mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
Parallelize tensor contraction over the inner dimension in cases where where one or both of the outer dimensions (m and n) are small but k is large. This speeds up individual matmul microbenchmarks by up to 85%.
Naming below is BM_Matmul_M_K_N_THREADS, measured on a 2-socket Intel Broadwell-based server. Benchmark Base (ns) New (ns) Improvement ------------------------------------------------------------------ BM_Matmul_1_80_13522_1 387457 396013 -2.2% BM_Matmul_1_80_13522_2 406487 230789 +43.2% BM_Matmul_1_80_13522_4 395821 123211 +68.9% BM_Matmul_1_80_13522_6 391625 97002 +75.2% BM_Matmul_1_80_13522_8 408986 113828 +72.2% BM_Matmul_1_80_13522_16 399988 67600 +83.1% BM_Matmul_1_80_13522_22 411546 60044 +85.4% BM_Matmul_1_80_13522_32 393528 57312 +85.4% BM_Matmul_1_80_13522_44 390047 63525 +83.7% BM_Matmul_1_80_13522_88 387876 63592 +83.6% BM_Matmul_1_1500_500_1 245359 248119 -1.1% BM_Matmul_1_1500_500_2 401833 143271 +64.3% BM_Matmul_1_1500_500_4 210519 100231 +52.4% BM_Matmul_1_1500_500_6 251582 86575 +65.6% BM_Matmul_1_1500_500_8 211499 80444 +62.0% BM_Matmul_3_250_512_1 70297 68551 +2.5% BM_Matmul_3_250_512_2 70141 52450 +25.2% BM_Matmul_3_250_512_4 67872 58204 +14.2% BM_Matmul_3_250_512_6 71378 63340 +11.3% BM_Matmul_3_250_512_8 69595 41652 +40.2% BM_Matmul_3_250_512_16 72055 42549 +40.9% BM_Matmul_3_250_512_22 70158 54023 +23.0% BM_Matmul_3_250_512_32 71541 56042 +21.7% BM_Matmul_3_250_512_44 71843 57019 +20.6% BM_Matmul_3_250_512_88 69951 54045 +22.7% BM_Matmul_3_1500_512_1 369328 374284 -1.4% BM_Matmul_3_1500_512_2 428656 223603 +47.8% BM_Matmul_3_1500_512_4 205599 139508 +32.1% BM_Matmul_3_1500_512_6 214278 139071 +35.1% BM_Matmul_3_1500_512_8 184149 142338 +22.7% BM_Matmul_3_1500_512_16 156462 156983 -0.3% BM_Matmul_3_1500_512_22 163905 158259 +3.4% BM_Matmul_3_1500_512_32 155314 157662 -1.5% BM_Matmul_3_1500_512_44 235434 158657 +32.6% BM_Matmul_3_1500_512_88 156779 160275 -2.2% BM_Matmul_1500_4_512_1 363358 349528 +3.8% BM_Matmul_1500_4_512_2 303134 263319 +13.1% BM_Matmul_1500_4_512_4 176208 130086 +26.2% BM_Matmul_1500_4_512_6 148026 115449 +22.0% BM_Matmul_1500_4_512_8 131656 98421 +25.2% BM_Matmul_1500_4_512_16 134011 82861 +38.2% BM_Matmul_1500_4_512_22 134950 85685 +36.5% BM_Matmul_1500_4_512_32 133165 90081 +32.4% BM_Matmul_1500_4_512_44 133203 90644 +32.0% BM_Matmul_1500_4_512_88 134106 100566 +25.0% BM_Matmul_4_1500_512_1 439243 435058 +1.0% BM_Matmul_4_1500_512_2 451830 257032 +43.1% BM_Matmul_4_1500_512_4 276434 164513 +40.5% BM_Matmul_4_1500_512_6 182542 144827 +20.7% BM_Matmul_4_1500_512_8 179411 166256 +7.3% BM_Matmul_4_1500_512_16 158101 155560 +1.6% BM_Matmul_4_1500_512_22 152435 155448 -1.9% BM_Matmul_4_1500_512_32 155150 149538 +3.6% BM_Matmul_4_1500_512_44 193842 149777 +22.7% BM_Matmul_4_1500_512_88 149544 154468 -3.3%
This commit is contained in:
parent
0a3356f4ec
commit
3815aeed7a
@ -590,6 +590,25 @@ struct TensorContractionEvaluatorBase
|
||||
|
||||
// zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
|
||||
this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
|
||||
this->template evalGemmPartial<lhs_inner_dim_contiguous,
|
||||
rhs_inner_dim_contiguous,
|
||||
rhs_inner_dim_reordered, Alignment>(buffer,
|
||||
0, k, 1);
|
||||
}
|
||||
|
||||
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
|
||||
EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
|
||||
// columns in left side, rows in right side
|
||||
const Index k = this->m_k_size;
|
||||
|
||||
eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= k);
|
||||
const Index k_slice = k_end - k_start;
|
||||
|
||||
// rows in left side
|
||||
const Index m = this->m_i_size;
|
||||
|
||||
// columns in right side
|
||||
const Index n = this->m_j_size;
|
||||
|
||||
// define mr, nr, and all of my data mapper types
|
||||
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
|
||||
@ -620,7 +639,7 @@ struct TensorContractionEvaluatorBase
|
||||
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
|
||||
|
||||
// Declare GEBP packing and kernel structs
|
||||
internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor> pack_lhs;
|
||||
internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor> pack_lhs;
|
||||
internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, nr, ColMajor> pack_rhs;
|
||||
|
||||
internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, mr, nr, false, false> gebp;
|
||||
@ -635,7 +654,7 @@ struct TensorContractionEvaluatorBase
|
||||
OutputMapper output(buffer, m);
|
||||
|
||||
// Sizes of the blocks to load in cache. See the Goto paper for details.
|
||||
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(k, m, n, 1);
|
||||
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(k_slice, m, n, num_threads);
|
||||
const Index kc = blocking.kc();
|
||||
const Index mc = numext::mini(m, blocking.mc());
|
||||
const Index nc = numext::mini(n, blocking.nc());
|
||||
@ -648,7 +667,7 @@ struct TensorContractionEvaluatorBase
|
||||
for(Index i2=0; i2<m; i2+=mc)
|
||||
{
|
||||
const Index actual_mc = numext::mini(i2+mc,m)-i2;
|
||||
for (Index k2 = 0; k2 < k; k2 += kc) {
|
||||
for (Index k2 = k_start; k2 < k_end; k2 += kc) {
|
||||
// make sure we don't overshoot right edge of left matrix, then pack vertical panel
|
||||
const Index actual_kc = numext::mini(k2 + kc, k) - k2;
|
||||
pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc, 0, 0);
|
||||
|
@ -147,6 +147,14 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
contractionCost(m, n, bm, bn, bk, shard_by_col, false);
|
||||
int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
|
||||
static_cast<double>(n) * m, cost, this->m_device.numThreads());
|
||||
int num_threads_by_k = numThreadsInnerDim(m, n, k);
|
||||
if (false && shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) {
|
||||
// We are in the scenario where it is more effective to shard by the
|
||||
// inner dimension.
|
||||
this->template evalShardedByInnerDim<Alignment>(num_threads_by_k,
|
||||
buffer);
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
|
||||
// model is not tuned. Remove this when the cost model is tuned.
|
||||
@ -242,9 +250,9 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
contract_t, internal::packet_traits<RhsScalar>::size,
|
||||
rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
|
||||
RhsMapper;
|
||||
typedef internal::gemm_pack_lhs<LhsScalar, Index,
|
||||
typename LhsMapper::SubMapper, Traits::mr,
|
||||
Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>
|
||||
typedef internal::gemm_pack_lhs<
|
||||
LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
|
||||
Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>
|
||||
LhsPacker;
|
||||
typedef internal::gemm_pack_rhs<
|
||||
RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor>
|
||||
@ -709,20 +717,9 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
PacketType<RhsScalar, Device>::size);
|
||||
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
|
||||
const double kd = static_cast<double>(bk);
|
||||
// Peak VFMA bandwidth is 0.5. However if we have not enough data for
|
||||
// vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
|
||||
// experimentally.
|
||||
double computeBandwidth = bk == 1 ? 4.0 :
|
||||
(shard_by_col ? bn : bm) < Traits::nr ||
|
||||
(shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5;
|
||||
#ifndef EIGEN_VECTORIZE_FMA
|
||||
// Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
|
||||
// However for MULPS/ADDPS we have dependent sequence of 2 such instructions,
|
||||
// so overall bandwidth is 1.0.
|
||||
if (computeBandwidth == 0.5) computeBandwidth = 1.0;
|
||||
#endif
|
||||
double compute_bandwidth = computeBandwidth(false, bm, bn, bk);
|
||||
// Computations.
|
||||
TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size);
|
||||
TensorOpCost cost = TensorOpCost(0, 0, kd * compute_bandwidth, true, packed_size);
|
||||
// Output stores.
|
||||
cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
|
||||
if (prepacked) {
|
||||
@ -743,6 +740,162 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
return cost + lhsCost + rhsCost;
|
||||
}
|
||||
|
||||
template <int Alignment>
|
||||
EIGEN_STRONG_INLINE void addToBuffer(size_t n, const Scalar* src_buf,
|
||||
Scalar* tgt_buf) const {
|
||||
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
|
||||
size_t i = 0;
|
||||
const size_t num_packets = n / output_packet_size;
|
||||
for (; i < output_packet_size * num_packets; i += output_packet_size) {
|
||||
const PacketReturnType src_val =
|
||||
internal::pload<PacketReturnType>(src_buf + i);
|
||||
const PacketReturnType tgt_val =
|
||||
internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i);
|
||||
const PacketReturnType sum = internal::padd(src_val, tgt_val);
|
||||
internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i, sum);
|
||||
}
|
||||
for (; i < n; ++i) {
|
||||
tgt_buf[i] += src_buf[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Decide whether we want to shard m x k x n contraction over the inner
|
||||
// (contraction) dimension (k).
|
||||
static bool shardByInnerDim(Index m, Index n, Index k, int num_threads,
|
||||
int num_threads_by_k) {
|
||||
size_t bufsize = m * n * sizeof(Scalar);
|
||||
bool shard_by_k = false;
|
||||
if (n == 1 || // If mat*vec or...
|
||||
num_threads_by_k < 2 || // running single threaded or...
|
||||
num_threads_by_k <
|
||||
num_threads || // sharding by k gives less parallelism or...
|
||||
bufsize > l3CacheSize() / num_threads_by_k || // need more buffer space
|
||||
// than L3 cache or...
|
||||
k / num_threads_by_k < 2 * Traits::nr) { // k per thread is tiny.
|
||||
shard_by_k = false;
|
||||
} else if (numext::maxi(m, n) / num_threads <
|
||||
Traits::nr || // both other dimensions are tiny or...
|
||||
// k per thread is not small and...
|
||||
(k / num_threads_by_k > 8 * Traits::nr &&
|
||||
// one of the outer dimensions is tiny or sharding by k offers
|
||||
// more parallelism.
|
||||
(numext::mini(m, n) < 2 * Traits::nr ||
|
||||
num_threads_by_k > num_threads))) {
|
||||
shard_by_k = true;
|
||||
}
|
||||
return shard_by_k;
|
||||
}
|
||||
|
||||
template <int Alignment>
|
||||
void evalShardedByInnerDim(int num_threads, Scalar* result) const {
|
||||
const Index m = this->m_i_size;
|
||||
const Index n = this->m_j_size;
|
||||
const Index k = this->m_k_size;
|
||||
// The underlying GEMM kernel assumes that k is a multiple of 8 and
|
||||
// subtle breakage occurs if this is violated.
|
||||
Index block_size = 8 * divup<Index>(k, 8 * num_threads);
|
||||
int num_blocks = divup<Index>(k, block_size);
|
||||
// we use 'result' for the first block's partial result.
|
||||
MaxSizeVector<Scalar*> block_buffers(num_blocks - 1);
|
||||
Barrier barrier(num_blocks);
|
||||
auto process_block = [=, &barrier](Scalar* buf, Index first, Index last) {
|
||||
::memset(buf, 0, m * n * sizeof(Scalar));
|
||||
TENSOR_CONTRACTION_DISPATCH(
|
||||
this->template evalGemmPartial, Alignment,
|
||||
(buf, first, last, this->m_device.numThreads()));
|
||||
barrier.Notify();
|
||||
};
|
||||
Index start = 0;
|
||||
for (int blocks_left = num_blocks; blocks_left > 0; --blocks_left) {
|
||||
// The underlying GEMM kernel assumes that k is a multiple of 8 and
|
||||
// subtle breakage occurs if this is violated.
|
||||
block_size = 8 * divup<Index>(k - start, 8 * blocks_left);
|
||||
Scalar* buf;
|
||||
if (start == 0) {
|
||||
buf = result;
|
||||
} else {
|
||||
buf = static_cast<Scalar*>(
|
||||
this->m_device.allocate(m * n * sizeof(Scalar)));
|
||||
block_buffers.push_back(buf);
|
||||
}
|
||||
Index end = start + block_size;
|
||||
if (end > k) {
|
||||
end = k;
|
||||
}
|
||||
this->m_device.enqueueNoNotification(
|
||||
[=, &process_block]() { process_block(buf, start, end); });
|
||||
start = end;
|
||||
}
|
||||
barrier.Wait();
|
||||
|
||||
// Add other partial results into first partial result.
|
||||
for (const auto& buf : block_buffers) {
|
||||
addToBuffer<Alignment>(m * n, buf, result);
|
||||
this->m_device.deallocate(buf);
|
||||
}
|
||||
}
|
||||
|
||||
TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const {
|
||||
// Compute cost.
|
||||
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
|
||||
TensorOpCost cost(0, 0, (computeBandwidth(true, m, n, k) * m) * n);
|
||||
// Output stores.
|
||||
cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
|
||||
TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * m;
|
||||
TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * n;
|
||||
// Since the inner gemm kernel is always sharded by column, the lhs
|
||||
// load cost is negligible.
|
||||
lhsCost.dropMemoryCost();
|
||||
return cost + lhsCost + rhsCost;
|
||||
}
|
||||
|
||||
int numThreadsInnerDim(Index m, Index n, Index k) const {
|
||||
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
|
||||
TensorOpCost cost = contractionCostPerInnerDim(m, n, k);
|
||||
double total_parallel_cost =
|
||||
TensorCostModel<ThreadPoolDevice>::totalCost(k, cost);
|
||||
// Cost of reduction step accumulating the m*n per-thread buffers into the
|
||||
// result.
|
||||
double reduction_cost = TensorCostModel<ThreadPoolDevice>::totalCost(
|
||||
m * n, TensorOpCost(2, 1, 1, true, output_packet_size));
|
||||
Index num_threads = 1;
|
||||
double min_cost = total_parallel_cost;
|
||||
double kPerThreadOverHead = 4000;
|
||||
double kFixedOverHead = 100000;
|
||||
for (int nt = 2; nt <= this->m_device.numThreads(); nt++) {
|
||||
double sequential_cost =
|
||||
kFixedOverHead + nt * (reduction_cost + kPerThreadOverHead);
|
||||
double parallel_cost = total_parallel_cost / nt + sequential_cost;
|
||||
if (parallel_cost < min_cost) {
|
||||
num_threads = nt;
|
||||
min_cost = parallel_cost;
|
||||
}
|
||||
}
|
||||
return num_threads;
|
||||
}
|
||||
|
||||
|
||||
double computeBandwidth(bool shard_by_col, Index bm, Index bn,
|
||||
Index bk) const {
|
||||
// Peak VFMA bandwidth is 0.5. However if we have not enough data for
|
||||
// vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
|
||||
// experimentally.
|
||||
double computeBandwidth =
|
||||
bk == 1 ? 4.0
|
||||
: (shard_by_col ? bn : bm) < Traits::nr ||
|
||||
(shard_by_col ? bm : bn) < Traits::mr
|
||||
? 2.0
|
||||
: 0.5;
|
||||
#ifndef EIGEN_VECTORIZE_FMA
|
||||
// Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
|
||||
// However for MULPS/ADDPS we have dependent sequence of 2 such
|
||||
// instructions,
|
||||
// so overall bandwidth is 1.0.
|
||||
if (computeBandwidth == 0.5) computeBandwidth = 1.0;
|
||||
#endif
|
||||
return computeBandwidth;
|
||||
}
|
||||
|
||||
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
|
||||
// TODO(ezhulenev): Add support for output kernels and LIBXSMM.
|
||||
static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
|
||||
|
@ -188,7 +188,6 @@ class TensorCostModel {
|
||||
return totalCost(output_size, cost_per_coeff) / kTaskSize;
|
||||
}
|
||||
|
||||
private:
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double totalCost(
|
||||
double output_size, const TensorOpCost& cost_per_coeff) {
|
||||
// Cost of memory fetches from L2 cache. 64 is typical cache line size.
|
||||
|
Loading…
Reference in New Issue
Block a user