mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
merge
This commit is contained in:
commit
35b4077a5d
24
Eigen/Jacobi
Normal file
24
Eigen/Jacobi
Normal file
@ -0,0 +1,24 @@
|
||||
#ifndef EIGEN_JACOBI_MODULE_H
|
||||
#define EIGEN_JACOBI_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup Jacobi_Module Jacobi module
|
||||
* This module provides Jacobi rotations.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Jacobi>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Jacobi/Jacobi.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_JACOBI_MODULE_H
|
@ -2,6 +2,8 @@
|
||||
#define EIGEN_SVD_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
#include "Householder"
|
||||
#include "Jacobi"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
@ -20,7 +22,9 @@ namespace Eigen {
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/SVD/Bidiagonalization.h"
|
||||
#include "src/SVD/SVD.h"
|
||||
#include "src/SVD/JacobiSquareSVD.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
|
@ -57,7 +57,10 @@ private:
|
||||
&& ((int(Derived::Flags)&RowMajorBit)==(int(OtherDerived::Flags)&RowMajorBit)),
|
||||
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
|
||||
&& int(DstIsAligned) && int(SrcIsAligned),
|
||||
MayLinearVectorize = MightVectorize && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
|
||||
MayLinearVectorize = MightVectorize && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit)
|
||||
&& (DstIsAligned || InnerMaxSize == Dynamic),/* If the destination isn't aligned,
|
||||
we have to do runtime checks and we don't unroll, so it's only good for large enough sizes. See remark below
|
||||
about InnerMaxSize. */
|
||||
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize /* slice vectorization can be slow, so we only
|
||||
want it if the slices are big, which is indicated by InnerMaxSize rather than InnerSize, think of the case
|
||||
of a dynamic block in a fixed-size matrix */
|
||||
@ -90,6 +93,25 @@ public:
|
||||
? ( int(MayUnrollCompletely) && int(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
|
||||
: int(NoUnrolling)
|
||||
};
|
||||
|
||||
static void debug()
|
||||
{
|
||||
EIGEN_DEBUG_VAR(DstIsAligned)
|
||||
EIGEN_DEBUG_VAR(SrcIsAligned)
|
||||
EIGEN_DEBUG_VAR(SrcAlignment)
|
||||
EIGEN_DEBUG_VAR(InnerSize)
|
||||
EIGEN_DEBUG_VAR(InnerMaxSize)
|
||||
EIGEN_DEBUG_VAR(PacketSize)
|
||||
EIGEN_DEBUG_VAR(MightVectorize)
|
||||
EIGEN_DEBUG_VAR(MayInnerVectorize)
|
||||
EIGEN_DEBUG_VAR(MayLinearVectorize)
|
||||
EIGEN_DEBUG_VAR(MaySliceVectorize)
|
||||
EIGEN_DEBUG_VAR(Vectorization)
|
||||
EIGEN_DEBUG_VAR(UnrollingLimit)
|
||||
EIGEN_DEBUG_VAR(MayUnrollCompletely)
|
||||
EIGEN_DEBUG_VAR(MayUnrollInner)
|
||||
EIGEN_DEBUG_VAR(Unrolling)
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
@ -405,6 +427,9 @@ EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
ei_assert(rows() == other.rows() && cols() == other.cols());
|
||||
ei_assign_impl<Derived, OtherDerived>::run(derived(),other.derived());
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
ei_assign_traits<Derived, OtherDerived>::debug();
|
||||
#endif
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
@ -778,6 +778,12 @@ template<typename Derived> class MatrixBase
|
||||
void applyHouseholderOnTheRight(const EssentialPart& essential,
|
||||
const RealScalar& beta);
|
||||
|
||||
///////// Jacobi module /////////
|
||||
|
||||
void applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s);
|
||||
void applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s);
|
||||
bool makeJacobi(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s);
|
||||
bool makeJacobiForAtA(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s);
|
||||
|
||||
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
||||
#include EIGEN_MATRIXBASE_PLUGIN
|
||||
|
@ -32,6 +32,15 @@ template<int n> struct ei_decrement_size
|
||||
};
|
||||
};
|
||||
|
||||
template<typename EssentialPart>
|
||||
void makeTrivialHouseholder(
|
||||
EssentialPart *essential,
|
||||
typename EssentialPart::RealScalar *beta)
|
||||
{
|
||||
*beta = typename EssentialPart::RealScalar(0);
|
||||
essential->setZero();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename EssentialPart>
|
||||
void MatrixBase<Derived>::makeHouseholder(
|
||||
|
91
Eigen/src/Jacobi/Jacobi.h
Normal file
91
Eigen/src/Jacobi/Jacobi.h
Normal file
@ -0,0 +1,91 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_JACOBI_H
|
||||
#define EIGEN_JACOBI_H
|
||||
|
||||
template<typename Derived>
|
||||
void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s)
|
||||
{
|
||||
for(int i = 0; i < cols(); ++i)
|
||||
{
|
||||
Scalar tmp = coeff(p,i);
|
||||
coeffRef(p,i) = c * tmp - s * coeff(q,i);
|
||||
coeffRef(q,i) = s * tmp + c * coeff(q,i);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s)
|
||||
{
|
||||
for(int i = 0; i < rows(); ++i)
|
||||
{
|
||||
Scalar tmp = coeff(i,p);
|
||||
coeffRef(i,p) = c * tmp - s * coeff(i,q);
|
||||
coeffRef(i,q) = s * tmp + c * coeff(i,q);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar max_coeff, Scalar *c, Scalar *s)
|
||||
{
|
||||
if(ei_abs(y) < max_coeff * 0.5 * machine_epsilon<Scalar>())
|
||||
{
|
||||
*c = Scalar(1);
|
||||
*s = Scalar(0);
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar tau = (z - x) / (2 * y);
|
||||
Scalar w = ei_sqrt(1 + ei_abs2(tau));
|
||||
Scalar t;
|
||||
if(tau>0)
|
||||
t = Scalar(1) / (tau + w);
|
||||
else
|
||||
t = Scalar(1) / (tau - w);
|
||||
*c = Scalar(1) / ei_sqrt(1 + ei_abs2(t));
|
||||
*s = *c * t;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline bool MatrixBase<Derived>::makeJacobi(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s)
|
||||
{
|
||||
return ei_makeJacobi(coeff(p,p), coeff(p,q), coeff(q,q), max_coeff, c, s);
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline bool MatrixBase<Derived>::makeJacobiForAtA(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s)
|
||||
{
|
||||
return ei_makeJacobi(col(p).squaredNorm(),
|
||||
col(p).dot(col(q)),
|
||||
col(q).squaredNorm(),
|
||||
max_coeff,
|
||||
c,s);
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_JACOBI_H
|
170
Eigen/src/SVD/JacobiSquareSVD.h
Normal file
170
Eigen/src/SVD/JacobiSquareSVD.h
Normal file
@ -0,0 +1,170 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_JACOBISQUARESVD_H
|
||||
#define EIGEN_JACOBISQUARESVD_H
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class JacobiSquareSVD
|
||||
*
|
||||
* \brief Jacobi SVD decomposition of a square matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* \param ComputeU whether the U matrix should be computed
|
||||
* \param ComputeV whether the V matrix should be computed
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename MatrixType, bool ComputeU, bool ComputeV> class JacobiSquareSVD
|
||||
{
|
||||
private:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic, Options> DummyMatrixType;
|
||||
typedef typename ei_meta_if<ComputeU,
|
||||
Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
|
||||
DummyMatrixType>::ret MatrixUType;
|
||||
typedef typename Diagonal<MatrixType,0>::PlainMatrixType SingularValuesType;
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, Options, 1, MaxRowsAtCompileTime> RowType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> ColType;
|
||||
|
||||
public:
|
||||
|
||||
JacobiSquareSVD() : m_isInitialized(false) {}
|
||||
|
||||
JacobiSquareSVD(const MatrixType& matrix) : m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_matrixU;
|
||||
}
|
||||
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
const MatrixUType& matrixV() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_matrixV;
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixUType m_matrixU;
|
||||
MatrixUType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
template<typename MatrixType, bool ComputeU, bool ComputeV>
|
||||
void JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType& matrix)
|
||||
{
|
||||
MatrixType work_matrix(matrix);
|
||||
int size = matrix.rows();
|
||||
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
|
||||
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
|
||||
m_singularValues.resize(size);
|
||||
RealScalar max_coeff = work_matrix.cwise().abs().maxCoeff();
|
||||
for(int k = 1; k < 40; ++k) {
|
||||
bool finished = true;
|
||||
for(int p = 1; p < size; ++p)
|
||||
{
|
||||
for(int q = 0; q < p; ++q)
|
||||
{
|
||||
Scalar c, s;
|
||||
finished &= work_matrix.makeJacobiForAtA(p,q,max_coeff,&c,&s);
|
||||
work_matrix.applyJacobiOnTheRight(p,q,c,s);
|
||||
if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c,s);
|
||||
}
|
||||
}
|
||||
if(finished) break;
|
||||
}
|
||||
|
||||
for(int i = 0; i < size; ++i)
|
||||
{
|
||||
m_singularValues.coeffRef(i) = work_matrix.col(i).norm();
|
||||
}
|
||||
|
||||
int first_zero = size;
|
||||
RealScalar biggest = m_singularValues.maxCoeff();
|
||||
for(int i = 0; i < size; i++)
|
||||
{
|
||||
int pos;
|
||||
RealScalar biggest_remaining = m_singularValues.end(size-i).maxCoeff(&pos);
|
||||
if(first_zero == size && ei_isMuchSmallerThan(biggest_remaining, biggest)) first_zero = pos + i;
|
||||
if(pos)
|
||||
{
|
||||
pos += i;
|
||||
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
|
||||
if(ComputeU) work_matrix.col(pos).swap(work_matrix.col(i));
|
||||
if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
if(ComputeU)
|
||||
{
|
||||
for(int i = 0; i < first_zero; ++i)
|
||||
{
|
||||
m_matrixU.col(i) = work_matrix.col(i) / m_singularValues.coeff(i);
|
||||
}
|
||||
if(first_zero < size)
|
||||
{
|
||||
for(int i = first_zero; i < size; ++i)
|
||||
{
|
||||
for(int j = 0; j < size; ++j)
|
||||
{
|
||||
m_matrixU.col(i).setZero();
|
||||
m_matrixU.coeffRef(j,i) = Scalar(1);
|
||||
for(int k = 0; k < first_zero; ++k)
|
||||
m_matrixU.col(i) -= m_matrixU.col(i).dot(m_matrixU.col(k)) * m_matrixU.col(k);
|
||||
RealScalar n = m_matrixU.col(i).norm();
|
||||
if(!ei_isMuchSmallerThan(n, biggest))
|
||||
{
|
||||
m_matrixU.col(i) /= n;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
m_isInitialized = true;
|
||||
}
|
||||
#endif // EIGEN_JACOBISQUARESVD_H
|
@ -393,8 +393,9 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
int k;
|
||||
W.end(n-i).minCoeff(&k);
|
||||
if (k != i)
|
||||
if (k != 0)
|
||||
{
|
||||
k += i;
|
||||
std::swap(W[k],W[i]);
|
||||
A.col(i).swap(A.col(k));
|
||||
V.col(i).swap(V.col(k));
|
||||
|
Loading…
Reference in New Issue
Block a user