diff --git a/bench/benchFFT.cpp b/bench/benchFFT.cpp index 041576b75..84cc49fe3 100644 --- a/bench/benchFFT.cpp +++ b/bench/benchFFT.cpp @@ -31,34 +31,67 @@ using namespace Eigen; using namespace std; -#ifndef NFFT -#define NFFT 1024 -#endif + +template +string nameof(); + +template <> string nameof() {return "float";} +template <> string nameof() {return "double";} +template <> string nameof() {return "long double";} #ifndef TYPE #define TYPE float #endif -#ifndef NITS -#define NITS (10000000/NFFT) +#ifndef NFFT +#define NFFT 1024 +#endif +#ifndef NDATA +#define NDATA 1000000 #endif -int main() +using namespace Eigen; + +template +void bench(int nfft) { - vector > inbuf(NFFT); - vector > outbuf(NFFT); - Eigen::FFT fft; + typedef typename NumTraits::Real Scalar; + typedef typename std::complex Complex; + int nits = NDATA/nfft; + vector inbuf(nfft); + vector outbuf(nfft); + FFT< Scalar > fft; - fft.fwd( outbuf , inbuf); + fft.fwd( outbuf , inbuf); - BenchTimer timer; - timer.reset(); - for (int k=0;k<8;++k) { - timer.start(); - for(int i = 0; i < NITS; i++) - fft.fwd( outbuf , inbuf); - timer.stop(); - } - double mflops = 5.*NFFT*log2((double)NFFT) / (1e6 * timer.value() / (double)NITS ); - cout << "NFFT=" << NFFT << " " << (double(1e-6*NFFT*NITS)/timer.value()) << " MS/s " << mflops << "MFLOPS\n"; + BenchTimer timer; + timer.reset(); + for (int k=0;k<8;++k) { + timer.start(); + for(int i = 0; i < nits; i++) + fft.fwd( outbuf , inbuf); + timer.stop(); + } + + cout << nameof() << " "; + double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits ); + if ( NumTraits::IsComplex ) { + cout << "complex"; + }else{ + cout << "real "; + mflops /= 2; + } + + cout << " NFFT=" << nfft << " " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s " << mflops << "MFLOPS\n"; +} + +int main(int argc,char ** argv) +{ + bench >(NFFT); + bench(NFFT); + bench >(NFFT); + bench(NFFT); + bench >(NFFT); + bench(NFFT); + return 0; } diff --git a/unsupported/Eigen/src/FFT/simple_fft_traits.h b/unsupported/Eigen/src/FFT/simple_fft_traits.h index f7dd2b9cf..1e2be8f79 100644 --- a/unsupported/Eigen/src/FFT/simple_fft_traits.h +++ b/unsupported/Eigen/src/FFT/simple_fft_traits.h @@ -54,28 +54,14 @@ namespace Eigen { work(0, dst, src, 1,1); }else{ int ncfft = nfft>>1; + int ncfft2 = nfft>>2; // use optimized mode for even real fwd( dst, reinterpret_cast (src),ncfft); make_real_twiddles(nfft); - std::cerr << "dst[0] = " << dst[0] << "\n"; Complex dc = dst[0].real() + dst[0].imag(); Complex nyquist = dst[0].real() - dst[0].imag(); int k; -#if 0 - using namespace std; - cerr << "desired:\n"; - for ( k=1;k <= (ncfft>>1) ; ++k ) { - Complex x = exp( Complex(0,-3.14159265358979323846264338327 * ((double) (k) / ncfft + .5) ) ); - cerr << k << " " << x << "angle(x):" << arg(x) << "\n"; - } - dc=0; - cerr << "twiddles:\n"; - for (k=0;k>1) ; ++k ) { + for ( k=1;k <= ncfft2 ; ++k ) { Complex fpk = dst[k]; Complex fpnk = conj(dst[ncfft-k]); Complex f1k = fpk + fpnk; @@ -87,7 +73,6 @@ namespace Eigen { dst[ncfft-k] = conj(f1k -tw)*Scalar(.5); } - // place conjugate-symmetric half at the end for completeness // TODO: make this configurable ( opt-out ) for ( k=1;k < ncfft ; ++k ) @@ -98,6 +83,16 @@ namespace Eigen { } } + // half-complex to scalar + void inv( Scalar * dst,const Complex * src,int nfft) + { + // TODO add optimized version for even numbers + std::vector tmp(nfft); + inv(&tmp[0],src,nfft); + for (int k=0;kn) - p=n;// no more factors + p=n;// impossible to have a factor > sqrt(n) } n /= p; m_stageRadix.push_back(p); diff --git a/unsupported/test/FFT.cpp b/unsupported/test/FFT.cpp index 41c7fed7b..75c33277d 100644 --- a/unsupported/test/FFT.cpp +++ b/unsupported/test/FFT.cpp @@ -28,6 +28,10 @@ using namespace std; +float norm(float x) {return x*x;} +double norm(double x) {return x*x;} +long double norm(long double x) {return x*x;} + template < typename T> complex promote(complex x) { return complex(x.real(),x.imag()); } @@ -83,7 +87,11 @@ void test_scalar(int nfft) for (int k=0;k() );// gross check + + vector buf3; + fft.inv( buf3 , outbuf); + VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check } template @@ -100,18 +108,18 @@ void test_complex(int nfft) inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); fft.fwd( outbuf , inbuf); - VERIFY( fft_rmse(outbuf,inbuf) < 1e-5 );// gross check + VERIFY( fft_rmse(outbuf,inbuf) < test_precision() );// gross check fft.inv( buf3 , outbuf); - VERIFY( dif_rmse(inbuf,buf3) < 1e-5 );// gross check + VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check } void test_FFT() { -#if 0 +#if 1 CALL_SUBTEST( test_complex(32) ); CALL_SUBTEST( test_complex(32) ); CALL_SUBTEST( test_complex(32) ); - CALL_SUBTEST( test_complex(1024) ); CALL_SUBTEST( test_complex(1024) ); CALL_SUBTEST( test_complex(1024) ); + CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(2*3*4) ); CALL_SUBTEST( test_complex(2*3*4) ); CALL_SUBTEST( test_complex(2*3*4) ); @@ -120,8 +128,9 @@ void test_FFT() #endif #if 1 + CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(32) ); CALL_SUBTEST( test_scalar(32) ); CALL_SUBTEST( test_scalar(32) ); - CALL_SUBTEST( test_scalar(1024) ); CALL_SUBTEST( test_scalar(1024) ); CALL_SUBTEST( test_scalar(1024) ); + CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) ); #endif }