bug #707: add inplace decomposition through Ref<> for Cholesky, LU and QR decompositions.

This commit is contained in:
Gael Guennebaud 2016-07-04 15:13:35 +02:00
parent 75e80792cc
commit 32a41ee659
10 changed files with 337 additions and 64 deletions

View File

@ -52,7 +52,6 @@ template<typename _MatrixType, int _UpLo> class LDLT
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
@ -61,7 +60,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
@ -97,6 +96,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
/** \brief Constructor with decomposition
*
* This calculates the decomposition for the input \a matrix.
*
* \sa LDLT(Index size)
*/
template<typename InputType>
@ -110,6 +110,23 @@ template<typename _MatrixType, int _UpLo> class LDLT
compute(matrix.derived());
}
/** \brief Constructs a LDLT factorization from a given matrix
*
* This overloaded constructor is provided for inplace solving when \c MatrixType is a Eigen::Ref.
*
* \sa LDLT(const EigenBase&)
*/
template<typename InputType>
explicit LDLT(EigenBase<InputType>& matrix)
: m_matrix(matrix.derived()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** Clear any existing decomposition
* \sa rankUpdate(w,sigma)
*/

View File

@ -54,7 +54,6 @@ template<typename _MatrixType, int _UpLo> class LLT
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
@ -95,6 +94,21 @@ template<typename _MatrixType, int _UpLo> class LLT
compute(matrix.derived());
}
/** \brief Constructs a LDLT factorization from a given matrix
*
* This overloaded constructor is provided for inplace solving when
* \c MatrixType is a Eigen::Ref.
*
* \sa LLT(const EigenBase&)
*/
template<typename InputType>
explicit LLT(EigenBase<InputType>& matrix)
: m_matrix(matrix.derived()),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{

View File

@ -97,6 +97,15 @@ template<typename _MatrixType> class FullPivLU
template<typename InputType>
explicit FullPivLU(const EigenBase<InputType>& matrix);
/** \brief Constructs a LU factorization from a given matrix
*
* This overloaded constructor is provided for inplace solving when \c MatrixType is a Eigen::Ref.
*
* \sa FullPivLU(const EigenBase&)
*/
template<typename InputType>
explicit FullPivLU(EigenBase<InputType>& matrix);
/** Computes the LU decomposition of the given matrix.
*
* \param matrix the matrix of which to compute the LU decomposition.
@ -105,7 +114,11 @@ template<typename _MatrixType> class FullPivLU
* \returns a reference to *this
*/
template<typename InputType>
FullPivLU& compute(const EigenBase<InputType>& matrix);
FullPivLU& compute(const EigenBase<InputType>& matrix) {
m_lu = matrix.derived();
computeInPlace();
return *this;
}
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
@ -459,25 +472,28 @@ FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
template<typename MatrixType>
template<typename InputType>
FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const EigenBase<InputType>& matrix)
FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
: m_lu(matrix.derived()),
m_p(matrix.rows()),
m_q(matrix.cols()),
m_rowsTranspositions(matrix.rows()),
m_colsTranspositions(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
check_template_parameters();
// the permutations are stored as int indices, so just to be sure:
eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
m_lu = matrix.derived();
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
computeInPlace();
m_isInitialized = true;
return *this;
}
template<typename MatrixType>
void FullPivLU<MatrixType>::computeInPlace()
{
check_template_parameters();
// the permutations are stored as int indices, so just to be sure:
eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
const Index size = m_lu.diagonalSize();
const Index rows = m_lu.rows();
const Index cols = m_lu.cols();
@ -557,6 +573,8 @@ void FullPivLU<MatrixType>::computeInPlace()
m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
}
template<typename MatrixType>

View File

@ -26,6 +26,17 @@ template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
};
};
template<typename T,typename Derived>
struct enable_if_ref;
// {
// typedef Derived type;
// };
template<typename T,typename Derived>
struct enable_if_ref<Ref<T>,Derived> {
typedef Derived type;
};
} // end namespace internal
/** \ingroup LU_Module
@ -102,8 +113,29 @@ template<typename _MatrixType> class PartialPivLU
template<typename InputType>
explicit PartialPivLU(const EigenBase<InputType>& matrix);
/** Constructor for inplace decomposition
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* If \c MatrixType is an Eigen::Ref, then the storage of \a matrix will be shared
* between \a matrix and \c *this and the decomposition will take place in-place.
* The memory of \a matrix will be used througrough the lifetime of \c *this. In
* particular, further calls to \c this->compute(A) will still operate on the memory
* of \a matrix meaning. This also implies that the sizes of \c A must match the
* ones of \a matrix.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
template<typename InputType>
PartialPivLU& compute(const EigenBase<InputType>& matrix);
explicit PartialPivLU(EigenBase<InputType>& matrix);
template<typename InputType>
PartialPivLU& compute(const EigenBase<InputType>& matrix) {
m_lu = matrix.derived();
compute();
return *this;
}
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
@ -251,6 +283,8 @@ template<typename _MatrixType> class PartialPivLU
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void compute();
MatrixType m_lu;
PermutationType m_p;
TranspositionType m_rowsTranspositions;
@ -284,7 +318,7 @@ PartialPivLU<MatrixType>::PartialPivLU(Index size)
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
: m_lu(matrix.rows(), matrix.rows()),
: m_lu(matrix.rows(),matrix.cols()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
@ -294,6 +328,19 @@ PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
compute(matrix.derived());
}
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
: m_lu(matrix.derived()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
compute();
}
namespace internal {
/** \internal This is the blocked version of fullpivlu_unblocked() */
@ -470,19 +517,17 @@ void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, t
} // end namespace internal
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const EigenBase<InputType>& matrix)
void PartialPivLU<MatrixType>::compute()
{
check_template_parameters();
// the row permutation is stored as int indices, so just to be sure:
eigen_assert(matrix.rows()<NumTraits<int>::highest());
eigen_assert(m_lu.rows()<NumTraits<int>::highest());
m_lu = matrix.derived();
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const Index size = matrix.rows();
eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const Index size = m_lu.rows();
m_rowsTranspositions.resize(size);
@ -493,7 +538,6 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const EigenBase<Inpu
m_p = m_rowsTranspositions;
m_isInitialized = true;
return *this;
}
template<typename MatrixType>

View File

@ -51,7 +51,6 @@ template<typename _MatrixType> class ColPivHouseholderQR
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
@ -59,7 +58,6 @@ template<typename _MatrixType> class ColPivHouseholderQR
typedef typename MatrixType::RealScalar RealScalar;
// FIXME should be int
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
@ -135,6 +133,27 @@ template<typename _MatrixType> class ColPivHouseholderQR
compute(matrix.derived());
}
/** \brief Constructs a QR factorization from a given matrix
*
* This overloaded constructor is provided for inplace solving when \c MatrixType is a Eigen::Ref.
*
* \sa ColPivHouseholderQR(const EigenBase&)
*/
template<typename InputType>
explicit ColPivHouseholderQR(EigenBase<InputType>& matrix)
: m_qr(matrix.derived()),
m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
m_colsPermutation(PermIndexType(matrix.cols())),
m_colsTranspositions(matrix.cols()),
m_temp(matrix.cols()),
m_colNormsUpdated(matrix.cols()),
m_colNormsDirect(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
computeInPlace();
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
@ -453,21 +472,19 @@ template<typename MatrixType>
template<typename InputType>
ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
{
check_template_parameters();
// the column permutation is stored as int indices, so just to be sure:
eigen_assert(matrix.cols()<=NumTraits<int>::highest());
m_qr = matrix;
m_qr = matrix.derived();
computeInPlace();
return *this;
}
template<typename MatrixType>
void ColPivHouseholderQR<MatrixType>::computeInPlace()
{
check_template_parameters();
// the column permutation is stored as int indices, so just to be sure:
eigen_assert(m_qr.cols()<=NumTraits<int>::highest());
using std::abs;
Index rows = m_qr.rows();

View File

@ -48,16 +48,12 @@ class CompleteOrthogonalDecomposition {
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options,
MaxRowsAtCompileTime, MaxRowsAtCompileTime>
MatrixQType;
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
PermutationType;
@ -114,10 +110,27 @@ class CompleteOrthogonalDecomposition {
explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
: m_cpqr(matrix.rows(), matrix.cols()),
m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
m_temp(matrix.cols()) {
m_temp(matrix.cols())
{
compute(matrix.derived());
}
/** \brief Constructs a complete orthogonal decomposition from a given matrix
*
* This overloaded constructor is provided for inplace solving when \c MatrixType is a Eigen::Ref.
*
* \sa CompleteOrthogonalDecomposition(const EigenBase&)
*/
template<typename InputType>
explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix)
: m_cpqr(matrix.derived()),
m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
m_temp(matrix.cols())
{
computeInPlace();
}
/** This method computes the minimum-norm solution X to a least squares
* problem \f[\mathrm{minimize} ||A X - B|| \f], where \b A is the matrix of
* which \c *this is the complete orthogonal decomposition.
@ -165,7 +178,12 @@ class CompleteOrthogonalDecomposition {
const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }
template <typename InputType>
CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix);
CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) {
// Compute the column pivoted QR factorization A P = Q R.
m_cpqr.compute(matrix);
computeInPlace();
return *this;
}
/** \returns a const reference to the column permutation matrix */
const PermutationType& colsPermutation() const {
@ -354,6 +372,8 @@ class CompleteOrthogonalDecomposition {
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void computeInPlace();
/** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
*/
template <typename Rhs>
@ -384,20 +404,16 @@ CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
* CompleteOrthogonalDecomposition(const MatrixType&)
*/
template <typename MatrixType>
template <typename InputType>
CompleteOrthogonalDecomposition<MatrixType>& CompleteOrthogonalDecomposition<
MatrixType>::compute(const EigenBase<InputType>& matrix) {
void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace()
{
check_template_parameters();
// the column permutation is stored as int indices, so just to be sure:
eigen_assert(matrix.cols() <= NumTraits<int>::highest());
// Compute the column pivoted QR factorization A P = Q R.
m_cpqr.compute(matrix);
eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest());
const Index rank = m_cpqr.rank();
const Index cols = matrix.cols();
const Index rows = matrix.rows();
const Index cols = m_cpqr.cols();
const Index rows = m_cpqr.rows();
m_zCoeffs.resize((std::min)(rows, cols));
m_temp.resize(cols);
@ -443,7 +459,6 @@ CompleteOrthogonalDecomposition<MatrixType>& CompleteOrthogonalDecomposition<
}
}
}
return *this;
}
template <typename MatrixType>

View File

@ -60,7 +60,6 @@ template<typename _MatrixType> class FullPivHouseholderQR
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
@ -135,6 +134,26 @@ template<typename _MatrixType> class FullPivHouseholderQR
compute(matrix.derived());
}
/** \brief Constructs a QR factorization from a given matrix
*
* This overloaded constructor is provided for inplace solving when \c MatrixType is a Eigen::Ref.
*
* \sa FullPivHouseholderQR(const EigenBase&)
*/
template<typename InputType>
explicit FullPivHouseholderQR(EigenBase<InputType>& matrix)
: m_qr(matrix.derived()),
m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
m_cols_permutation(matrix.cols()),
m_temp(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
computeInPlace();
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* \c *this is the QR decomposition.
*
@ -430,18 +449,16 @@ template<typename MatrixType>
template<typename InputType>
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
{
check_template_parameters();
m_qr = matrix.derived();
computeInPlace();
return *this;
}
template<typename MatrixType>
void FullPivHouseholderQR<MatrixType>::computeInPlace()
{
check_template_parameters();
using std::abs;
Index rows = m_qr.rows();
Index cols = m_qr.cols();

View File

@ -47,7 +47,6 @@ template<typename _MatrixType> class HouseholderQR
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
@ -102,6 +101,24 @@ template<typename _MatrixType> class HouseholderQR
compute(matrix.derived());
}
/** \brief Constructs a QR factorization from a given matrix
*
* This overloaded constructor is provided for inplace solving when
* \c MatrixType is a Eigen::Ref.
*
* \sa HouseholderQR(const EigenBase&)
*/
template<typename InputType>
explicit HouseholderQR(EigenBase<InputType>& matrix)
: m_qr(matrix.derived()),
m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
m_temp(matrix.cols()),
m_isInitialized(false)
{
computeInPlace();
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
@ -151,7 +168,11 @@ template<typename _MatrixType> class HouseholderQR
}
template<typename InputType>
HouseholderQR& compute(const EigenBase<InputType>& matrix);
HouseholderQR& compute(const EigenBase<InputType>& matrix) {
m_qr = matrix.derived();
computeInPlace();
return *this;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
@ -203,6 +224,8 @@ template<typename _MatrixType> class HouseholderQR
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void computeInPlace();
MatrixType m_qr;
HCoeffsType m_hCoeffs;
@ -354,16 +377,14 @@ void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) c
* \sa class HouseholderQR, HouseholderQR(const MatrixType&)
*/
template<typename MatrixType>
template<typename InputType>
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
void HouseholderQR<MatrixType>::computeInPlace()
{
check_template_parameters();
Index rows = matrix.rows();
Index cols = matrix.cols();
Index rows = m_qr.rows();
Index cols = m_qr.cols();
Index size = (std::min)(rows,cols);
m_qr = matrix.derived();
m_hCoeffs.resize(size);
m_temp.resize(cols);
@ -371,7 +392,6 @@ HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const EigenBase<In
internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
m_isInitialized = true;
return *this;
}
#ifndef __CUDACC__

View File

@ -258,6 +258,7 @@ ei_add_test(rvalue_types)
ei_add_test(dense_storage)
ei_add_test(ctorleak)
ei_add_test(mpl2only)
ei_add_test(inplace_decomposition)
add_executable(bug1213 bug1213.cpp bug1213_main.cpp)

View File

@ -0,0 +1,110 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
#include <Eigen/Cholesky>
#include <Eigen/QR>
// This file test inplace decomposition through Ref<>, as supported by Cholesky, LU, and QR decompositions.
template<typename DecType,typename MatrixType> void inplace(bool square = false, bool SPD = false)
{
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RhsType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ResType;
Index rows = MatrixType::RowsAtCompileTime==Dynamic ? internal::random<Index>(2,EIGEN_TEST_MAX_SIZE/2) : MatrixType::RowsAtCompileTime;
Index cols = MatrixType::ColsAtCompileTime==Dynamic ? (square?rows:internal::random<Index>(2,rows)) : MatrixType::ColsAtCompileTime;
MatrixType A = MatrixType::Random(rows,cols);
RhsType b = RhsType::Random(rows);
ResType x(cols);
if(SPD)
{
assert(square);
A.topRows(cols) = A.topRows(cols).adjoint() * A.topRows(cols);
A.diagonal().array() += 1e-3;
}
MatrixType A0 = A;
MatrixType A1 = A;
DecType dec(A);
// Check that the content of A has been modified
VERIFY_IS_NOT_APPROX( A, A0 );
// Check that the decomposition is correct:
if(rows==cols)
{
VERIFY_IS_APPROX( A0 * (x = dec.solve(b)), b );
}
else
{
VERIFY_IS_APPROX( A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b );
}
// Check that modifying A breaks the current dec:
A.setRandom();
if(rows==cols)
{
VERIFY_IS_NOT_APPROX( A0 * (x = dec.solve(b)), b );
}
else
{
VERIFY_IS_NOT_APPROX( A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b );
}
// Check that calling compute(A1) does not modify A1:
A = A0;
dec.compute(A1);
VERIFY_IS_EQUAL(A0,A1);
VERIFY_IS_NOT_APPROX( A, A0 );
if(rows==cols)
{
VERIFY_IS_APPROX( A0 * (x = dec.solve(b)), b );
}
else
{
VERIFY_IS_APPROX( A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b );
}
}
void test_inplace_decomposition()
{
EIGEN_UNUSED typedef Matrix<double,4,3> Matrix43d;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(( inplace<LLT<Ref<MatrixXd> >, MatrixXd>(true,true) ));
CALL_SUBTEST_1(( inplace<LLT<Ref<Matrix4d> >, Matrix4d>(true,true) ));
CALL_SUBTEST_2(( inplace<LDLT<Ref<MatrixXd> >, MatrixXd>(true,true) ));
CALL_SUBTEST_2(( inplace<LDLT<Ref<Matrix4d> >, Matrix4d>(true,true) ));
CALL_SUBTEST_3(( inplace<PartialPivLU<Ref<MatrixXd> >, MatrixXd>(true,false) ));
CALL_SUBTEST_3(( inplace<PartialPivLU<Ref<Matrix4d> >, Matrix4d>(true,false) ));
CALL_SUBTEST_4(( inplace<FullPivLU<Ref<MatrixXd> >, MatrixXd>(true,false) ));
CALL_SUBTEST_4(( inplace<FullPivLU<Ref<Matrix4d> >, Matrix4d>(true,false) ));
CALL_SUBTEST_5(( inplace<HouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) ));
CALL_SUBTEST_5(( inplace<HouseholderQR<Ref<Matrix43d> >, Matrix43d>(false,false) ));
CALL_SUBTEST_6(( inplace<ColPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) ));
CALL_SUBTEST_6(( inplace<ColPivHouseholderQR<Ref<Matrix43d> >, Matrix43d>(false,false) ));
CALL_SUBTEST_7(( inplace<FullPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) ));
CALL_SUBTEST_7(( inplace<FullPivHouseholderQR<Ref<Matrix43d> >, Matrix43d>(false,false) ));
CALL_SUBTEST_8(( inplace<CompleteOrthogonalDecomposition<Ref<MatrixXd> >, MatrixXd>(false,false) ));
CALL_SUBTEST_8(( inplace<CompleteOrthogonalDecomposition<Ref<Matrix43d> >, Matrix43d>(false,false) ));
}
}