mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-21 03:11:25 +08:00
Add support for Schur decomposition of matrices in Hessenberg form
This commit is contained in:
parent
0f94e96342
commit
33febdb48b
@ -187,6 +187,26 @@ template<typename _MatrixType> class ComplexSchur
|
||||
* \sa compute(const MatrixType&, bool, Index)
|
||||
*/
|
||||
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
|
||||
|
||||
/** \brief Compute Schur decomposition from a given Hessenberg matrix
|
||||
* \param[in] matrixH Matrix in Hessenberg form H
|
||||
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
|
||||
* \param computeU Computes the matriX U of the Schur vectors
|
||||
* \return Reference to \c *this
|
||||
*
|
||||
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
|
||||
* using either the class HessenbergDecomposition or another mean.
|
||||
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
|
||||
* When computeU is true, this routine computes the matrix U such that
|
||||
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
|
||||
*
|
||||
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
|
||||
* is not available, the user should give an identity matrix (Q.setIdentity())
|
||||
*
|
||||
* \sa compute(const MatrixType&, bool)
|
||||
*/
|
||||
template<typename HessMatrixType, typename OrthMatrixType>
|
||||
ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
@ -309,10 +329,20 @@ ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& ma
|
||||
}
|
||||
|
||||
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
|
||||
reduceToTriangularForm(computeU);
|
||||
computeFromHessenberg(m_matT, m_matU, computeU);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename HessMatrixType, typename OrthMatrixType>
|
||||
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
||||
{
|
||||
m_matT = matrixH;
|
||||
if(computeU)
|
||||
m_matU = matrixQ;
|
||||
reduceToTriangularForm(computeU);
|
||||
return *this;
|
||||
}
|
||||
namespace internal {
|
||||
|
||||
/* Reduce given matrix to Hessenberg form */
|
||||
|
@ -185,7 +185,7 @@ template<typename _MatrixType> class RealSchur
|
||||
* \sa compute(const MatrixType&, bool)
|
||||
*/
|
||||
template<typename HessMatrixType, typename OrthMatrixType>
|
||||
RealSchur& computeHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
|
||||
RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
||||
@ -254,13 +254,13 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix,
|
||||
m_hess.compute(matrix);
|
||||
|
||||
// Step 2. Reduce to real Schur form
|
||||
computeHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
|
||||
computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
|
||||
|
||||
return *this;
|
||||
}
|
||||
template<typename MatrixType>
|
||||
template<typename HessMatrixType, typename OrthMatrixType>
|
||||
RealSchur<MatrixType>& RealSchur<MatrixType>::computeHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
||||
RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
||||
{
|
||||
m_matT = matrixH;
|
||||
if(computeU)
|
||||
|
Loading…
Reference in New Issue
Block a user