2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-03-19 18:40:38 +08:00

* added an in-place version of inverseProduct which

might be twice faster fot small fixed size matrix
* added a sparse triangular solver (sparse version
  of inverseProduct)
* various other improvements in the Sparse module
This commit is contained in:
Gael Guennebaud 2008-06-29 21:29:12 +00:00
parent fbdecf09e1
commit 37a50fa526
12 changed files with 582 additions and 209 deletions

@ -18,6 +18,7 @@ namespace Eigen {
#include "src/Sparse/CoreIterators.h"
#include "src/Sparse/SparseSetter.h"
#include "src/Sparse/SparseProduct.h"
#include "src/Sparse/TriangularSolver.h"
} // namespace Eigen

@ -25,6 +25,53 @@
#ifndef EIGEN_INVERSEPRODUCT_H
#define EIGEN_INVERSEPRODUCT_H
/** "in-place" version of MatrixBase::inverseProduct() where the result is written in \a other
*
* \sa inverseProduct()
*/
template<typename Derived>
template<typename OtherDerived>
void MatrixBase<Derived>::inverseProductInPlace(MatrixBase<OtherDerived>& other) const
{
ei_assert(cols() == other.rows());
ei_assert(!(Flags & ZeroDiagBit));
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
for(int c=0 ; c<other.cols() ; ++c)
{
if(Flags & LowerTriangularBit)
{
// forward substitution
if(!(Flags & UnitDiagBit))
other.coeffRef(0,c) = other.coeff(0,c)/coeff(0, 0);
for(int i=1; i<rows(); ++i)
{
Scalar tmp = other.coeff(i,c) - ((this->row(i).start(i)) * other.col(c).start(i)).coeff(0,0);
if (Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/coeff(i,i);
}
}
else
{
// backward substitution
if(!(Flags & UnitDiagBit))
other.coeffRef(cols()-1,c) = other.coeff(cols()-1, c)/coeff(rows()-1, cols()-1);
for(int i=rows()-2 ; i>=0 ; --i)
{
Scalar tmp = other.coeff(i,c)
- ((this->row(i).end(cols()-i-1)) * other.col(c).end(cols()-i-1)).coeff(0,0);
if (Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/coeff(i,i);
}
}
}
}
/** \returns the product of the inverse of \c *this with \a other.
*
* This function computes the inverse-matrix matrix product inverse(\c*this) * \a other
@ -43,48 +90,8 @@ template<typename Derived>
template<typename OtherDerived>
typename OtherDerived::Eval MatrixBase<Derived>::inverseProduct(const MatrixBase<OtherDerived>& other) const
{
assert(cols() == other.rows());
assert(!(Flags & ZeroDiagBit));
assert(Flags & (UpperTriangularBit|LowerTriangularBit));
typename OtherDerived::Eval res(other.rows(), other.cols());
for(int c=0 ; c<other.cols() ; ++c)
{
if(Flags & LowerTriangularBit)
{
// forward substitution
if(Flags & UnitDiagBit)
res.coeffRef(0,c) = other.coeff(0,c);
else
res.coeffRef(0,c) = other.coeff(0,c)/coeff(0, 0);
for(int i=1; i<rows(); ++i)
{
Scalar tmp = other.coeff(i,c) - ((this->row(i).start(i)) * res.col(c).start(i)).coeff(0,0);
if (Flags & UnitDiagBit)
res.coeffRef(i,c) = tmp;
else
res.coeffRef(i,c) = tmp/coeff(i,i);
}
}
else
{
// backward substitution
if(Flags & UnitDiagBit)
res.coeffRef(cols()-1,c) = other.coeff(cols()-1,c);
else
res.coeffRef(cols()-1,c) = other.coeff(cols()-1, c)/coeff(rows()-1, cols()-1);
for(int i=rows()-2 ; i>=0 ; --i)
{
Scalar tmp = other.coeff(i,c)
- ((this->row(i).end(cols()-i-1)) * res.col(c).end(cols()-i-1)).coeff(0,0);
if (Flags & UnitDiagBit)
res.coeffRef(i,c) = tmp;
else
res.coeffRef(i,c) = tmp/coeff(i,i);
}
}
}
typename OtherDerived::Eval res(other);
inverseProductInPlace(res);
return res;
}

@ -296,6 +296,9 @@ template<typename Derived> class MatrixBase
template<typename OtherDerived>
typename OtherDerived::Eval inverseProduct(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
void inverseProductInPlace(MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
Scalar dot(const MatrixBase<OtherDerived>& other) const;

@ -191,6 +191,11 @@ enum {
Sparse = SparseBit
};
enum {
ColMajor = 0,
RowMajor = RowMajorBit
};
const int FullyCoherentAccessPattern = 0x1;
const int InnerCoherentAccessPattern = 0x2 | FullyCoherentAccessPattern;
const int OuterCoherentAccessPattern = 0x4 | InnerCoherentAccessPattern;

@ -40,15 +40,15 @@ struct ei_traits<LinkedVectorMatrix<_Scalar,_Flags> >
};
};
template<typename Element, int BlockSize = 8>
struct LinkedVector
template<typename Element, int ChunkSize = 8>
struct LinkedVectorChunk
{
LinkedVector() : size(0), next(0), prev(0) {}
Element data[BlockSize];
LinkedVector* next;
LinkedVector* prev;
LinkedVectorChunk() : size(0), next(0), prev(0) {}
Element data[ChunkSize];
LinkedVectorChunk* next;
LinkedVectorChunk* prev;
int size;
bool isFull() const { return size==BlockSize; }
bool isFull() const { return size==ChunkSize; }
};
template<typename _Scalar, int _Flags>
@ -70,11 +70,11 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
Scalar value;
int index;
};
typedef LinkedVector<ValueIndex,8> LinkedVectorBlock;
typedef LinkedVectorChunk<ValueIndex,8> VectorChunk;
inline int find(LinkedVectorBlock** _el, int id)
inline int find(VectorChunk** _el, int id)
{
LinkedVectorBlock* el = *_el;
VectorChunk* el = *_el;
while (el && el->data[el->size-1].index<id)
el = el->next;
*_el = el;
@ -115,7 +115,7 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
LinkedVectorBlock* el = m_data[outer];
VectorChunk* el = m_data[outer];
int id = find(&el, inner);
if (id<0)
return Scalar(0);
@ -127,7 +127,7 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
LinkedVectorBlock* el = m_data[outer];
VectorChunk* el = m_data[outer];
int id = find(&el, inner);
ei_assert(id>=0);
// if (id<0)
@ -150,7 +150,7 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
const int inner = RowMajor ? col : row;
if (m_ends[outer]==0)
{
m_data[outer] = m_ends[outer] = new LinkedVectorBlock();
m_data[outer] = m_ends[outer] = new VectorChunk();
}
else
{
@ -158,7 +158,7 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
if (m_ends[outer]->isFull())
{
LinkedVectorBlock* el = new LinkedVectorBlock();
VectorChunk* el = new VectorChunk();
m_ends[outer]->next = el;
el->prev = m_ends[outer];
m_ends[outer] = el;
@ -168,24 +168,21 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
return m_ends[outer]->data[m_ends[outer]->size++].value;
}
inline void endFill()
{
}
inline void endFill() { }
~LinkedVectorMatrix()
{
if (this->isNotShared())
clear();
clear();
}
void clear()
{
for (int i=0; i<m_data.size(); ++i)
{
LinkedVectorBlock* el = m_data[i];
VectorChunk* el = m_data[i];
while (el)
{
LinkedVectorBlock* tmp = el;
VectorChunk* tmp = el;
el = el->next;
delete tmp;
}
@ -221,30 +218,26 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
*this = other.derived();
}
inline void shallowCopy(const LinkedVectorMatrix& other)
inline void swap(LinkedVectorMatrix& other)
{
EIGEN_DBG_SPARSE(std::cout << "LinkedVectorMatrix:: shallowCopy\n");
EIGEN_DBG_SPARSE(std::cout << "LinkedVectorMatrix:: swap\n");
resize(other.rows(), other.cols());
for (int j=0; j<this->outerSize(); ++j)
{
m_data[j] = other.m_data[j];
m_ends[j] = other.m_ends[j];
}
other.markAsCopied();
m_data.swap(other.m_data);
m_ends.swap(other.m_ends);
}
inline LinkedVectorMatrix& operator=(const LinkedVectorMatrix& other)
{
if (other.isRValue())
{
shallowCopy(other);
return *this;
swap(other.const_cast_derived());
}
else
{
// TODO implement a specialized deep copy here
return operator=<LinkedVectorMatrix>(other);
}
return *this;
}
template<typename OtherDerived>
@ -255,8 +248,10 @@ class LinkedVectorMatrix : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_F
protected:
std::vector<LinkedVectorBlock*> m_data;
std::vector<LinkedVectorBlock*> m_ends;
// outer vector of inner linked vector chunks
std::vector<VectorChunk*> m_data;
// stores a reference to the last vector chunk for efficient filling
std::vector<VectorChunk*> m_ends;
int m_innerSize;
};
@ -281,7 +276,7 @@ class LinkedVectorMatrix<Scalar,_Flags>::InnerIterator
protected:
const LinkedVectorMatrix& m_matrix;
LinkedVectorBlock* m_el;
VectorChunk* m_el;
int m_it;
};

@ -32,11 +32,11 @@ template<typename Scalar> class SparseArray
{
public:
SparseArray()
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0), m_isShared(0)
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
{}
SparseArray(int size)
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0), m_isShared(0)
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
{
resize(size);
}
@ -51,66 +51,39 @@ template<typename Scalar> class SparseArray
resize(other.size());
memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
memcpy(m_indices, other.m_indices, m_size * sizeof(int));
m_isShared = 0;
}
void shallowCopy(const SparseArray& other)
void swap(SparseArray& other)
{
delete[] m_values;
delete[] m_indices;
m_values = other.m_values;
m_indices = other.m_indices;
m_size = other.m_size;
m_allocatedSize = other.m_allocatedSize;
m_isShared = false;
other.m_isShared = true;
std::swap(m_values, other.m_values);
std::swap(m_indices, other.m_indices);
std::swap(m_size, other.m_size);
std::swap(m_allocatedSize, other.m_allocatedSize);
}
~SparseArray()
{
if (!m_isShared)
{
delete[] m_values;
delete[] m_indices;
}
delete[] m_values;
delete[] m_indices;
}
void reserve(int size)
{
int newAllocatedSize = m_size + size;
if (newAllocatedSize > m_allocatedSize)
{
Scalar* newValues = new Scalar[newAllocatedSize];
int* newIndices = new int[newAllocatedSize];
// copy
memcpy(newValues, m_values, m_size * sizeof(Scalar));
memcpy(newIndices, m_indices, m_size * sizeof(int));
// delete old stuff
delete[] m_values;
delete[] m_indices;
m_values = newValues;
m_indices = newIndices;
m_allocatedSize = newAllocatedSize;
}
reallocate(newAllocatedSize);
}
void squeeze()
{
if (m_allocatedSize>m_size)
reallocate(m_size);
}
void resize(int size, int reserveSizeFactor = 0)
{
if (m_allocatedSize<size)
{
int newAllocatedSize = size + reserveSizeFactor*size;
Scalar* newValues = new Scalar[newAllocatedSize];
int* newIndices = new int[newAllocatedSize];
// copy
memcpy(newValues, m_values, m_size * sizeof(Scalar));
memcpy(newIndices, m_indices, m_size * sizeof(int));
// delete old stuff
delete[] m_values;
delete[] m_indices;
m_values = newValues;
m_indices = newIndices;
m_allocatedSize = newAllocatedSize;
}
reallocate(size + reserveSizeFactor*size);
m_size = size;
}
@ -123,26 +96,37 @@ template<typename Scalar> class SparseArray
}
int size() const { return m_size; }
void clear()
{
m_size = 0;
}
void clear() { m_size = 0; }
Scalar& value(int i) { return m_values[i]; }
Scalar value(int i) const { return m_values[i]; }
const Scalar& value(int i) const { return m_values[i]; }
int& index(int i) { return m_indices[i]; }
int index(int i) const { return m_indices[i]; }
const int& index(int i) const { return m_indices[i]; }
protected:
void reallocate(int size)
{
Scalar* newValues = new Scalar[size];
int* newIndices = new int[size];
int copySize = std::min(size, m_size);
// copy
memcpy(newValues, m_values, copySize * sizeof(Scalar));
memcpy(newIndices, m_indices, copySize * sizeof(int));
// delete old stuff
delete[] m_values;
delete[] m_indices;
m_values = newValues;
m_indices = newIndices;
m_allocatedSize = size;
}
protected:
Scalar* m_values;
int* m_indices;
int m_size;
struct {
int m_allocatedSize:31;
mutable int m_isShared:1;
};
int m_allocatedSize;
};

@ -58,41 +58,50 @@ class SparseMatrix : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
EIGEN_GENERIC_PUBLIC_INTERFACE(SparseMatrix)
protected:
public:
int* m_colPtrs;
typedef SparseMatrixBase<SparseMatrix> SparseBase;
enum {
RowMajor = SparseBase::RowMajor
};
int m_outerSize;
int m_innerSize;
int* m_outerIndex;
SparseArray<Scalar> m_data;
int m_rows;
int m_cols;
public:
inline int rows() const { return m_rows; }
inline int cols() const { return m_cols; }
inline int innerNonZeros(int j) const { return m_colPtrs[j+1]-m_colPtrs[j]; }
inline int rows() const { return RowMajor ? m_outerSize : m_innerSize; }
inline int cols() const { return RowMajor ? m_innerSize : m_outerSize; }
inline int innerSize() const { return m_innerSize; }
inline int outerSize() const { return m_outerSize; }
inline int innerNonZeros(int j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
inline Scalar coeff(int row, int col) const
{
int id = m_colPtrs[col];
int end = m_colPtrs[col+1];
while (id<end && m_data.index(id)!=row)
{
++id;
}
if (id==end)
return 0;
return m_data.value(id);
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
int id = m_outerIndex[outer];
int end = m_outerIndex[outer+1]-1;
if (m_data.index(end)==inner)
return m_data.value(end);
const int* r = std::lower_bound(&m_data.index(id),&m_data.index(end),inner);
return (*r==inner) ? m_data.value(*r) : Scalar(0);
}
inline Scalar& coeffRef(int row, int col)
{
int id = m_colPtrs[col];
int end = m_colPtrs[col+1];
while (id<end && m_data.index(id)!=row)
{
++id;
}
ei_assert(id!=end);
return m_data.value(id);
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
int id = m_outerIndex[outer];
int end = m_outerIndex[outer+1];
int* r = std::lower_bound(&m_data.index(id),&m_data.index(end),inner);
ei_assert(*r==inner);
return m_data.value(*r);
}
public:
@ -106,92 +115,94 @@ class SparseMatrix : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
{
m_data.clear();
m_data.reserve(reserveSize);
for (int i=0; i<=m_cols; ++i)
m_colPtrs[i] = 0;
for (int i=0; i<=m_outerSize; ++i)
m_outerIndex[i] = 0;
}
inline Scalar& fill(int row, int col)
{
if (m_colPtrs[col+1]==0)
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
if (m_outerIndex[outer+1]==0)
{
int i=col;
while (i>=0 && m_colPtrs[i]==0)
while (i>=0 && m_outerIndex[i]==0)
{
m_colPtrs[i] = m_data.size();
m_outerIndex[i] = m_data.size();
--i;
}
m_colPtrs[col+1] = m_colPtrs[col];
m_outerIndex[outer+1] = m_outerIndex[outer];
}
assert(m_colPtrs[col+1] == m_data.size());
int id = m_colPtrs[col+1];
m_colPtrs[col+1]++;
assert(m_outerIndex[outer+1] == m_data.size());
int id = m_outerIndex[outer+1];
m_outerIndex[outer+1]++;
m_data.append(0, row);
m_data.append(0, inner);
return m_data.value(id);
}
inline void endFill()
{
int size = m_data.size();
int i = m_cols;
int i = m_outerSize;
// find the last filled column
while (i>=0 && m_colPtrs[i]==0)
while (i>=0 && m_outerIndex[i]==0)
--i;
i++;
while (i<=m_cols)
while (i<=m_outerSize)
{
m_colPtrs[i] = size;
m_outerIndex[i] = size;
++i;
}
}
void resize(int rows, int cols)
{
if (m_cols != cols)
const int outerSize = RowMajor ? rows : cols;
m_innerSize = RowMajor ? cols : rows;
m_data.clear();
if (m_outerSize != outerSize)
{
delete[] m_colPtrs;
m_colPtrs = new int [cols+1];
m_rows = rows;
m_cols = cols;
delete[] m_outerIndex;
m_outerIndex = new int [outerSize+1];
m_outerSize = outerSize;
}
}
inline SparseMatrix(int rows, int cols)
: m_rows(0), m_cols(0), m_colPtrs(0)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{
resize(rows, cols);
}
template<typename OtherDerived>
inline SparseMatrix(const MatrixBase<OtherDerived>& other)
: m_rows(0), m_cols(0), m_colPtrs(0)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{
*this = other.derived();
}
inline void shallowCopy(const SparseMatrix& other)
inline void swap(SparseMatrix& other)
{
EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: shallowCopy\n");
delete[] m_colPtrs;
m_colPtrs = 0;
m_rows = other.rows();
m_cols = other.cols();
m_colPtrs = other.m_colPtrs;
m_data.shallowCopy(other.m_data);
other.markAsCopied();
EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
std::swap(m_outerIndex, other.m_outerIndex);
std::swap(m_innerSize, other.m_innerSize);
std::swap(m_outerSize, other.m_outerSize);
m_data.swap(other.m_data);
}
inline SparseMatrix& operator=(const SparseMatrix& other)
{
if (other.isRValue())
{
shallowCopy(other);
swap(other.const_cast_derived());
}
else
{
resize(other.rows(), other.cols());
for (int col=0; col<=cols(); ++col)
m_colPtrs[col] = other.m_colPtrs[col];
for (int j=0; j<=m_outerSize; ++j)
m_outerIndex[j] = other.m_outerIndex[j];
m_data = other.m_data;
return *this;
}
@ -216,7 +227,7 @@ class SparseMatrix : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
s << "Column pointers:\n";
for (uint i=0; i<m.cols(); ++i)
{
s << m.m_colPtrs[i] << " ";
s << m.m_outerIndex[i] << " ";
}
s << std::endl;
s << std::endl;
@ -228,8 +239,7 @@ class SparseMatrix : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
/** Destructor */
inline ~SparseMatrix()
{
if (this->isNotShared())
delete[] m_colPtrs;
delete[] m_outerIndex;
}
};
@ -237,8 +247,8 @@ template<typename Scalar, int _Flags>
class SparseMatrix<Scalar,_Flags>::InnerIterator
{
public:
InnerIterator(const SparseMatrix& mat, int col)
: m_matrix(mat), m_id(mat.m_colPtrs[col]), m_start(m_id), m_end(mat.m_colPtrs[col+1])
InnerIterator(const SparseMatrix& mat, int outer)
: m_matrix(mat), m_id(mat.m_outerIndex[outer]), m_start(m_id), m_end(mat.m_outerIndex[outer+1])
{}
InnerIterator& operator++() { m_id++; return *this; }

@ -43,19 +43,16 @@ class SparseMatrixBase : public MatrixBase<Derived>
{ return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
SparseMatrixBase()
: m_isRValue(false), m_hasBeenCopied(false)
: m_isRValue(false)
{}
bool isRValue() const { return m_isRValue; }
Derived& temporary() { m_isRValue = true; return derived(); }
Derived& markAsRValue() { m_isRValue = true; return derived(); }
inline Derived& operator=(const Derived& other)
{
if (other.isRValue())
{
m_hasBeenCopied = true;
derived().shallowCopy(other);
}
derived().swap(other.const_cast_derived());
else
this->operator=<Derived>(other);
return derived();
@ -82,7 +79,7 @@ class SparseMatrixBase : public MatrixBase<Derived>
}
temp.endFill();
derived() = temp.temporary();
derived() = temp.markAsRValue();
return derived();
}
@ -119,7 +116,6 @@ class SparseMatrixBase : public MatrixBase<Derived>
friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
{
if (Flags&RowMajorBit)
{
for (int row=0; row<m.outerSize(); ++row)
@ -130,6 +126,7 @@ class SparseMatrixBase : public MatrixBase<Derived>
for ( ; col<it.index(); ++col)
s << "0 ";
std::cout << it.value() << " ";
++col;
}
for ( ; col<m.cols(); ++col)
s << "0 ";
@ -144,15 +141,12 @@ class SparseMatrixBase : public MatrixBase<Derived>
return s;
}
protected:
bool isNotShared() { return !m_hasBeenCopied; }
void markAsCopied() const { m_hasBeenCopied = true; }
template<typename OtherDerived>
OtherDerived inverseProduct(const MatrixBase<OtherDerived>& other) const;
protected:
bool m_isRValue;
mutable bool m_hasBeenCopied;
};
#endif // EIGEN_SPARSEMATRIXBASE_H

@ -123,9 +123,6 @@ template<typename LhsNested, typename RhsNested> class Product<LhsNested,RhsNest
const RhsNested m_rhs;
};
const int RowMajor = RowMajorBit;
const int ColMajor = 0;
template<typename Lhs, typename Rhs, typename ResultType,
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,

@ -0,0 +1,170 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSETRIANGULARSOLVER_H
#define EIGEN_SPARSETRIANGULARSOLVER_H
template<typename Lhs, typename Rhs,
int TriangularPart = (int(Lhs::Flags) & LowerTriangularBit)
? Lower
: (int(Lhs::Flags) & UpperTriangularBit)
? Upper
: -1,
int StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor
>
struct ei_inverse_product_selector;
// forward substitution, row-major
template<typename Lhs, typename Rhs>
struct ei_inverse_product_selector<Lhs,Rhs,Lower,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, Rhs& res)
{
for(int col=0 ; col<rhs.cols() ; ++col)
{
for(int i=0; i<lhs.rows(); ++i)
{
Scalar tmp = rhs.coeff(i,col);
Scalar lastVal = 0;
int lastIndex = 0;
for(typename Lhs::InnerIterator it(lhs, i); it; ++it)
{
lastVal = it.value();
lastIndex = it.index();
tmp -= lastVal * res.coeff(lastIndex,col);
}
if (Lhs::Flags & UnitDiagBit)
res.coeffRef(i,col) = tmp;
else
{
ei_assert(lastIndex==i);
res.coeffRef(i,col) = tmp/lastVal;
}
}
}
}
};
// backward substitution, row-major
template<typename Lhs, typename Rhs>
struct ei_inverse_product_selector<Lhs,Rhs,Upper,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, Rhs& res)
{
for(int col=0 ; col<rhs.cols() ; ++col)
{
for(int i=lhs.rows()-1 ; i>=0 ; --i)
{
Scalar tmp = rhs.coeff(i,col);
typename Lhs::InnerIterator it(lhs, i);
for(++it; it; ++it)
{
tmp -= it.value() * res.coeff(it.index(),col);
}
if (Lhs::Flags & UnitDiagBit)
res.coeffRef(i,col) = tmp;
else
{
typename Lhs::InnerIterator it(lhs, i);
ei_assert(it.index() == i);
res.coeffRef(i,col) = tmp/it.value();
}
}
}
}
};
// forward substitution, col-major
template<typename Lhs, typename Rhs>
struct ei_inverse_product_selector<Lhs,Rhs,Lower,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, Rhs& res)
{
// NOTE we could avoid this copy using an in-place API
res = rhs;
for(int col=0 ; col<rhs.cols() ; ++col)
{
for(int i=0; i<lhs.cols(); ++i)
{
typename Lhs::InnerIterator it(lhs, i);
if(!(Lhs::Flags & UnitDiagBit))
{
ei_assert(it.index()==i);
res.coeffRef(i,col) /= it.value();
}
Scalar tmp = res.coeffRef(i,col);
for(++it; it; ++it)
res.coeffRef(it.index(), col) -= tmp * it.value();
}
}
}
};
// backward substitution, col-major
template<typename Lhs, typename Rhs>
struct ei_inverse_product_selector<Lhs,Rhs,Upper,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, Rhs& res)
{
// NOTE we could avoid this copy using an in-place API
res = rhs;
for(int col=0 ; col<rhs.cols() ; ++col)
{
for(int i=lhs.cols()-1; i>=0; --i)
{
if(!(Lhs::Flags & UnitDiagBit))
{
// FIXME lhs.coeff(i,i) might not be always efficient while it must simply be the
// last element of the column !
res.coeffRef(i,col) /= lhs.coeff(i,i);
}
Scalar tmp = res.coeffRef(i,col);
typename Lhs::InnerIterator it(lhs, i);
for(; it && it.index()<i; ++it)
res.coeffRef(it.index(), col) -= tmp * it.value();
}
}
}
};
template<typename Derived>
template<typename OtherDerived>
OtherDerived
SparseMatrixBase<Derived>::inverseProduct(const MatrixBase<OtherDerived>& other) const
{
ei_assert(derived().cols() == other.rows());
ei_assert(!(Flags & ZeroDiagBit));
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
OtherDerived res(other.rows(), other.cols());
ei_inverse_product_selector<Derived, OtherDerived>::run(derived(), other.derived(), res);
return res;
}
#endif // EIGEN_SPARSETRIANGULARSOLVER_H

@ -64,7 +64,8 @@ void eiToGmm(const EigenSparseMatrix& src, GmmSparse& dst)
#ifndef NOMTL
#include <boost/numeric/mtl/mtl.hpp>
typedef mtl::compressed2D<Scalar> MtlSparse;
typedef mtl::compressed2D<Scalar, mtl::matrix::parameters<mtl::tag::col_major> > MtlSparse;
typedef mtl::compressed2D<Scalar, mtl::matrix::parameters<mtl::tag::row_major> > MtlSparseRowMajor;
void eiToMtl(const EigenSparseMatrix& src, MtlSparse& dst)
{
mtl::matrix::inserter<MtlSparse> ins(dst);

206
bench/sparse_trisolver.cpp Normal file

@ -0,0 +1,206 @@
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
// -DNOGMM -DNOMTL
#ifndef SIZE
#define SIZE 10000
#endif
#ifndef DENSITY
#define DENSITY 0.01
#endif
#ifndef REPEAT
#define REPEAT 1
#endif
#include "BenchSparseUtil.h"
#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif
#ifndef NBTRIES
#define NBTRIES 10
#endif
#define BENCH(X) \
timer.reset(); \
for (int _j=0; _j<NBTRIES; ++_j) { \
timer.start(); \
for (int _k=0; _k<REPEAT; ++_k) { \
X \
} timer.stop(); }
typedef SparseMatrix<Scalar,Upper> EigenSparseTriMatrix;
typedef SparseMatrix<Scalar,RowMajorBit|Upper> EigenSparseTriMatrixRow;
void fillMatrix(float density, int rows, int cols, EigenSparseTriMatrix& dst)
{
dst.startFill(rows*cols*density);
for(int j = 0; j < cols; j++)
{
for(int i = 0; i < j; i++)
{
Scalar v = (ei_random<float>(0,1) < density) ? ei_random<Scalar>() : 0;
if (v!=0)
dst.fill(i,j) = v;
}
dst.fill(j,j) = ei_random<Scalar>();
}
dst.endFill();
}
int main(int argc, char *argv[])
{
int rows = SIZE;
int cols = SIZE;
float density = DENSITY;
BenchTimer timer;
#if 1
EigenSparseTriMatrix sm1(rows,cols);
VectorXf b = VectorXf::random(cols);
VectorXf x = VectorXf::random(cols);
bool densedone = false;
for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
{
EigenSparseTriMatrix sm1(rows, cols);
fillMatrix(density, rows, cols, sm1);
// dense matrices
#ifdef DENSEMATRIX
if (!densedone)
{
densedone = true;
std::cout << "Eigen Dense\t" << density*100 << "%\n";
DenseMatrix m1(rows,cols);
Matrix<Scalar,Dynamic,Dynamic,Dynamic,Dynamic,RowMajorBit> m2(rows,cols);
eiToDense(sm1, m1);
m2 = m1;
BENCH(x = m1.marked<Upper>().inverseProduct(b);)
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n";
BENCH(x = m2.marked<Upper>().inverseProduct(b);)
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n";
}
#endif
// eigen sparse matrices
{
std::cout << "Eigen sparse\t" << density*100 << "%\n";
EigenSparseTriMatrixRow sm2 = sm1;
BENCH(x = sm1.inverseProduct(b);)
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n";
BENCH(x = sm2.inverseProduct(b);)
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n";
// x = b;
// BENCH(sm1.inverseProductInPlace(x);)
// std::cout << " colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
// std::cerr << x.transpose() << "\n";
//
// x = b;
// BENCH(sm2.inverseProductInPlace(x);)
// std::cout << " rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
// std::cerr << x.transpose() << "\n";
}
// GMM++
#ifndef NOGMM
{
std::cout << "GMM++ sparse\t" << density*100 << "%\n";
GmmSparse m1(rows,cols);
gmm::csr_matrix<Scalar> m2;
eiToGmm(sm1, m1);
gmm::copy(m1,m2);
std::vector<Scalar> gmmX(cols), gmmB(cols);
Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols) = x;
Map<Matrix<Scalar,Dynamic,1> >(&gmmB[0], cols) = b;
gmmX = gmmB;
BENCH(gmm::upper_tri_solve(m1, gmmX, false);)
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
gmmX = gmmB;
BENCH(gmm::upper_tri_solve(m2, gmmX, false);)
timer.stop();
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
}
#endif
// MTL4
#ifndef NOMTL
{
std::cout << "MTL4\t" << density*100 << "%\n";
MtlSparse m1(rows,cols);
MtlSparseRowMajor m2(rows,cols);
eiToMtl(sm1, m1);
m2 = m1;
mtl::dense_vector<Scalar> x(rows, 1.0);
mtl::dense_vector<Scalar> b(rows, 1.0);
BENCH(x = mtl::upper_trisolve(m1,b);)
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
// std::cerr << x << "\n";
BENCH(x = mtl::upper_trisolve(m2,b);)
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
// std::cerr << x << "\n";
}
#endif
}
#endif
#if 0
// bench small matrices (in-place versus return bye value)
{
timer.reset();
for (int _j=0; _j<10; ++_j) {
Matrix4f m = Matrix4f::random();
Vector4f b = Vector4f::random();
Vector4f x = Vector4f::random();
timer.start();
for (int _k=0; _k<1000000; ++_k) {
b = m.inverseProduct(b);
}
timer.stop();
}
std::cout << "4x4 :\t" << timer.value() << endl;
}
{
timer.reset();
for (int _j=0; _j<10; ++_j) {
Matrix4f m = Matrix4f::random();
Vector4f b = Vector4f::random();
Vector4f x = Vector4f::random();
timer.start();
for (int _k=0; _k<1000000; ++_k) {
m.inverseProductInPlace(x);
}
timer.stop();
}
std::cout << "4x4 IP :\t" << timer.value() << endl;
}
#endif
std::cout << "\n\n";
return 0;
}