This commit is contained in:
Gael Guennebaud 2009-08-09 23:11:25 +02:00
commit 35b4077a5d
8 changed files with 332 additions and 2 deletions

24
Eigen/Jacobi Normal file
View File

@ -0,0 +1,24 @@
#ifndef EIGEN_JACOBI_MODULE_H
#define EIGEN_JACOBI_MODULE_H
#include "Core"
#include "src/Core/util/DisableMSVCWarnings.h"
namespace Eigen {
/** \defgroup Jacobi_Module Jacobi module
* This module provides Jacobi rotations.
*
* \code
* #include <Eigen/Jacobi>
* \endcode
*/
#include "src/Jacobi/Jacobi.h"
} // namespace Eigen
#include "src/Core/util/EnableMSVCWarnings.h"
#endif // EIGEN_JACOBI_MODULE_H

View File

@ -2,6 +2,8 @@
#define EIGEN_SVD_MODULE_H #define EIGEN_SVD_MODULE_H
#include "Core" #include "Core"
#include "Householder"
#include "Jacobi"
#include "src/Core/util/DisableMSVCWarnings.h" #include "src/Core/util/DisableMSVCWarnings.h"
@ -20,7 +22,9 @@ namespace Eigen {
* \endcode * \endcode
*/ */
#include "src/SVD/Bidiagonalization.h"
#include "src/SVD/SVD.h" #include "src/SVD/SVD.h"
#include "src/SVD/JacobiSquareSVD.h"
} // namespace Eigen } // namespace Eigen

View File

@ -57,7 +57,10 @@ private:
&& ((int(Derived::Flags)&RowMajorBit)==(int(OtherDerived::Flags)&RowMajorBit)), && ((int(Derived::Flags)&RowMajorBit)==(int(OtherDerived::Flags)&RowMajorBit)),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0 MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned), && int(DstIsAligned) && int(SrcIsAligned),
MayLinearVectorize = MightVectorize && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit), MayLinearVectorize = MightVectorize && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit)
&& (DstIsAligned || InnerMaxSize == Dynamic),/* If the destination isn't aligned,
we have to do runtime checks and we don't unroll, so it's only good for large enough sizes. See remark below
about InnerMaxSize. */
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize /* slice vectorization can be slow, so we only MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize /* slice vectorization can be slow, so we only
want it if the slices are big, which is indicated by InnerMaxSize rather than InnerSize, think of the case want it if the slices are big, which is indicated by InnerMaxSize rather than InnerSize, think of the case
of a dynamic block in a fixed-size matrix */ of a dynamic block in a fixed-size matrix */
@ -90,6 +93,25 @@ public:
? ( int(MayUnrollCompletely) && int(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) ) ? ( int(MayUnrollCompletely) && int(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(NoUnrolling) : int(NoUnrolling)
}; };
static void debug()
{
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(SrcAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
EIGEN_DEBUG_VAR(Vectorization)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
}
}; };
/*************************************************************************** /***************************************************************************
@ -405,6 +427,9 @@ EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
ei_assert(rows() == other.rows() && cols() == other.cols()); ei_assert(rows() == other.rows() && cols() == other.cols());
ei_assign_impl<Derived, OtherDerived>::run(derived(),other.derived()); ei_assign_impl<Derived, OtherDerived>::run(derived(),other.derived());
#ifdef EIGEN_DEBUG_ASSIGN
ei_assign_traits<Derived, OtherDerived>::debug();
#endif
return derived(); return derived();
} }

View File

@ -778,6 +778,12 @@ template<typename Derived> class MatrixBase
void applyHouseholderOnTheRight(const EssentialPart& essential, void applyHouseholderOnTheRight(const EssentialPart& essential,
const RealScalar& beta); const RealScalar& beta);
///////// Jacobi module /////////
void applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s);
void applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s);
bool makeJacobi(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s);
bool makeJacobiForAtA(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s);
#ifdef EIGEN_MATRIXBASE_PLUGIN #ifdef EIGEN_MATRIXBASE_PLUGIN
#include EIGEN_MATRIXBASE_PLUGIN #include EIGEN_MATRIXBASE_PLUGIN

View File

@ -32,6 +32,15 @@ template<int n> struct ei_decrement_size
}; };
}; };
template<typename EssentialPart>
void makeTrivialHouseholder(
EssentialPart *essential,
typename EssentialPart::RealScalar *beta)
{
*beta = typename EssentialPart::RealScalar(0);
essential->setZero();
}
template<typename Derived> template<typename Derived>
template<typename EssentialPart> template<typename EssentialPart>
void MatrixBase<Derived>::makeHouseholder( void MatrixBase<Derived>::makeHouseholder(

91
Eigen/src/Jacobi/Jacobi.h Normal file
View File

@ -0,0 +1,91 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_JACOBI_H
#define EIGEN_JACOBI_H
template<typename Derived>
void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s)
{
for(int i = 0; i < cols(); ++i)
{
Scalar tmp = coeff(p,i);
coeffRef(p,i) = c * tmp - s * coeff(q,i);
coeffRef(q,i) = s * tmp + c * coeff(q,i);
}
}
template<typename Derived>
void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s)
{
for(int i = 0; i < rows(); ++i)
{
Scalar tmp = coeff(i,p);
coeffRef(i,p) = c * tmp - s * coeff(i,q);
coeffRef(i,q) = s * tmp + c * coeff(i,q);
}
}
template<typename Scalar>
bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar max_coeff, Scalar *c, Scalar *s)
{
if(ei_abs(y) < max_coeff * 0.5 * machine_epsilon<Scalar>())
{
*c = Scalar(1);
*s = Scalar(0);
return true;
}
else
{
Scalar tau = (z - x) / (2 * y);
Scalar w = ei_sqrt(1 + ei_abs2(tau));
Scalar t;
if(tau>0)
t = Scalar(1) / (tau + w);
else
t = Scalar(1) / (tau - w);
*c = Scalar(1) / ei_sqrt(1 + ei_abs2(t));
*s = *c * t;
return false;
}
}
template<typename Derived>
inline bool MatrixBase<Derived>::makeJacobi(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s)
{
return ei_makeJacobi(coeff(p,p), coeff(p,q), coeff(q,q), max_coeff, c, s);
}
template<typename Derived>
inline bool MatrixBase<Derived>::makeJacobiForAtA(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s)
{
return ei_makeJacobi(col(p).squaredNorm(),
col(p).dot(col(q)),
col(q).squaredNorm(),
max_coeff,
c,s);
}
#endif // EIGEN_JACOBI_H

View File

@ -0,0 +1,170 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_JACOBISQUARESVD_H
#define EIGEN_JACOBISQUARESVD_H
/** \ingroup SVD_Module
* \nonstableyet
*
* \class JacobiSquareSVD
*
* \brief Jacobi SVD decomposition of a square matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param ComputeU whether the U matrix should be computed
* \param ComputeV whether the V matrix should be computed
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename MatrixType, bool ComputeU, bool ComputeV> class JacobiSquareSVD
{
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
Options = MatrixType::Options
};
typedef Matrix<Scalar, Dynamic, Dynamic, Options> DummyMatrixType;
typedef typename ei_meta_if<ComputeU,
Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
DummyMatrixType>::ret MatrixUType;
typedef typename Diagonal<MatrixType,0>::PlainMatrixType SingularValuesType;
typedef Matrix<Scalar, 1, RowsAtCompileTime, Options, 1, MaxRowsAtCompileTime> RowType;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> ColType;
public:
JacobiSquareSVD() : m_isInitialized(false) {}
JacobiSquareSVD(const MatrixType& matrix) : m_isInitialized(false)
{
compute(matrix);
}
void compute(const MatrixType& matrix);
const MatrixUType& matrixU() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
return m_matrixU;
}
const SingularValuesType& singularValues() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
return m_singularValues;
}
const MatrixUType& matrixV() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
return m_matrixV;
}
protected:
MatrixUType m_matrixU;
MatrixUType m_matrixV;
SingularValuesType m_singularValues;
bool m_isInitialized;
};
template<typename MatrixType, bool ComputeU, bool ComputeV>
void JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType& matrix)
{
MatrixType work_matrix(matrix);
int size = matrix.rows();
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
m_singularValues.resize(size);
RealScalar max_coeff = work_matrix.cwise().abs().maxCoeff();
for(int k = 1; k < 40; ++k) {
bool finished = true;
for(int p = 1; p < size; ++p)
{
for(int q = 0; q < p; ++q)
{
Scalar c, s;
finished &= work_matrix.makeJacobiForAtA(p,q,max_coeff,&c,&s);
work_matrix.applyJacobiOnTheRight(p,q,c,s);
if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c,s);
}
}
if(finished) break;
}
for(int i = 0; i < size; ++i)
{
m_singularValues.coeffRef(i) = work_matrix.col(i).norm();
}
int first_zero = size;
RealScalar biggest = m_singularValues.maxCoeff();
for(int i = 0; i < size; i++)
{
int pos;
RealScalar biggest_remaining = m_singularValues.end(size-i).maxCoeff(&pos);
if(first_zero == size && ei_isMuchSmallerThan(biggest_remaining, biggest)) first_zero = pos + i;
if(pos)
{
pos += i;
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
if(ComputeU) work_matrix.col(pos).swap(work_matrix.col(i));
if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
}
}
if(ComputeU)
{
for(int i = 0; i < first_zero; ++i)
{
m_matrixU.col(i) = work_matrix.col(i) / m_singularValues.coeff(i);
}
if(first_zero < size)
{
for(int i = first_zero; i < size; ++i)
{
for(int j = 0; j < size; ++j)
{
m_matrixU.col(i).setZero();
m_matrixU.coeffRef(j,i) = Scalar(1);
for(int k = 0; k < first_zero; ++k)
m_matrixU.col(i) -= m_matrixU.col(i).dot(m_matrixU.col(k)) * m_matrixU.col(k);
RealScalar n = m_matrixU.col(i).norm();
if(!ei_isMuchSmallerThan(n, biggest))
{
m_matrixU.col(i) /= n;
break;
}
}
}
}
}
m_isInitialized = true;
}
#endif // EIGEN_JACOBISQUARESVD_H

View File

@ -393,8 +393,9 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
{ {
int k; int k;
W.end(n-i).minCoeff(&k); W.end(n-i).minCoeff(&k);
if (k != i) if (k != 0)
{ {
k += i;
std::swap(W[k],W[i]); std::swap(W[k],W[i]);
A.col(i).swap(A.col(k)); A.col(i).swap(A.col(k));
V.col(i).swap(V.col(k)); V.col(i).swap(V.col(k));