,6 +477,8 @@ namespace Architecture
Target = VSX
#elif defined EIGEN_VECTORIZE_NEON
Target = NEON
#elif defined EIGEN_VECTORIZE_MSA
Target = MSA
#else
Target = Generic
#endif

View File

@ -452,6 +452,12 @@ macro(ei_testing_print_summary)
message(STATUS "VSX: Using architecture defaults")
endif()
if(EIGEN_TEST_MSA)
message(STATUS "MIPS MSA: ON")
else()
message(STATUS "MIPS MSA: Using architecture defaults")
endif()
if(EIGEN_TEST_NEON)
message(STATUS "ARM NEON: ON")
else()
@ -655,6 +661,8 @@ macro(ei_get_cxxflags VAR)
set(${VAR} SSE3)
elseif(EIGEN_TEST_SSE2 OR IS_64BIT_ENV)
set(${VAR} SSE2)
elseif(EIGEN_TEST_MSA)
set(${VAR} MSA)
endif()
if(EIGEN_TEST_OPENMP)