From 324e7e8fc9a20503d3f7ee9969c886400bbf5786 Mon Sep 17 00:00:00 2001 From: Christoph Hertzberg Date: Tue, 1 Jul 2014 16:58:11 +0200 Subject: [PATCH] Removed the deprecated EIGEN2_SUPPORT, as previously announced. A compilation error is raised, if this compile-switch is defined. The documentation references to the corresponding pages from Eigen3.2 now. Also, the Eigen2 testsuite has been removed. --- Eigen/Array | 11 - Eigen/Core | 35 +- Eigen/Eigen2Support | 82 -- Eigen/Geometry | 38 +- Eigen/LU | 4 - Eigen/LeastSquares | 32 - Eigen/QR | 8 - Eigen/SVD | 4 - Eigen/src/Cholesky/LDLT.h | 16 - Eigen/src/Cholesky/LLT.h | 11 - Eigen/src/Core/DenseBase.h | 11 - Eigen/src/Core/DenseCoeffsBase.h | 4 - Eigen/src/Core/DiagonalMatrix.h | 15 - Eigen/src/Core/Dot.h | 28 - Eigen/src/Core/Map.h | 5 - Eigen/src/Core/Matrix.h | 7 - Eigen/src/Core/MatrixBase.h | 78 -- Eigen/src/Core/NumTraits.h | 7 - Eigen/src/Core/ProductBase.h | 6 +- Eigen/src/Core/SelfAdjointView.h | 25 - Eigen/src/Core/TriangularMatrix.h | 64 -- Eigen/src/Core/VectorwiseOp.h | 2 - Eigen/src/Core/util/ForwardDeclarations.h | 35 - Eigen/src/Core/util/StaticAssert.h | 7 +- Eigen/src/Eigen2Support/Block.h | 126 --- Eigen/src/Eigen2Support/CMakeLists.txt | 8 - Eigen/src/Eigen2Support/Cwise.h | 192 ----- Eigen/src/Eigen2Support/CwiseOperators.h | 298 ------- Eigen/src/Eigen2Support/Geometry/AlignedBox.h | 159 ---- Eigen/src/Eigen2Support/Geometry/All.h | 115 --- Eigen/src/Eigen2Support/Geometry/AngleAxis.h | 228 ----- .../src/Eigen2Support/Geometry/CMakeLists.txt | 6 - Eigen/src/Eigen2Support/Geometry/Hyperplane.h | 254 ------ .../Eigen2Support/Geometry/ParametrizedLine.h | 141 ---- Eigen/src/Eigen2Support/Geometry/Quaternion.h | 495 ----------- Eigen/src/Eigen2Support/Geometry/Rotation2D.h | 145 ---- .../src/Eigen2Support/Geometry/RotationBase.h | 123 --- Eigen/src/Eigen2Support/Geometry/Scaling.h | 167 ---- Eigen/src/Eigen2Support/Geometry/Transform.h | 786 ------------------ .../src/Eigen2Support/Geometry/Translation.h | 184 ---- Eigen/src/Eigen2Support/LU.h | 120 --- Eigen/src/Eigen2Support/Lazy.h | 71 -- Eigen/src/Eigen2Support/LeastSquares.h | 170 ---- Eigen/src/Eigen2Support/Macros.h | 20 - Eigen/src/Eigen2Support/MathFunctions.h | 57 -- Eigen/src/Eigen2Support/Memory.h | 45 - Eigen/src/Eigen2Support/Meta.h | 75 -- Eigen/src/Eigen2Support/Minor.h | 117 --- Eigen/src/Eigen2Support/QR.h | 67 -- Eigen/src/Eigen2Support/SVD.h | 637 -------------- Eigen/src/Eigen2Support/TriangularSolver.h | 42 - Eigen/src/Eigen2Support/VectorBlock.h | 94 --- .../src/Eigenvalues/SelfAdjointEigenSolver.h | 34 - Eigen/src/LU/PartialPivLU.h | 3 - Eigen/src/SparseCore/SparseMatrixBase.h | 11 - Eigen/src/SparseCore/TriangularSolver.h | 24 - doc/A05_PortingFrom2To3.dox | 7 +- doc/A10_Eigen2SupportModes.dox | 93 --- doc/Doxyfile.in | 4 +- doc/PreprocessorDirectives.dox | 11 +- doc/examples/MatrixBase_cwise_const.cpp | 18 - test/CMakeLists.txt | 5 +- test/cwiseop.cpp | 182 ---- test/eigen2/CMakeLists.txt | 65 -- test/eigen2/eigen2_adjoint.cpp | 101 --- test/eigen2/eigen2_alignedbox.cpp | 60 -- test/eigen2/eigen2_array.cpp | 142 ---- test/eigen2/eigen2_basicstuff.cpp | 108 --- test/eigen2/eigen2_bug_132.cpp | 26 - test/eigen2/eigen2_cholesky.cpp | 113 --- test/eigen2/eigen2_commainitializer.cpp | 46 - test/eigen2/eigen2_cwiseop.cpp | 158 ---- test/eigen2/eigen2_determinant.cpp | 61 -- test/eigen2/eigen2_dynalloc.cpp | 131 --- test/eigen2/eigen2_eigensolver.cpp | 146 ---- test/eigen2/eigen2_first_aligned.cpp | 49 -- test/eigen2/eigen2_geometry.cpp | 431 ---------- .../eigen2_geometry_with_eigen2_prefix.cpp | 434 ---------- test/eigen2/eigen2_hyperplane.cpp | 126 --- test/eigen2/eigen2_inverse.cpp | 63 -- test/eigen2/eigen2_linearstructure.cpp | 84 -- test/eigen2/eigen2_lu.cpp | 122 --- test/eigen2/eigen2_map.cpp | 114 --- test/eigen2/eigen2_meta.cpp | 60 -- test/eigen2/eigen2_miscmatrices.cpp | 48 -- test/eigen2/eigen2_mixingtypes.cpp | 77 -- test/eigen2/eigen2_newstdvector.cpp | 149 ---- test/eigen2/eigen2_nomalloc.cpp | 63 -- test/eigen2/eigen2_packetmath.cpp | 132 --- test/eigen2/eigen2_parametrizedline.cpp | 62 -- test/eigen2/eigen2_prec_inverse_4x4.cpp | 84 -- test/eigen2/eigen2_product_large.cpp | 45 - test/eigen2/eigen2_product_small.cpp | 22 - test/eigen2/eigen2_qr.cpp | 69 -- test/eigen2/eigen2_qtvector.cpp | 158 ---- test/eigen2/eigen2_regression.cpp | 136 --- test/eigen2/eigen2_sizeof.cpp | 31 - test/eigen2/eigen2_smallvectors.cpp | 42 - test/eigen2/eigen2_sparse_basic.cpp | 317 ------- test/eigen2/eigen2_sparse_product.cpp | 115 --- test/eigen2/eigen2_sparse_solvers.cpp | 200 ----- test/eigen2/eigen2_sparse_vector.cpp | 84 -- test/eigen2/eigen2_stdvector.cpp | 148 ---- test/eigen2/eigen2_submatrices.cpp | 148 ---- test/eigen2/eigen2_sum.cpp | 71 -- test/eigen2/eigen2_svd.cpp | 87 -- test/eigen2/eigen2_swap.cpp | 83 -- test/eigen2/eigen2_triangular.cpp | 158 ---- test/eigen2/eigen2_unalignedassert.cpp | 116 --- test/eigen2/eigen2_visitor.cpp | 116 --- test/eigen2/gsl_helper.h | 175 ---- test/eigen2/main.h | 399 --------- test/eigen2/product.h | 132 --- test/eigen2/sparse.h | 154 ---- unsupported/Eigen/SVD | 4 - 115 files changed, 30 insertions(+), 12104 deletions(-) delete mode 100644 Eigen/Array delete mode 100644 Eigen/Eigen2Support delete mode 100644 Eigen/LeastSquares delete mode 100644 Eigen/src/Eigen2Support/Block.h delete mode 100644 Eigen/src/Eigen2Support/CMakeLists.txt delete mode 100644 Eigen/src/Eigen2Support/Cwise.h delete mode 100644 Eigen/src/Eigen2Support/CwiseOperators.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/AlignedBox.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/All.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/AngleAxis.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/CMakeLists.txt delete mode 100644 Eigen/src/Eigen2Support/Geometry/Hyperplane.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/Quaternion.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/Rotation2D.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/RotationBase.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/Scaling.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/Transform.h delete mode 100644 Eigen/src/Eigen2Support/Geometry/Translation.h delete mode 100644 Eigen/src/Eigen2Support/LU.h delete mode 100644 Eigen/src/Eigen2Support/Lazy.h delete mode 100644 Eigen/src/Eigen2Support/LeastSquares.h delete mode 100644 Eigen/src/Eigen2Support/Macros.h delete mode 100644 Eigen/src/Eigen2Support/MathFunctions.h delete mode 100644 Eigen/src/Eigen2Support/Memory.h delete mode 100644 Eigen/src/Eigen2Support/Meta.h delete mode 100644 Eigen/src/Eigen2Support/Minor.h delete mode 100644 Eigen/src/Eigen2Support/QR.h delete mode 100644 Eigen/src/Eigen2Support/SVD.h delete mode 100644 Eigen/src/Eigen2Support/TriangularSolver.h delete mode 100644 Eigen/src/Eigen2Support/VectorBlock.h delete mode 100644 doc/A10_Eigen2SupportModes.dox delete mode 100644 doc/examples/MatrixBase_cwise_const.cpp delete mode 100644 test/cwiseop.cpp delete mode 100644 test/eigen2/CMakeLists.txt delete mode 100644 test/eigen2/eigen2_adjoint.cpp delete mode 100644 test/eigen2/eigen2_alignedbox.cpp delete mode 100644 test/eigen2/eigen2_array.cpp delete mode 100644 test/eigen2/eigen2_basicstuff.cpp delete mode 100644 test/eigen2/eigen2_bug_132.cpp delete mode 100644 test/eigen2/eigen2_cholesky.cpp delete mode 100644 test/eigen2/eigen2_commainitializer.cpp delete mode 100644 test/eigen2/eigen2_cwiseop.cpp delete mode 100644 test/eigen2/eigen2_determinant.cpp delete mode 100644 test/eigen2/eigen2_dynalloc.cpp delete mode 100644 test/eigen2/eigen2_eigensolver.cpp delete mode 100644 test/eigen2/eigen2_first_aligned.cpp delete mode 100644 test/eigen2/eigen2_geometry.cpp delete mode 100644 test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp delete mode 100644 test/eigen2/eigen2_hyperplane.cpp delete mode 100644 test/eigen2/eigen2_inverse.cpp delete mode 100644 test/eigen2/eigen2_linearstructure.cpp delete mode 100644 test/eigen2/eigen2_lu.cpp delete mode 100644 test/eigen2/eigen2_map.cpp delete mode 100644 test/eigen2/eigen2_meta.cpp delete mode 100644 test/eigen2/eigen2_miscmatrices.cpp delete mode 100644 test/eigen2/eigen2_mixingtypes.cpp delete mode 100644 test/eigen2/eigen2_newstdvector.cpp delete mode 100644 test/eigen2/eigen2_nomalloc.cpp delete mode 100644 test/eigen2/eigen2_packetmath.cpp delete mode 100644 test/eigen2/eigen2_parametrizedline.cpp delete mode 100644 test/eigen2/eigen2_prec_inverse_4x4.cpp delete mode 100644 test/eigen2/eigen2_product_large.cpp delete mode 100644 test/eigen2/eigen2_product_small.cpp delete mode 100644 test/eigen2/eigen2_qr.cpp delete mode 100644 test/eigen2/eigen2_qtvector.cpp delete mode 100644 test/eigen2/eigen2_regression.cpp delete mode 100644 test/eigen2/eigen2_sizeof.cpp delete mode 100644 test/eigen2/eigen2_smallvectors.cpp delete mode 100644 test/eigen2/eigen2_sparse_basic.cpp delete mode 100644 test/eigen2/eigen2_sparse_product.cpp delete mode 100644 test/eigen2/eigen2_sparse_solvers.cpp delete mode 100644 test/eigen2/eigen2_sparse_vector.cpp delete mode 100644 test/eigen2/eigen2_stdvector.cpp delete mode 100644 test/eigen2/eigen2_submatrices.cpp delete mode 100644 test/eigen2/eigen2_sum.cpp delete mode 100644 test/eigen2/eigen2_svd.cpp delete mode 100644 test/eigen2/eigen2_swap.cpp delete mode 100644 test/eigen2/eigen2_triangular.cpp delete mode 100644 test/eigen2/eigen2_unalignedassert.cpp delete mode 100644 test/eigen2/eigen2_visitor.cpp delete mode 100644 test/eigen2/gsl_helper.h delete mode 100644 test/eigen2/main.h delete mode 100644 test/eigen2/product.h delete mode 100644 test/eigen2/sparse.h diff --git a/Eigen/Array b/Eigen/Array deleted file mode 100644 index 3d004fb69..000000000 --- a/Eigen/Array +++ /dev/null @@ -1,11 +0,0 @@ -#ifndef EIGEN_ARRAY_MODULE_H -#define EIGEN_ARRAY_MODULE_H - -// include Core first to handle Eigen2 support macros -#include "Core" - -#ifndef EIGEN2_SUPPORT - #error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core. -#endif - -#endif // EIGEN_ARRAY_MODULE_H diff --git a/Eigen/Core b/Eigen/Core index 661c7812e..a135afc6a 100644 --- a/Eigen/Core +++ b/Eigen/Core @@ -244,34 +244,9 @@ inline static const char *SimdInstructionSetsInUse(void) { } // end namespace Eigen -#define STAGE10_FULL_EIGEN2_API 10 -#define STAGE20_RESOLVE_API_CONFLICTS 20 -#define STAGE30_FULL_EIGEN3_API 30 -#define STAGE40_FULL_EIGEN3_STRICTNESS 40 -#define STAGE99_NO_EIGEN2_SUPPORT 99 - -#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS -#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API -#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS -#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API -#elif defined EIGEN2_SUPPORT - // default to stage 3, that's what it's always meant - #define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API - #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API -#else - #define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT -#endif - -#ifdef EIGEN2_SUPPORT -#undef minor +#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT +// This will generate an error message: +#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information #endif // we use size_t frequently and we'll never remember to prepend it with std:: everytime just to @@ -429,8 +404,4 @@ using std::ptrdiff_t; #include "src/Core/util/ReenableStupidWarnings.h" -#ifdef EIGEN2_SUPPORT -#include "Eigen2Support" -#endif - #endif // EIGEN_CORE_H diff --git a/Eigen/Eigen2Support b/Eigen/Eigen2Support deleted file mode 100644 index 36156d29a..000000000 --- a/Eigen/Eigen2Support +++ /dev/null @@ -1,82 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2SUPPORT_H -#define EIGEN2SUPPORT_H - -#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H)) -#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header -#endif - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \ingroup Support_modules - * \defgroup Eigen2Support_Module Eigen2 support module - * This module provides a couple of deprecated functions improving the compatibility with Eigen2. - * - * To use it, define EIGEN2_SUPPORT before including any Eigen header - * \code - * #define EIGEN2_SUPPORT - * \endcode - * - */ - -#include "src/Eigen2Support/Macros.h" -#include "src/Eigen2Support/Memory.h" -#include "src/Eigen2Support/Meta.h" -#include "src/Eigen2Support/Lazy.h" -#include "src/Eigen2Support/Cwise.h" -#include "src/Eigen2Support/CwiseOperators.h" -#include "src/Eigen2Support/TriangularSolver.h" -#include "src/Eigen2Support/Block.h" -#include "src/Eigen2Support/VectorBlock.h" -#include "src/Eigen2Support/Minor.h" -#include "src/Eigen2Support/MathFunctions.h" - - -#include "src/Core/util/ReenableStupidWarnings.h" - -// Eigen2 used to include iostream -#include - -#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ -using Eigen::Matrix##SizeSuffix##TypeSuffix; \ -using Eigen::Vector##SizeSuffix##TypeSuffix; \ -using Eigen::RowVector##SizeSuffix##TypeSuffix; - -#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ - -#define EIGEN_USING_MATRIX_TYPEDEFS \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd) - -#define USING_PART_OF_NAMESPACE_EIGEN \ -EIGEN_USING_MATRIX_TYPEDEFS \ -using Eigen::Matrix; \ -using Eigen::MatrixBase; \ -using Eigen::ei_random; \ -using Eigen::ei_real; \ -using Eigen::ei_imag; \ -using Eigen::ei_conj; \ -using Eigen::ei_abs; \ -using Eigen::ei_abs2; \ -using Eigen::ei_sqrt; \ -using Eigen::ei_exp; \ -using Eigen::ei_log; \ -using Eigen::ei_sin; \ -using Eigen::ei_cos; - -#endif // EIGEN2SUPPORT_H diff --git a/Eigen/Geometry b/Eigen/Geometry index f9bc6fc57..1c642b7ee 100644 --- a/Eigen/Geometry +++ b/Eigen/Geometry @@ -33,29 +33,23 @@ #include "src/Geometry/OrthoMethods.h" #include "src/Geometry/EulerAngles.h" -#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS - #include "src/Geometry/Homogeneous.h" - #include "src/Geometry/RotationBase.h" - #include "src/Geometry/Rotation2D.h" - #include "src/Geometry/Quaternion.h" - #include "src/Geometry/AngleAxis.h" - #include "src/Geometry/Transform.h" - #include "src/Geometry/Translation.h" - #include "src/Geometry/Scaling.h" - #include "src/Geometry/Hyperplane.h" - #include "src/Geometry/ParametrizedLine.h" - #include "src/Geometry/AlignedBox.h" - #include "src/Geometry/Umeyama.h" +#include "src/Geometry/Homogeneous.h" +#include "src/Geometry/RotationBase.h" +#include "src/Geometry/Rotation2D.h" +#include "src/Geometry/Quaternion.h" +#include "src/Geometry/AngleAxis.h" +#include "src/Geometry/Transform.h" +#include "src/Geometry/Translation.h" +#include "src/Geometry/Scaling.h" +#include "src/Geometry/Hyperplane.h" +#include "src/Geometry/ParametrizedLine.h" +#include "src/Geometry/AlignedBox.h" +#include "src/Geometry/Umeyama.h" - // Use the SSE optimized version whenever possible. At the moment the - // SSE version doesn't compile when AVX is enabled - #if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX - #include "src/Geometry/arch/Geometry_SSE.h" - #endif -#endif - -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/Geometry/All.h" +// Use the SSE optimized version whenever possible. At the moment the +// SSE version doesn't compile when AVX is enabled +#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX +#include "src/Geometry/arch/Geometry_SSE.h" #endif #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/Eigen/LU b/Eigen/LU index e5c3f32f7..29a98cb9a 100644 --- a/Eigen/LU +++ b/Eigen/LU @@ -33,10 +33,6 @@ #include "src/LU/arch/Inverse_SSE.h" #endif -#ifdef EIGEN2_SUPPORT - #include "src/Eigen2Support/LU.h" -#endif - #include "src/Core/util/ReenableStupidWarnings.h" #endif // EIGEN_LU_MODULE_H diff --git a/Eigen/LeastSquares b/Eigen/LeastSquares deleted file mode 100644 index 35137c25d..000000000 --- a/Eigen/LeastSquares +++ /dev/null @@ -1,32 +0,0 @@ -#ifndef EIGEN_REGRESSION_MODULE_H -#define EIGEN_REGRESSION_MODULE_H - -#ifndef EIGEN2_SUPPORT -#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT) -#endif - -// exclude from normal eigen3-only documentation -#ifdef EIGEN2_SUPPORT - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include "Eigenvalues" -#include "Geometry" - -/** \defgroup LeastSquares_Module LeastSquares module - * This module provides linear regression and related features. - * - * \code - * #include - * \endcode - */ - -#include "src/Eigen2Support/LeastSquares.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN2_SUPPORT - -#endif // EIGEN_REGRESSION_MODULE_H diff --git a/Eigen/QR b/Eigen/QR index 8c7c6162e..4c2533610 100644 --- a/Eigen/QR +++ b/Eigen/QR @@ -33,15 +33,7 @@ #include "src/QR/ColPivHouseholderQR_MKL.h" #endif -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/QR.h" -#endif - #include "src/Core/util/ReenableStupidWarnings.h" -#ifdef EIGEN2_SUPPORT -#include "Eigenvalues" -#endif - #endif // EIGEN_QR_MODULE_H /* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/Eigen/SVD b/Eigen/SVD index fd310017a..5eee46df5 100644 --- a/Eigen/SVD +++ b/Eigen/SVD @@ -27,10 +27,6 @@ #endif #include "src/SVD/UpperBidiagonalization.h" -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/SVD.h" -#endif - #include "src/Core/util/ReenableStupidWarnings.h" #endif // EIGEN_SVD_MODULE_H diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h index efac7fe40..1d84438e2 100644 --- a/Eigen/src/Cholesky/LDLT.h +++ b/Eigen/src/Cholesky/LDLT.h @@ -151,13 +151,6 @@ template class LDLT eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; } - - #ifdef EIGEN2_SUPPORT - inline bool isPositiveDefinite() const - { - return isPositive(); - } - #endif /** \returns true if the matrix is negative (semidefinite) */ inline bool isNegative(void) const @@ -191,15 +184,6 @@ template class LDLT return internal::solve_retval(*this, b.derived()); } - #ifdef EIGEN2_SUPPORT - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = this->solve(b); - return true; - } - #endif - template bool solveInPlace(MatrixBase &bAndX) const; diff --git a/Eigen/src/Cholesky/LLT.h b/Eigen/src/Cholesky/LLT.h index 45ed8438f..38e820165 100644 --- a/Eigen/src/Cholesky/LLT.h +++ b/Eigen/src/Cholesky/LLT.h @@ -127,17 +127,6 @@ template class LLT return internal::solve_retval(*this, b.derived()); } - #ifdef EIGEN2_SUPPORT - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = this->solve(b); - return true; - } - - bool isPositiveDefinite() const { return true; } - #endif - template void solveInPlace(MatrixBase &bAndX) const; diff --git a/Eigen/src/Core/DenseBase.h b/Eigen/src/Core/DenseBase.h index 4794c2f13..bd5dd14ed 100644 --- a/Eigen/src/Core/DenseBase.h +++ b/Eigen/src/Core/DenseBase.h @@ -506,17 +506,6 @@ template class DenseBase # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS -#ifdef EIGEN2_SUPPORT - - Block corner(CornerType type, Index cRows, Index cCols); - const Block corner(CornerType type, Index cRows, Index cCols) const; - template - Block corner(CornerType type); - template - const Block corner(CornerType type) const; - -#endif // EIGEN2_SUPPORT - // disable the use of evalTo for dense objects with a nice compilation error template diff --git a/Eigen/src/Core/DenseCoeffsBase.h b/Eigen/src/Core/DenseCoeffsBase.h index efabb5e67..4e986e875 100644 --- a/Eigen/src/Core/DenseCoeffsBase.h +++ b/Eigen/src/Core/DenseCoeffsBase.h @@ -156,10 +156,8 @@ class DenseCoeffsBase : public EigenBase EIGEN_STRONG_INLINE CoeffReturnType operator[](Index index) const { - #ifndef EIGEN2_SUPPORT EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) - #endif eigen_assert(index >= 0 && index < size()); return derived().coeff(index); } @@ -388,10 +386,8 @@ class DenseCoeffsBase : public DenseCoeffsBase= 0 && index < size()); return derived().coeffRef(index); } diff --git a/Eigen/src/Core/DiagonalMatrix.h b/Eigen/src/Core/DiagonalMatrix.h index f7ac22f8b..96b65483d 100644 --- a/Eigen/src/Core/DiagonalMatrix.h +++ b/Eigen/src/Core/DiagonalMatrix.h @@ -95,21 +95,6 @@ class DiagonalBase : public EigenBase { return other.diagonal() * scalar; } - - #ifdef EIGEN2_SUPPORT - template - EIGEN_DEVICE_FUNC - bool isApprox(const DiagonalBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return diagonal().isApprox(other.diagonal(), precision); - } - template - EIGEN_DEVICE_FUNC - bool isApprox(const MatrixBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return toDenseMatrix().isApprox(other, precision); - } - #endif }; template diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h index 718de5d1a..db16e4acc 100644 --- a/Eigen/src/Core/Dot.h +++ b/Eigen/src/Core/Dot.h @@ -76,34 +76,6 @@ MatrixBase::dot(const MatrixBase& other) const return internal::dot_nocheck::run(*this, other); } -#ifdef EIGEN2_SUPPORT -/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable - * (conjugating the second variable). Of course this only makes a difference in the complex case. - * - * This method is only available in EIGEN2_SUPPORT mode. - * - * \only_for_vectors - * - * \sa dot() - */ -template -template -typename internal::traits::Scalar -MatrixBase::eigen2_dot(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - eigen_assert(size() == other.size()); - - return internal::dot_nocheck::run(other,*this); -} -#endif - - //---------- implementation of L2 norm and related functions ---------- /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. diff --git a/Eigen/src/Core/Map.h b/Eigen/src/Core/Map.h index 0838d69e3..ced1b76ba 100644 --- a/Eigen/src/Core/Map.h +++ b/Eigen/src/Core/Map.h @@ -110,14 +110,9 @@ template class Ma EIGEN_DENSE_PUBLIC_INTERFACE(Map) typedef typename Base::PointerType PointerType; -#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API - typedef const Scalar* PointerArgType; - inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast(ptr); } -#else typedef PointerType PointerArgType; EIGEN_DEVICE_FUNC inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; } -#endif EIGEN_DEVICE_FUNC inline Index innerStride() const diff --git a/Eigen/src/Core/Matrix.h b/Eigen/src/Core/Matrix.h index 782d67f54..cd2ff91e7 100644 --- a/Eigen/src/Core/Matrix.h +++ b/Eigen/src/Core/Matrix.h @@ -366,13 +366,6 @@ class Matrix EIGEN_DEVICE_FUNC Matrix& operator=(const RotationBase& r); - #ifdef EIGEN2_SUPPORT - template - explicit Matrix(const eigen2_RotationBase& r); - template - Matrix& operator=(const eigen2_RotationBase& r); - #endif - // allow to extend Matrix outside Eigen #ifdef EIGEN_MATRIX_PLUGIN #include EIGEN_MATRIX_PLUGIN diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h index 172929562..f5987d194 100644 --- a/Eigen/src/Core/MatrixBase.h +++ b/Eigen/src/Core/MatrixBase.h @@ -221,11 +221,6 @@ template class MatrixBase typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType dot(const MatrixBase& other) const; - #ifdef EIGEN2_SUPPORT - template - Scalar eigen2_dot(const MatrixBase& other) const; - #endif - EIGEN_DEVICE_FUNC RealScalar squaredNorm() const; EIGEN_DEVICE_FUNC RealScalar norm() const; RealScalar stableNorm() const; @@ -269,17 +264,6 @@ template class MatrixBase typename ConstDiagonalIndexReturnType::Type diagonal(Index index) const; #endif - #ifdef EIGEN2_SUPPORT - template typename internal::eigen2_part_return_type::type part(); - template const typename internal::eigen2_part_return_type::type part() const; - - // huuuge hack. make Eigen2's matrix.part() work in eigen3. Problem: Diagonal is now a class template instead - // of an integer constant. Solution: overload the part() method template wrt template parameters list. - template class U> - const DiagonalWrapper part() const - { return diagonal().asDiagonal(); } - #endif // EIGEN2_SUPPORT - template struct TriangularViewReturnType { typedef TriangularView Type; }; template struct ConstTriangularViewReturnType { typedef const TriangularView Type; }; @@ -373,24 +357,7 @@ template class MatrixBase EIGEN_DEVICE_FUNC const FullPivLU fullPivLu() const; EIGEN_DEVICE_FUNC const PartialPivLU partialPivLu() const; - #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS - const LU lu() const; - #endif - - #ifdef EIGEN2_SUPPORT - const LU eigen2_lu() const; - #endif - - #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS const PartialPivLU lu() const; - #endif - - #ifdef EIGEN2_SUPPORT - template - void computeInverse(MatrixBase *result) const { - *result = this->inverse(); - } - #endif EIGEN_DEVICE_FUNC const internal::inverse_impl inverse() const; @@ -419,10 +386,6 @@ template class MatrixBase const HouseholderQR householderQr() const; const ColPivHouseholderQR colPivHouseholderQr() const; const FullPivHouseholderQR fullPivHouseholderQr() const; - - #ifdef EIGEN2_SUPPORT - const QR qr() const; - #endif EigenvaluesReturnType eigenvalues() const; RealScalar operatorNorm() const; @@ -431,10 +394,6 @@ template class MatrixBase JacobiSVD jacobiSvd(unsigned int computationOptions = 0) const; - #ifdef EIGEN2_SUPPORT - SVD svd() const; - #endif - /////////// Geometry module /////////// #ifndef EIGEN_PARSED_BY_DOXYGEN @@ -458,13 +417,11 @@ template class MatrixBase Matrix eulerAngles(Index a0, Index a1, Index a2) const; - #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS ScalarMultipleReturnType operator*(const UniformScaling& s) const; // put this as separate enum value to work around possible GCC 4.3 bug (?) enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal }; typedef Homogeneous HomogeneousReturnType; HomogeneousReturnType homogeneous() const; - #endif enum { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 @@ -513,41 +470,6 @@ template class MatrixBase const MatrixPowerReturnValue pow(const RealScalar& p) const; const MatrixComplexPowerReturnValue pow(const std::complex& p) const; -#ifdef EIGEN2_SUPPORT - template - Derived& operator+=(const Flagged, 0, - EvalBeforeAssigningBit>& other); - - template - Derived& operator-=(const Flagged, 0, - EvalBeforeAssigningBit>& other); - - /** \deprecated because .lazy() is deprecated - * Overloaded for cache friendly product evaluation */ - template - Derived& lazyAssign(const Flagged& other) - { return lazyAssign(other._expression()); } - - template - const Flagged marked() const; - const Flagged lazy() const; - - inline const Cwise cwise() const; - inline Cwise cwise(); - - VectorBlock start(Index size); - const VectorBlock start(Index size) const; - VectorBlock end(Index size); - const VectorBlock end(Index size) const; - template VectorBlock start(); - template const VectorBlock start() const; - template VectorBlock end(); - template const VectorBlock end() const; - - Minor minor(Index row, Index col); - const Minor minor(Index row, Index col) const; -#endif - protected: EIGEN_DEVICE_FUNC MatrixBase() : Base() {} diff --git a/Eigen/src/Core/NumTraits.h b/Eigen/src/Core/NumTraits.h index 2b6633c9c..a04227f57 100644 --- a/Eigen/src/Core/NumTraits.h +++ b/Eigen/src/Core/NumTraits.h @@ -85,13 +85,6 @@ template struct GenericNumTraits } static inline T highest() { return (std::numeric_limits::max)(); } static inline T lowest() { return IsInteger ? (std::numeric_limits::min)() : (-(std::numeric_limits::max)()); } - -#ifdef EIGEN2_SUPPORT - enum { - HasFloatingPoint = !IsInteger - }; - typedef NonInteger FloatingPoint; -#endif }; template struct NumTraits : GenericNumTraits diff --git a/Eigen/src/Core/ProductBase.h b/Eigen/src/Core/ProductBase.h index a494b5f87..483914a9b 100644 --- a/Eigen/src/Core/ProductBase.h +++ b/Eigen/src/Core/ProductBase.h @@ -131,17 +131,13 @@ class ProductBase : public MatrixBase const Diagonal diagonal(Index index) const { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); } - // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression + // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isn't an Lvalue expression typename Base::CoeffReturnType coeff(Index row, Index col) const { -#ifdef EIGEN2_SUPPORT - return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum(); -#else EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) eigen_assert(this->rows() == 1 && this->cols() == 1); Matrix result = *this; return result.coeff(row,col); -#endif } typename Base::CoeffReturnType coeff(Index i) const diff --git a/Eigen/src/Core/SelfAdjointView.h b/Eigen/src/Core/SelfAdjointView.h index 8231e3f5c..6c2733650 100644 --- a/Eigen/src/Core/SelfAdjointView.h +++ b/Eigen/src/Core/SelfAdjointView.h @@ -177,31 +177,6 @@ template class SelfAdjointView EigenvaluesReturnType eigenvalues() const; EIGEN_DEVICE_FUNC RealScalar operatorNorm() const; - - #ifdef EIGEN2_SUPPORT - template - EIGEN_DEVICE_FUNC - SelfAdjointView& operator=(const MatrixBase& other) - { - enum { - OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper - }; - m_matrix.const_cast_derived().template triangularView() = other; - m_matrix.const_cast_derived().template triangularView() = other.adjoint(); - return *this; - } - template - EIGEN_DEVICE_FUNC - SelfAdjointView& operator=(const TriangularView& other) - { - enum { - OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper - }; - m_matrix.const_cast_derived().template triangularView() = other.toDenseMatrix(); - m_matrix.const_cast_derived().template triangularView() = other.toDenseMatrix().adjoint(); - return *this; - } - #endif protected: MatrixTypeNested m_matrix; diff --git a/Eigen/src/Core/TriangularMatrix.h b/Eigen/src/Core/TriangularMatrix.h index 1d6e34650..cdd341965 100644 --- a/Eigen/src/Core/TriangularMatrix.h +++ b/Eigen/src/Core/TriangularMatrix.h @@ -342,35 +342,6 @@ template class TriangularView (lhs.derived(),rhs.m_matrix); } - #ifdef EIGEN2_SUPPORT - template - struct eigen2_product_return_type - { - typedef typename TriangularView::DenseMatrixType DenseMatrixType; - typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject; - typedef typename ProductReturnType::Type ProdRetType; - typedef typename ProdRetType::PlainObject type; - }; - template - const typename eigen2_product_return_type::type - operator*(const EigenBase& rhs) const - { - typename OtherDerived::PlainObject::DenseType rhsPlainObject; - rhs.evalTo(rhsPlainObject); - return this->toDenseMatrix() * rhsPlainObject; - } - template - bool isApprox(const TriangularView& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision); - } - template - bool isApprox(const MatrixBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return this->toDenseMatrix().isApprox(other, precision); - } - #endif // EIGEN2_SUPPORT - template EIGEN_DEVICE_FUNC inline const internal::triangular_solve_retval @@ -780,41 +751,6 @@ void TriangularBase::evalToLazy(MatrixBase &other) const * Implementation of MatrixBase methods ***************************************************************************/ -#ifdef EIGEN2_SUPPORT - -// implementation of part<>(), including the SelfAdjoint case. - -namespace internal { -template -struct eigen2_part_return_type -{ - typedef TriangularView type; -}; - -template -struct eigen2_part_return_type -{ - typedef SelfAdjointView type; -}; -} - -/** \deprecated use MatrixBase::triangularView() */ -template -template -const typename internal::eigen2_part_return_type::type MatrixBase::part() const -{ - return derived(); -} - -/** \deprecated use MatrixBase::triangularView() */ -template -template -typename internal::eigen2_part_return_type::type MatrixBase::part() -{ - return derived(); -} -#endif - /** * \returns an expression of a triangular view extracted from the current matrix * diff --git a/Eigen/src/Core/VectorwiseOp.h b/Eigen/src/Core/VectorwiseOp.h index f25ddca17..52eb4f604 100644 --- a/Eigen/src/Core/VectorwiseOp.h +++ b/Eigen/src/Core/VectorwiseOp.h @@ -560,9 +560,7 @@ template class VectorwiseOp /////////// Geometry module /////////// - #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS Homogeneous homogeneous() const; - #endif typedef typename ExpressionType::PlainObject CrossReturnType; template diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h index 0a2144c69..33deb88ec 100644 --- a/Eigen/src/Core/util/ForwardDeclarations.h +++ b/Eigen/src/Core/util/ForwardDeclarations.h @@ -236,35 +236,12 @@ template class Rotation2D; template class AngleAxis; template class Translation; -#ifdef EIGEN2_SUPPORT -template class eigen2_RotationBase; -template class eigen2_Cross; -template class eigen2_Quaternion; -template class eigen2_Rotation2D; -template class eigen2_AngleAxis; -template class eigen2_Transform; -template class eigen2_ParametrizedLine; -template class eigen2_Hyperplane; -template class eigen2_Translation; -template class eigen2_Scaling; -#endif - -#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS -template class Quaternion; -template class Transform; -template class ParametrizedLine; -template class Hyperplane; -template class Scaling; -#endif - -#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS template class Quaternion; template class Transform; template class ParametrizedLine; template class Hyperplane; template class UniformScaling; template class Homogeneous; -#endif // MatrixFunctions module template struct MatrixExponentialReturnValue; @@ -283,18 +260,6 @@ struct stem_function }; } - -#ifdef EIGEN2_SUPPORT -template class Cwise; -template class Minor; -template class LU; -template class QR; -template class SVD; -namespace internal { -template struct eigen2_part_return_type; -} -#endif - } // end namespace Eigen #endif // EIGEN_FORWARDDECLARATIONS_H diff --git a/Eigen/src/Core/util/StaticAssert.h b/Eigen/src/Core/util/StaticAssert.h index ac2c0bedd..59aa0811c 100644 --- a/Eigen/src/Core/util/StaticAssert.h +++ b/Eigen/src/Core/util/StaticAssert.h @@ -168,13 +168,8 @@ ) \ ) -#ifdef EIGEN2_SUPPORT - #define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \ - eigen_assert(!NumTraits::IsInteger); -#else - #define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \ +#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \ EIGEN_STATIC_ASSERT(!NumTraits::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) -#endif // static assertion failing if it is guaranteed at compile-time that the two matrix expression types have different sizes diff --git a/Eigen/src/Eigen2Support/Block.h b/Eigen/src/Eigen2Support/Block.h deleted file mode 100644 index 604456f40..000000000 --- a/Eigen/src/Eigen2Support/Block.h +++ /dev/null @@ -1,126 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BLOCK2_H -#define EIGEN_BLOCK2_H - -namespace Eigen { - -/** \returns a dynamic-size expression of a corner of *this. - * - * \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight, - * \a Eigen::BottomLeft, \a Eigen::BottomRight. - * \param cRows the number of rows in the corner - * \param cCols the number of columns in the corner - * - * Example: \include MatrixBase_corner_enum_int_int.cpp - * Output: \verbinclude MatrixBase_corner_enum_int_int.out - * - * \note Even though the returned expression has dynamic size, in the case - * when it is applied to a fixed-size matrix, it inherits a fixed maximal size, - * which means that evaluating it does not cause a dynamic memory allocation. - * - * \sa class Block, block(Index,Index,Index,Index) - */ -template -inline Block DenseBase - ::corner(CornerType type, Index cRows, Index cCols) -{ - switch(type) - { - default: - eigen_assert(false && "Bad corner type."); - case TopLeft: - return Block(derived(), 0, 0, cRows, cCols); - case TopRight: - return Block(derived(), 0, cols() - cCols, cRows, cCols); - case BottomLeft: - return Block(derived(), rows() - cRows, 0, cRows, cCols); - case BottomRight: - return Block(derived(), rows() - cRows, cols() - cCols, cRows, cCols); - } -} - -/** This is the const version of corner(CornerType, Index, Index).*/ -template -inline const Block -DenseBase::corner(CornerType type, Index cRows, Index cCols) const -{ - switch(type) - { - default: - eigen_assert(false && "Bad corner type."); - case TopLeft: - return Block(derived(), 0, 0, cRows, cCols); - case TopRight: - return Block(derived(), 0, cols() - cCols, cRows, cCols); - case BottomLeft: - return Block(derived(), rows() - cRows, 0, cRows, cCols); - case BottomRight: - return Block(derived(), rows() - cRows, cols() - cCols, cRows, cCols); - } -} - -/** \returns a fixed-size expression of a corner of *this. - * - * \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight, - * \a Eigen::BottomLeft, \a Eigen::BottomRight. - * - * The template parameters CRows and CCols arethe number of rows and columns in the corner. - * - * Example: \include MatrixBase_template_int_int_corner_enum.cpp - * Output: \verbinclude MatrixBase_template_int_int_corner_enum.out - * - * \sa class Block, block(Index,Index,Index,Index) - */ -template -template -inline Block -DenseBase::corner(CornerType type) -{ - switch(type) - { - default: - eigen_assert(false && "Bad corner type."); - case TopLeft: - return Block(derived(), 0, 0); - case TopRight: - return Block(derived(), 0, cols() - CCols); - case BottomLeft: - return Block(derived(), rows() - CRows, 0); - case BottomRight: - return Block(derived(), rows() - CRows, cols() - CCols); - } -} - -/** This is the const version of corner(CornerType).*/ -template -template -inline const Block -DenseBase::corner(CornerType type) const -{ - switch(type) - { - default: - eigen_assert(false && "Bad corner type."); - case TopLeft: - return Block(derived(), 0, 0); - case TopRight: - return Block(derived(), 0, cols() - CCols); - case BottomLeft: - return Block(derived(), rows() - CRows, 0); - case BottomRight: - return Block(derived(), rows() - CRows, cols() - CCols); - } -} - -} // end namespace Eigen - -#endif // EIGEN_BLOCK2_H diff --git a/Eigen/src/Eigen2Support/CMakeLists.txt b/Eigen/src/Eigen2Support/CMakeLists.txt deleted file mode 100644 index 7ae41b3cb..000000000 --- a/Eigen/src/Eigen2Support/CMakeLists.txt +++ /dev/null @@ -1,8 +0,0 @@ -FILE(GLOB Eigen_Eigen2Support_SRCS "*.h") - -INSTALL(FILES - ${Eigen_Eigen2Support_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support COMPONENT Devel - ) - -ADD_SUBDIRECTORY(Geometry) \ No newline at end of file diff --git a/Eigen/src/Eigen2Support/Cwise.h b/Eigen/src/Eigen2Support/Cwise.h deleted file mode 100644 index d95009b6e..000000000 --- a/Eigen/src/Eigen2Support/Cwise.h +++ /dev/null @@ -1,192 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CWISE_H -#define EIGEN_CWISE_H - -namespace Eigen { - -/** \internal - * convenient macro to defined the return type of a cwise binary operation */ -#define EIGEN_CWISE_BINOP_RETURN_TYPE(OP) \ - CwiseBinaryOp::Scalar>, ExpressionType, OtherDerived> - -/** \internal - * convenient macro to defined the return type of a cwise unary operation */ -#define EIGEN_CWISE_UNOP_RETURN_TYPE(OP) \ - CwiseUnaryOp::Scalar>, ExpressionType> - -/** \internal - * convenient macro to defined the return type of a cwise comparison to a scalar */ -#define EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(OP) \ - CwiseBinaryOp::Scalar>, ExpressionType, \ - typename ExpressionType::ConstantReturnType > - -/** \class Cwise - * - * \brief Pseudo expression providing additional coefficient-wise operations - * - * \param ExpressionType the type of the object on which to do coefficient-wise operations - * - * This class represents an expression with additional coefficient-wise features. - * It is the return type of MatrixBase::cwise() - * and most of the time this is the only way it is used. - * - * Example: \include MatrixBase_cwise_const.cpp - * Output: \verbinclude MatrixBase_cwise_const.out - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_CWISE_PLUGIN. - * - * \sa MatrixBase::cwise() const, MatrixBase::cwise() - */ -template class Cwise -{ - public: - - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::conditional::ret, - ExpressionType, const ExpressionType&>::type ExpressionTypeNested; - typedef CwiseUnaryOp, ExpressionType> ScalarAddReturnType; - - inline Cwise(const ExpressionType& matrix) : m_matrix(matrix) {} - - /** \internal */ - inline const ExpressionType& _expression() const { return m_matrix; } - - template - const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived) - operator*(const MatrixBase &other) const; - - template - const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op) - operator/(const MatrixBase &other) const; - - /** \deprecated ArrayBase::min() */ - template - const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op) - (min)(const MatrixBase &other) const - { return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op)(_expression(), other.derived()); } - - /** \deprecated ArrayBase::max() */ - template - const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op) - (max)(const MatrixBase &other) const - { return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op)(_expression(), other.derived()); } - - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op) abs() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op) abs2() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op) square() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op) cube() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op) inverse() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op) sqrt() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op) exp() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op) log() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op) cos() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op) sin() const; - const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op) pow(const Scalar& exponent) const; - - const ScalarAddReturnType - operator+(const Scalar& scalar) const; - - /** \relates Cwise */ - friend const ScalarAddReturnType - operator+(const Scalar& scalar, const Cwise& mat) - { return mat + scalar; } - - ExpressionType& operator+=(const Scalar& scalar); - - const ScalarAddReturnType - operator-(const Scalar& scalar) const; - - ExpressionType& operator-=(const Scalar& scalar); - - template - inline ExpressionType& operator*=(const MatrixBase &other); - - template - inline ExpressionType& operator/=(const MatrixBase &other); - - template const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less) - operator<(const MatrixBase& other) const; - - template const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal) - operator<=(const MatrixBase& other) const; - - template const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater) - operator>(const MatrixBase& other) const; - - template const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal) - operator>=(const MatrixBase& other) const; - - template const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to) - operator==(const MatrixBase& other) const; - - template const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to) - operator!=(const MatrixBase& other) const; - - // comparisons to a scalar value - const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less) - operator<(Scalar s) const; - - const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal) - operator<=(Scalar s) const; - - const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater) - operator>(Scalar s) const; - - const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal) - operator>=(Scalar s) const; - - const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to) - operator==(Scalar s) const; - - const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to) - operator!=(Scalar s) const; - - // allow to extend Cwise outside Eigen - #ifdef EIGEN_CWISE_PLUGIN - #include EIGEN_CWISE_PLUGIN - #endif - - protected: - ExpressionTypeNested m_matrix; -}; - - -/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations - * - * Example: \include MatrixBase_cwise_const.cpp - * Output: \verbinclude MatrixBase_cwise_const.out - * - * \sa class Cwise, cwise() - */ -template -inline const Cwise MatrixBase::cwise() const -{ - return derived(); -} - -/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations - * - * Example: \include MatrixBase_cwise.cpp - * Output: \verbinclude MatrixBase_cwise.out - * - * \sa class Cwise, cwise() const - */ -template -inline Cwise MatrixBase::cwise() -{ - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_CWISE_H diff --git a/Eigen/src/Eigen2Support/CwiseOperators.h b/Eigen/src/Eigen2Support/CwiseOperators.h deleted file mode 100644 index 482f30648..000000000 --- a/Eigen/src/Eigen2Support/CwiseOperators.h +++ /dev/null @@ -1,298 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ARRAY_CWISE_OPERATORS_H -#define EIGEN_ARRAY_CWISE_OPERATORS_H - -namespace Eigen { - -/*************************************************************************** -* The following functions were defined in Core -***************************************************************************/ - - -/** \deprecated ArrayBase::abs() */ -template -EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op) -Cwise::abs() const -{ - return _expression(); -} - -/** \deprecated ArrayBase::abs2() */ -template -EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op) -Cwise::abs2() const -{ - return _expression(); -} - -/** \deprecated ArrayBase::exp() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op) -Cwise::exp() const -{ - return _expression(); -} - -/** \deprecated ArrayBase::log() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op) -Cwise::log() const -{ - return _expression(); -} - -/** \deprecated ArrayBase::operator*() */ -template -template -EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived) -Cwise::operator*(const MatrixBase &other) const -{ - return EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)(_expression(), other.derived()); -} - -/** \deprecated ArrayBase::operator/() */ -template -template -EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op) -Cwise::operator/(const MatrixBase &other) const -{ - return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)(_expression(), other.derived()); -} - -/** \deprecated ArrayBase::operator*=() */ -template -template -inline ExpressionType& Cwise::operator*=(const MatrixBase &other) -{ - return m_matrix.const_cast_derived() = *this * other; -} - -/** \deprecated ArrayBase::operator/=() */ -template -template -inline ExpressionType& Cwise::operator/=(const MatrixBase &other) -{ - return m_matrix.const_cast_derived() = *this / other; -} - -/*************************************************************************** -* The following functions were defined in Array -***************************************************************************/ - -// -- unary operators -- - -/** \deprecated ArrayBase::sqrt() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op) -Cwise::sqrt() const -{ - return _expression(); -} - -/** \deprecated ArrayBase::cos() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op) -Cwise::cos() const -{ - return _expression(); -} - - -/** \deprecated ArrayBase::sin() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op) -Cwise::sin() const -{ - return _expression(); -} - - -/** \deprecated ArrayBase::log() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op) -Cwise::pow(const Scalar& exponent) const -{ - return EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op)(_expression(), internal::scalar_pow_op(exponent)); -} - - -/** \deprecated ArrayBase::inverse() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op) -Cwise::inverse() const -{ - return _expression(); -} - -/** \deprecated ArrayBase::square() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op) -Cwise::square() const -{ - return _expression(); -} - -/** \deprecated ArrayBase::cube() */ -template -inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op) -Cwise::cube() const -{ - return _expression(); -} - - -// -- binary operators -- - -/** \deprecated ArrayBase::operator<() */ -template -template -inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less) -Cwise::operator<(const MatrixBase &other) const -{ - return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)(_expression(), other.derived()); -} - -/** \deprecated ArrayBase::<=() */ -template -template -inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal) -Cwise::operator<=(const MatrixBase &other) const -{ - return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)(_expression(), other.derived()); -} - -/** \deprecated ArrayBase::operator>() */ -template -template -inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater) -Cwise::operator>(const MatrixBase &other) const -{ - return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)(_expression(), other.derived()); -} - -/** \deprecated ArrayBase::operator>=() */ -template -template -inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal) -Cwise::operator>=(const MatrixBase &other) const -{ - return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)(_expression(), other.derived()); -} - -/** \deprecated ArrayBase::operator==() */ -template -template -inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to) -Cwise::operator==(const MatrixBase &other) const -{ - return EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)(_expression(), other.derived()); -} - -/** \deprecated ArrayBase::operator!=() */ -template -template -inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to) -Cwise::operator!=(const MatrixBase &other) const -{ - return EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)(_expression(), other.derived()); -} - -// comparisons to scalar value - -/** \deprecated ArrayBase::operator<(Scalar) */ -template -inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less) -Cwise::operator<(Scalar s) const -{ - return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)(_expression(), - typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s)); -} - -/** \deprecated ArrayBase::operator<=(Scalar) */ -template -inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal) -Cwise::operator<=(Scalar s) const -{ - return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)(_expression(), - typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s)); -} - -/** \deprecated ArrayBase::operator>(Scalar) */ -template -inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater) -Cwise::operator>(Scalar s) const -{ - return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)(_expression(), - typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s)); -} - -/** \deprecated ArrayBase::operator>=(Scalar) */ -template -inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal) -Cwise::operator>=(Scalar s) const -{ - return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)(_expression(), - typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s)); -} - -/** \deprecated ArrayBase::operator==(Scalar) */ -template -inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to) -Cwise::operator==(Scalar s) const -{ - return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)(_expression(), - typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s)); -} - -/** \deprecated ArrayBase::operator!=(Scalar) */ -template -inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to) -Cwise::operator!=(Scalar s) const -{ - return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)(_expression(), - typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s)); -} - -// scalar addition - -/** \deprecated ArrayBase::operator+(Scalar) */ -template -inline const typename Cwise::ScalarAddReturnType -Cwise::operator+(const Scalar& scalar) const -{ - return typename Cwise::ScalarAddReturnType(m_matrix, internal::scalar_add_op(scalar)); -} - -/** \deprecated ArrayBase::operator+=(Scalar) */ -template -inline ExpressionType& Cwise::operator+=(const Scalar& scalar) -{ - return m_matrix.const_cast_derived() = *this + scalar; -} - -/** \deprecated ArrayBase::operator-(Scalar) */ -template -inline const typename Cwise::ScalarAddReturnType -Cwise::operator-(const Scalar& scalar) const -{ - return *this + (-scalar); -} - -/** \deprecated ArrayBase::operator-=(Scalar) */ -template -inline ExpressionType& Cwise::operator-=(const Scalar& scalar) -{ - return m_matrix.const_cast_derived() = *this - scalar; -} - -} // end namespace Eigen - -#endif // EIGEN_ARRAY_CWISE_OPERATORS_H diff --git a/Eigen/src/Eigen2Support/Geometry/AlignedBox.h b/Eigen/src/Eigen2Support/Geometry/AlignedBox.h deleted file mode 100644 index 2e4309dd9..000000000 --- a/Eigen/src/Eigen2Support/Geometry/AlignedBox.h +++ /dev/null @@ -1,159 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * \nonstableyet - * - * \class AlignedBox - * - * \brief An axis aligned box - * - * \param _Scalar the type of the scalar coefficients - * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. - * - * This class represents an axis aligned box as a pair of the minimal and maximal corners. - */ -template -class AlignedBox -{ -public: -EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) - enum { AmbientDimAtCompileTime = _AmbientDim }; - typedef _Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - /** Default constructor initializing a null box. */ - inline AlignedBox() - { if (AmbientDimAtCompileTime!=Dynamic) setNull(); } - - /** Constructs a null box with \a _dim the dimension of the ambient space. */ - inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim) - { setNull(); } - - /** Constructs a box with extremities \a _min and \a _max. */ - inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {} - - /** Constructs a box containing a single point \a p. */ - inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {} - - ~AlignedBox() {} - - /** \returns the dimension in which the box holds */ - inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; } - - /** \returns true if the box is null, i.e, empty. */ - inline bool isNull() const { return (m_min.cwise() > m_max).any(); } - - /** Makes \c *this a null/empty box. */ - inline void setNull() - { - m_min.setConstant( (std::numeric_limits::max)()); - m_max.setConstant(-(std::numeric_limits::max)()); - } - - /** \returns the minimal corner */ - inline const VectorType& (min)() const { return m_min; } - /** \returns a non const reference to the minimal corner */ - inline VectorType& (min)() { return m_min; } - /** \returns the maximal corner */ - inline const VectorType& (max)() const { return m_max; } - /** \returns a non const reference to the maximal corner */ - inline VectorType& (max)() { return m_max; } - - /** \returns true if the point \a p is inside the box \c *this. */ - inline bool contains(const VectorType& p) const - { return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); } - - /** \returns true if the box \a b is entirely inside the box \c *this. */ - inline bool contains(const AlignedBox& b) const - { return (m_min.cwise()<=(b.min)()).all() && ((b.max)().cwise()<=m_max).all(); } - - /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */ - inline AlignedBox& extend(const VectorType& p) - { m_min = (m_min.cwise().min)(p); m_max = (m_max.cwise().max)(p); return *this; } - - /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */ - inline AlignedBox& extend(const AlignedBox& b) - { m_min = (m_min.cwise().min)(b.m_min); m_max = (m_max.cwise().max)(b.m_max); return *this; } - - /** Clamps \c *this by the box \a b and returns a reference to \c *this. */ - inline AlignedBox& clamp(const AlignedBox& b) - { m_min = (m_min.cwise().max)(b.m_min); m_max = (m_max.cwise().min)(b.m_max); return *this; } - - /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ - inline AlignedBox& translate(const VectorType& t) - { m_min += t; m_max += t; return *this; } - - /** \returns the squared distance between the point \a p and the box \c *this, - * and zero if \a p is inside the box. - * \sa exteriorDistance() - */ - inline Scalar squaredExteriorDistance(const VectorType& p) const; - - /** \returns the distance between the point \a p and the box \c *this, - * and zero if \a p is inside the box. - * \sa squaredExteriorDistance() - */ - inline Scalar exteriorDistance(const VectorType& p) const - { return ei_sqrt(squaredExteriorDistance(p)); } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { - return typename internal::cast_return_type >::type(*this); - } - - /** Copy constructor with scalar type conversion */ - template - inline explicit AlignedBox(const AlignedBox& other) - { - m_min = (other.min)().template cast(); - m_max = (other.max)().template cast(); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const AlignedBox& other, typename NumTraits::Real prec = precision()) const - { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } - -protected: - - VectorType m_min, m_max; -}; - -template -inline Scalar AlignedBox::squaredExteriorDistance(const VectorType& p) const -{ - Scalar dist2(0); - Scalar aux; - for (int k=0; k - -#ifndef M_PI -#define M_PI 3.14159265358979323846 -#endif - -#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS -#include "RotationBase.h" -#include "Rotation2D.h" -#include "Quaternion.h" -#include "AngleAxis.h" -#include "Transform.h" -#include "Translation.h" -#include "Scaling.h" -#include "AlignedBox.h" -#include "Hyperplane.h" -#include "ParametrizedLine.h" -#endif - - -#define RotationBase eigen2_RotationBase -#define Rotation2D eigen2_Rotation2D -#define Rotation2Df eigen2_Rotation2Df -#define Rotation2Dd eigen2_Rotation2Dd - -#define Quaternion eigen2_Quaternion -#define Quaternionf eigen2_Quaternionf -#define Quaterniond eigen2_Quaterniond - -#define AngleAxis eigen2_AngleAxis -#define AngleAxisf eigen2_AngleAxisf -#define AngleAxisd eigen2_AngleAxisd - -#define Transform eigen2_Transform -#define Transform2f eigen2_Transform2f -#define Transform2d eigen2_Transform2d -#define Transform3f eigen2_Transform3f -#define Transform3d eigen2_Transform3d - -#define Translation eigen2_Translation -#define Translation2f eigen2_Translation2f -#define Translation2d eigen2_Translation2d -#define Translation3f eigen2_Translation3f -#define Translation3d eigen2_Translation3d - -#define Scaling eigen2_Scaling -#define Scaling2f eigen2_Scaling2f -#define Scaling2d eigen2_Scaling2d -#define Scaling3f eigen2_Scaling3f -#define Scaling3d eigen2_Scaling3d - -#define AlignedBox eigen2_AlignedBox - -#define Hyperplane eigen2_Hyperplane -#define ParametrizedLine eigen2_ParametrizedLine - -#define ei_toRotationMatrix eigen2_ei_toRotationMatrix -#define ei_quaternion_assign_impl eigen2_ei_quaternion_assign_impl -#define ei_transform_product_impl eigen2_ei_transform_product_impl - -#include "RotationBase.h" -#include "Rotation2D.h" -#include "Quaternion.h" -#include "AngleAxis.h" -#include "Transform.h" -#include "Translation.h" -#include "Scaling.h" -#include "AlignedBox.h" -#include "Hyperplane.h" -#include "ParametrizedLine.h" - -#undef ei_toRotationMatrix -#undef ei_quaternion_assign_impl -#undef ei_transform_product_impl - -#undef RotationBase -#undef Rotation2D -#undef Rotation2Df -#undef Rotation2Dd - -#undef Quaternion -#undef Quaternionf -#undef Quaterniond - -#undef AngleAxis -#undef AngleAxisf -#undef AngleAxisd - -#undef Transform -#undef Transform2f -#undef Transform2d -#undef Transform3f -#undef Transform3d - -#undef Translation -#undef Translation2f -#undef Translation2d -#undef Translation3f -#undef Translation3d - -#undef Scaling -#undef Scaling2f -#undef Scaling2d -#undef Scaling3f -#undef Scaling3d - -#undef AlignedBox - -#undef Hyperplane -#undef ParametrizedLine - -#endif // EIGEN2_GEOMETRY_MODULE_H diff --git a/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/Eigen/src/Eigen2Support/Geometry/AngleAxis.h deleted file mode 100644 index a0b4ac44e..000000000 --- a/Eigen/src/Eigen2Support/Geometry/AngleAxis.h +++ /dev/null @@ -1,228 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class AngleAxis - * - * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis - * - * \param _Scalar the scalar type, i.e., the type of the coefficients. - * - * The following two typedefs are provided for convenience: - * \li \c AngleAxisf for \c float - * \li \c AngleAxisd for \c double - * - * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles - * - * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily - * mimic Euler-angles. Here is an example: - * \include AngleAxis_mimic_euler.cpp - * Output: \verbinclude AngleAxis_mimic_euler.out - * - * \note This class is not aimed to be used to store a rotation transformation, - * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) - * and transformation objects. - * - * \sa class Quaternion, class Transform, MatrixBase::UnitX() - */ - -template struct ei_traits > -{ - typedef _Scalar Scalar; -}; - -template -class AngleAxis : public RotationBase,3> -{ - typedef RotationBase,3> Base; - -public: - - using Base::operator*; - - enum { Dim = 3 }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Matrix Matrix3; - typedef Matrix Vector3; - typedef Quaternion QuaternionType; - -protected: - - Vector3 m_axis; - Scalar m_angle; - -public: - - /** Default constructor without initialization. */ - AngleAxis() {} - - /** Constructs and initialize the angle-axis rotation from an \a angle in radian - * and an \a axis which must be normalized. */ - template - inline AngleAxis(Scalar angle, const MatrixBase& axis) : m_axis(axis), m_angle(angle) - { - using std::sqrt; - using std::abs; - // since we compare against 1, this is equal to computing the relative error - eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( NumTraits::dummy_precision() ) ); - } - - /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ - inline AngleAxis(const QuaternionType& q) { *this = q; } - - /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ - template - inline explicit AngleAxis(const MatrixBase& m) { *this = m; } - - Scalar angle() const { return m_angle; } - Scalar& angle() { return m_angle; } - - const Vector3& axis() const { return m_axis; } - Vector3& axis() { return m_axis; } - - /** Concatenates two rotations */ - inline QuaternionType operator* (const AngleAxis& other) const - { return QuaternionType(*this) * QuaternionType(other); } - - /** Concatenates two rotations */ - inline QuaternionType operator* (const QuaternionType& other) const - { return QuaternionType(*this) * other; } - - /** Concatenates two rotations */ - friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) - { return a * QuaternionType(b); } - - /** Concatenates two rotations */ - inline Matrix3 operator* (const Matrix3& other) const - { return toRotationMatrix() * other; } - - /** Concatenates two rotations */ - inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b) - { return a * b.toRotationMatrix(); } - - /** Applies rotation to vector */ - inline Vector3 operator* (const Vector3& other) const - { return toRotationMatrix() * other; } - - /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ - AngleAxis inverse() const - { return AngleAxis(-m_angle, m_axis); } - - AngleAxis& operator=(const QuaternionType& q); - template - AngleAxis& operator=(const MatrixBase& m); - - template - AngleAxis& fromRotationMatrix(const MatrixBase& m); - Matrix3 toRotationMatrix(void) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit AngleAxis(const AngleAxis& other) - { - m_axis = other.axis().template cast(); - m_angle = Scalar(other.angle()); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const AngleAxis& other, typename NumTraits::Real prec = precision()) const - { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); } -}; - -/** \ingroup Geometry_Module - * single precision angle-axis type */ -typedef AngleAxis AngleAxisf; -/** \ingroup Geometry_Module - * double precision angle-axis type */ -typedef AngleAxis AngleAxisd; - -/** Set \c *this from a quaternion. - * The axis is normalized. - */ -template -AngleAxis& AngleAxis::operator=(const QuaternionType& q) -{ - Scalar n2 = q.vec().squaredNorm(); - if (n2 < precision()*precision()) - { - m_angle = 0; - m_axis << 1, 0, 0; - } - else - { - m_angle = 2*std::acos(q.w()); - m_axis = q.vec() / ei_sqrt(n2); - - using std::sqrt; - using std::abs; - // since we compare against 1, this is equal to computing the relative error - eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( NumTraits::dummy_precision() ) ); - } - return *this; -} - -/** Set \c *this from a 3x3 rotation matrix \a mat. - */ -template -template -AngleAxis& AngleAxis::operator=(const MatrixBase& mat) -{ - // Since a direct conversion would not be really faster, - // let's use the robust Quaternion implementation: - return *this = QuaternionType(mat); -} - -/** Constructs and \returns an equivalent 3x3 rotation matrix. - */ -template -typename AngleAxis::Matrix3 -AngleAxis::toRotationMatrix(void) const -{ - Matrix3 res; - Vector3 sin_axis = ei_sin(m_angle) * m_axis; - Scalar c = ei_cos(m_angle); - Vector3 cos1_axis = (Scalar(1)-c) * m_axis; - - Scalar tmp; - tmp = cos1_axis.x() * m_axis.y(); - res.coeffRef(0,1) = tmp - sin_axis.z(); - res.coeffRef(1,0) = tmp + sin_axis.z(); - - tmp = cos1_axis.x() * m_axis.z(); - res.coeffRef(0,2) = tmp + sin_axis.y(); - res.coeffRef(2,0) = tmp - sin_axis.y(); - - tmp = cos1_axis.y() * m_axis.z(); - res.coeffRef(1,2) = tmp - sin_axis.x(); - res.coeffRef(2,1) = tmp + sin_axis.x(); - - res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c; - - return res; -} - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt b/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt deleted file mode 100644 index c347a8f26..000000000 --- a/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt +++ /dev/null @@ -1,6 +0,0 @@ -FILE(GLOB Eigen_Eigen2Support_Geometry_SRCS "*.h") - -INSTALL(FILES - ${Eigen_Eigen2Support_Geometry_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support/Geometry - ) diff --git a/Eigen/src/Eigen2Support/Geometry/Hyperplane.h b/Eigen/src/Eigen2Support/Geometry/Hyperplane.h deleted file mode 100644 index b95bf00ec..000000000 --- a/Eigen/src/Eigen2Support/Geometry/Hyperplane.h +++ /dev/null @@ -1,254 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Hyperplane - * - * \brief A hyperplane - * - * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. - * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. - * Notice that the dimension of the hyperplane is _AmbientDim-1. - * - * This class represents an hyperplane as the zero set of the implicit equation - * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) - * and \f$ d \f$ is the distance (offset) to the origin. - */ -template -class Hyperplane -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) - enum { AmbientDimAtCompileTime = _AmbientDim }; - typedef _Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - typedef Matrix Coefficients; - typedef Block NormalReturnType; - - /** Default constructor without initialization */ - inline Hyperplane() {} - - /** Constructs a dynamic-size hyperplane with \a _dim the dimension - * of the ambient space */ - inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {} - - /** Construct a plane from its normal \a n and a point \a e onto the plane. - * \warning the vector normal is assumed to be normalized. - */ - inline Hyperplane(const VectorType& n, const VectorType& e) - : m_coeffs(n.size()+1) - { - normal() = n; - offset() = -e.eigen2_dot(n); - } - - /** Constructs a plane from its normal \a n and distance to the origin \a d - * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. - * \warning the vector normal is assumed to be normalized. - */ - inline Hyperplane(const VectorType& n, Scalar d) - : m_coeffs(n.size()+1) - { - normal() = n; - offset() = d; - } - - /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space - * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. - */ - static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) - { - Hyperplane result(p0.size()); - result.normal() = (p1 - p0).unitOrthogonal(); - result.offset() = -result.normal().eigen2_dot(p0); - return result; - } - - /** Constructs a hyperplane passing through the three points. The dimension of the ambient space - * is required to be exactly 3. - */ - static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) - { - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) - Hyperplane result(p0.size()); - result.normal() = (p2 - p0).cross(p1 - p0).normalized(); - result.offset() = -result.normal().eigen2_dot(p0); - return result; - } - - /** Constructs a hyperplane passing through the parametrized line \a parametrized. - * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, - * so an arbitrary choice is made. - */ - // FIXME to be consitent with the rest this could be implemented as a static Through function ?? - explicit Hyperplane(const ParametrizedLine& parametrized) - { - normal() = parametrized.direction().unitOrthogonal(); - offset() = -normal().eigen2_dot(parametrized.origin()); - } - - ~Hyperplane() {} - - /** \returns the dimension in which the plane holds */ - inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); } - - /** normalizes \c *this */ - void normalize(void) - { - m_coeffs /= normal().norm(); - } - - /** \returns the signed distance between the plane \c *this and a point \a p. - * \sa absDistance() - */ - inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); } - - /** \returns the absolute distance between the plane \c *this and a point \a p. - * \sa signedDistance() - */ - inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); } - - /** \returns the projection of a point \a p onto the plane \c *this. - */ - inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } - - /** \returns a constant reference to the unit normal vector of the plane, which corresponds - * to the linear part of the implicit equation. - */ - inline const NormalReturnType normal() const { return NormalReturnType(*const_cast(&m_coeffs),0,0,dim(),1); } - - /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds - * to the linear part of the implicit equation. - */ - inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } - - /** \returns the distance to the origin, which is also the "constant term" of the implicit equation - * \warning the vector normal is assumed to be normalized. - */ - inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } - - /** \returns a non-constant reference to the distance to the origin, which is also the constant part - * of the implicit equation */ - inline Scalar& offset() { return m_coeffs(dim()); } - - /** \returns a constant reference to the coefficients c_i of the plane equation: - * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ - */ - inline const Coefficients& coeffs() const { return m_coeffs; } - - /** \returns a non-constant reference to the coefficients c_i of the plane equation: - * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ - */ - inline Coefficients& coeffs() { return m_coeffs; } - - /** \returns the intersection of *this with \a other. - * - * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. - * - * \note If \a other is approximately parallel to *this, this method will return any point on *this. - */ - VectorType intersection(const Hyperplane& other) - { - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) - Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); - // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests - // whether the two lines are approximately parallel. - if(ei_isMuchSmallerThan(det, Scalar(1))) - { // special case where the two lines are approximately parallel. Pick any point on the first line. - if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0))) - return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); - else - return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); - } - else - { // general case - Scalar invdet = Scalar(1) / det; - return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), - invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); - } - } - - /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. - * - * \param mat the Dim x Dim transformation matrix - * \param traits specifies whether the matrix \a mat represents an Isometry - * or a more generic Affine transformation. The default is Affine. - */ - template - inline Hyperplane& transform(const MatrixBase& mat, TransformTraits traits = Affine) - { - if (traits==Affine) - normal() = mat.inverse().transpose() * normal(); - else if (traits==Isometry) - normal() = mat * normal(); - else - { - ei_assert("invalid traits value in Hyperplane::transform()"); - } - return *this; - } - - /** Applies the transformation \a t to \c *this and returns a reference to \c *this. - * - * \param t the transformation of dimension Dim - * \param traits specifies whether the transformation \a t represents an Isometry - * or a more generic Affine transformation. The default is Affine. - * Other kind of transformations are not supported. - */ - inline Hyperplane& transform(const Transform& t, - TransformTraits traits = Affine) - { - transform(t.linear(), traits); - offset() -= t.translation().eigen2_dot(normal()); - return *this; - } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { - return typename internal::cast_return_type >::type(*this); - } - - /** Copy constructor with scalar type conversion */ - template - inline explicit Hyperplane(const Hyperplane& other) - { m_coeffs = other.coeffs().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Hyperplane& other, typename NumTraits::Real prec = precision()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -protected: - - Coefficients m_coeffs; -}; - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h b/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h deleted file mode 100644 index 9b57b7e0b..000000000 --- a/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h +++ /dev/null @@ -1,141 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class ParametrizedLine - * - * \brief A parametrized line - * - * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit - * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to - * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$. - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. - */ -template -class ParametrizedLine -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) - enum { AmbientDimAtCompileTime = _AmbientDim }; - typedef _Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - /** Default constructor without initialization */ - inline ParametrizedLine() {} - - /** Constructs a dynamic-size line with \a _dim the dimension - * of the ambient space */ - inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {} - - /** Initializes a parametrized line of direction \a direction and origin \a origin. - * \warning the vector direction is assumed to be normalized. - */ - ParametrizedLine(const VectorType& origin, const VectorType& direction) - : m_origin(origin), m_direction(direction) {} - - explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); - - /** Constructs a parametrized line going from \a p0 to \a p1. */ - static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) - { return ParametrizedLine(p0, (p1-p0).normalized()); } - - ~ParametrizedLine() {} - - /** \returns the dimension in which the line holds */ - inline int dim() const { return m_direction.size(); } - - const VectorType& origin() const { return m_origin; } - VectorType& origin() { return m_origin; } - - const VectorType& direction() const { return m_direction; } - VectorType& direction() { return m_direction; } - - /** \returns the squared distance of a point \a p to its projection onto the line \c *this. - * \sa distance() - */ - RealScalar squaredDistance(const VectorType& p) const - { - VectorType diff = p-origin(); - return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm(); - } - /** \returns the distance of a point \a p to its projection onto the line \c *this. - * \sa squaredDistance() - */ - RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); } - - /** \returns the projection of a point \a p onto the line \c *this. */ - VectorType projection(const VectorType& p) const - { return origin() + (p-origin()).eigen2_dot(direction()) * direction(); } - - Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { - return typename internal::cast_return_type >::type(*this); - } - - /** Copy constructor with scalar type conversion */ - template - inline explicit ParametrizedLine(const ParametrizedLine& other) - { - m_origin = other.origin().template cast(); - m_direction = other.direction().template cast(); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const ParametrizedLine& other, typename NumTraits::Real prec = precision()) const - { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } - -protected: - - VectorType m_origin, m_direction; -}; - -/** Constructs a parametrized line from a 2D hyperplane - * - * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line - */ -template -inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) - direction() = hyperplane.normal().unitOrthogonal(); - origin() = -hyperplane.normal()*hyperplane.offset(); -} - -/** \returns the parameter value of the intersection between \c *this and the given hyperplane - */ -template -inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) -{ - return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal())) - /(direction().eigen2_dot(hyperplane.normal())); -} - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/Quaternion.h b/Eigen/src/Eigen2Support/Geometry/Quaternion.h deleted file mode 100644 index 4b6390cf1..000000000 --- a/Eigen/src/Eigen2Support/Geometry/Quaternion.h +++ /dev/null @@ -1,495 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -template -struct ei_quaternion_assign_impl; - -/** \geometry_module \ingroup Geometry_Module - * - * \class Quaternion - * - * \brief The quaternion class used to represent 3D orientations and rotations - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * - * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of - * orientations and rotations of objects in three dimensions. Compared to other representations - * like Euler angles or 3x3 matrices, quatertions offer the following advantages: - * \li \b compact storage (4 scalars) - * \li \b efficient to compose (28 flops), - * \li \b stable spherical interpolation - * - * The following two typedefs are provided for convenience: - * \li \c Quaternionf for \c float - * \li \c Quaterniond for \c double - * - * \sa class AngleAxis, class Transform - */ - -template struct ei_traits > -{ - typedef _Scalar Scalar; -}; - -template -class Quaternion : public RotationBase,3> -{ - typedef RotationBase,3> Base; - -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4) - - using Base::operator*; - - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - - /** the type of the Coefficients 4-vector */ - typedef Matrix Coefficients; - /** the type of a 3D vector */ - typedef Matrix Vector3; - /** the equivalent rotation matrix type */ - typedef Matrix Matrix3; - /** the equivalent angle-axis type */ - typedef AngleAxis AngleAxisType; - - /** \returns the \c x coefficient */ - inline Scalar x() const { return m_coeffs.coeff(0); } - /** \returns the \c y coefficient */ - inline Scalar y() const { return m_coeffs.coeff(1); } - /** \returns the \c z coefficient */ - inline Scalar z() const { return m_coeffs.coeff(2); } - /** \returns the \c w coefficient */ - inline Scalar w() const { return m_coeffs.coeff(3); } - - /** \returns a reference to the \c x coefficient */ - inline Scalar& x() { return m_coeffs.coeffRef(0); } - /** \returns a reference to the \c y coefficient */ - inline Scalar& y() { return m_coeffs.coeffRef(1); } - /** \returns a reference to the \c z coefficient */ - inline Scalar& z() { return m_coeffs.coeffRef(2); } - /** \returns a reference to the \c w coefficient */ - inline Scalar& w() { return m_coeffs.coeffRef(3); } - - /** \returns a read-only vector expression of the imaginary part (x,y,z) */ - inline const Block vec() const { return m_coeffs.template start<3>(); } - - /** \returns a vector expression of the imaginary part (x,y,z) */ - inline Block vec() { return m_coeffs.template start<3>(); } - - /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ - inline const Coefficients& coeffs() const { return m_coeffs; } - - /** \returns a vector expression of the coefficients (x,y,z,w) */ - inline Coefficients& coeffs() { return m_coeffs; } - - /** Default constructor leaving the quaternion uninitialized. */ - inline Quaternion() {} - - /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from - * its four coefficients \a w, \a x, \a y and \a z. - * - * \warning Note the order of the arguments: the real \a w coefficient first, - * while internally the coefficients are stored in the following order: - * [\c x, \c y, \c z, \c w] - */ - inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) - { m_coeffs << x, y, z, w; } - - /** Copy constructor */ - inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; } - - /** Constructs and initializes a quaternion from the angle-axis \a aa */ - explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } - - /** Constructs and initializes a quaternion from either: - * - a rotation matrix expression, - * - a 4D vector expression representing quaternion coefficients. - * \sa operator=(MatrixBase) - */ - template - explicit inline Quaternion(const MatrixBase& other) { *this = other; } - - Quaternion& operator=(const Quaternion& other); - Quaternion& operator=(const AngleAxisType& aa); - template - Quaternion& operator=(const MatrixBase& m); - - /** \returns a quaternion representing an identity rotation - * \sa MatrixBase::Identity() - */ - static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); } - - /** \sa Quaternion::Identity(), MatrixBase::setIdentity() - */ - inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; } - - /** \returns the squared norm of the quaternion's coefficients - * \sa Quaternion::norm(), MatrixBase::squaredNorm() - */ - inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); } - - /** \returns the norm of the quaternion's coefficients - * \sa Quaternion::squaredNorm(), MatrixBase::norm() - */ - inline Scalar norm() const { return m_coeffs.norm(); } - - /** Normalizes the quaternion \c *this - * \sa normalized(), MatrixBase::normalize() */ - inline void normalize() { m_coeffs.normalize(); } - /** \returns a normalized version of \c *this - * \sa normalize(), MatrixBase::normalized() */ - inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); } - - /** \returns the dot product of \c *this and \a other - * Geometrically speaking, the dot product of two unit quaternions - * corresponds to the cosine of half the angle between the two rotations. - * \sa angularDistance() - */ - inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); } - - inline Scalar angularDistance(const Quaternion& other) const; - - Matrix3 toRotationMatrix(void) const; - - template - Quaternion& setFromTwoVectors(const MatrixBase& a, const MatrixBase& b); - - inline Quaternion operator* (const Quaternion& q) const; - inline Quaternion& operator*= (const Quaternion& q); - - Quaternion inverse(void) const; - Quaternion conjugate(void) const; - - Quaternion slerp(Scalar t, const Quaternion& other) const; - - template - Vector3 operator* (const MatrixBase& vec) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit Quaternion(const Quaternion& other) - { m_coeffs = other.coeffs().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Quaternion& other, typename NumTraits::Real prec = precision()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -protected: - Coefficients m_coeffs; -}; - -/** \ingroup Geometry_Module - * single precision quaternion type */ -typedef Quaternion Quaternionf; -/** \ingroup Geometry_Module - * double precision quaternion type */ -typedef Quaternion Quaterniond; - -// Generic Quaternion * Quaternion product -template inline Quaternion -ei_quaternion_product(const Quaternion& a, const Quaternion& b) -{ - return Quaternion - ( - a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), - a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), - a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), - a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() - ); -} - -/** \returns the concatenation of two rotations as a quaternion-quaternion product */ -template -inline Quaternion Quaternion::operator* (const Quaternion& other) const -{ - return ei_quaternion_product(*this,other); -} - -/** \sa operator*(Quaternion) */ -template -inline Quaternion& Quaternion::operator*= (const Quaternion& other) -{ - return (*this = *this * other); -} - -/** Rotation of a vector by a quaternion. - * \remarks If the quaternion is used to rotate several points (>1) - * then it is much more efficient to first convert it to a 3x3 Matrix. - * Comparison of the operation cost for n transformations: - * - Quaternion: 30n - * - Via a Matrix3: 24 + 15n - */ -template -template -inline typename Quaternion::Vector3 -Quaternion::operator* (const MatrixBase& v) const -{ - // Note that this algorithm comes from the optimization by hand - // of the conversion to a Matrix followed by a Matrix/Vector product. - // It appears to be much faster than the common algorithm found - // in the litterature (30 versus 39 flops). It also requires two - // Vector3 as temporaries. - Vector3 uv; - uv = 2 * this->vec().cross(v); - return v + this->w() * uv + this->vec().cross(uv); -} - -template -inline Quaternion& Quaternion::operator=(const Quaternion& other) -{ - m_coeffs = other.m_coeffs; - return *this; -} - -/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this - */ -template -inline Quaternion& Quaternion::operator=(const AngleAxisType& aa) -{ - Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings - this->w() = ei_cos(ha); - this->vec() = ei_sin(ha) * aa.axis(); - return *this; -} - -/** Set \c *this from the expression \a xpr: - * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion - * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix - * and \a xpr is converted to a quaternion - */ -template -template -inline Quaternion& Quaternion::operator=(const MatrixBase& xpr) -{ - ei_quaternion_assign_impl::run(*this, xpr.derived()); - return *this; -} - -/** Convert the quaternion to a 3x3 rotation matrix */ -template -inline typename Quaternion::Matrix3 -Quaternion::toRotationMatrix(void) const -{ - // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) - // if not inlined then the cost of the return by value is huge ~ +35%, - // however, not inlining this function is an order of magnitude slower, so - // it has to be inlined, and so the return by value is not an issue - Matrix3 res; - - const Scalar tx = Scalar(2)*this->x(); - const Scalar ty = Scalar(2)*this->y(); - const Scalar tz = Scalar(2)*this->z(); - const Scalar twx = tx*this->w(); - const Scalar twy = ty*this->w(); - const Scalar twz = tz*this->w(); - const Scalar txx = tx*this->x(); - const Scalar txy = ty*this->x(); - const Scalar txz = tz*this->x(); - const Scalar tyy = ty*this->y(); - const Scalar tyz = tz*this->y(); - const Scalar tzz = tz*this->z(); - - res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); - res.coeffRef(0,1) = txy-twz; - res.coeffRef(0,2) = txz+twy; - res.coeffRef(1,0) = txy+twz; - res.coeffRef(1,1) = Scalar(1)-(txx+tzz); - res.coeffRef(1,2) = tyz-twx; - res.coeffRef(2,0) = txz-twy; - res.coeffRef(2,1) = tyz+twx; - res.coeffRef(2,2) = Scalar(1)-(txx+tyy); - - return res; -} - -/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b. - * - * \returns a reference to *this. - * - * Note that the two input vectors do \b not have to be normalized. - */ -template -template -inline Quaternion& Quaternion::setFromTwoVectors(const MatrixBase& a, const MatrixBase& b) -{ - Vector3 v0 = a.normalized(); - Vector3 v1 = b.normalized(); - Scalar c = v0.eigen2_dot(v1); - - // if dot == 1, vectors are the same - if (ei_isApprox(c,Scalar(1))) - { - // set to identity - this->w() = 1; this->vec().setZero(); - return *this; - } - // if dot == -1, vectors are opposites - if (ei_isApprox(c,Scalar(-1))) - { - this->vec() = v0.unitOrthogonal(); - this->w() = 0; - return *this; - } - - Vector3 axis = v0.cross(v1); - Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2)); - Scalar invs = Scalar(1)/s; - this->vec() = axis * invs; - this->w() = s * Scalar(0.5); - - return *this; -} - -/** \returns the multiplicative inverse of \c *this - * Note that in most cases, i.e., if you simply want the opposite rotation, - * and/or the quaternion is normalized, then it is enough to use the conjugate. - * - * \sa Quaternion::conjugate() - */ -template -inline Quaternion Quaternion::inverse() const -{ - // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? - Scalar n2 = this->squaredNorm(); - if (n2 > 0) - return Quaternion(conjugate().coeffs() / n2); - else - { - // return an invalid result to flag the error - return Quaternion(Coefficients::Zero()); - } -} - -/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse - * if the quaternion is normalized. - * The conjugate of a quaternion represents the opposite rotation. - * - * \sa Quaternion::inverse() - */ -template -inline Quaternion Quaternion::conjugate() const -{ - return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); -} - -/** \returns the angle (in radian) between two rotations - * \sa eigen2_dot() - */ -template -inline Scalar Quaternion::angularDistance(const Quaternion& other) const -{ - double d = ei_abs(this->eigen2_dot(other)); - if (d>=1.0) - return 0; - return Scalar(2) * std::acos(d); -} - -/** \returns the spherical linear interpolation between the two quaternions - * \c *this and \a other at the parameter \a t - */ -template -Quaternion Quaternion::slerp(Scalar t, const Quaternion& other) const -{ - static const Scalar one = Scalar(1) - machine_epsilon(); - Scalar d = this->eigen2_dot(other); - Scalar absD = ei_abs(d); - - Scalar scale0; - Scalar scale1; - - if (absD>=one) - { - scale0 = Scalar(1) - t; - scale1 = t; - } - else - { - // theta is the angle between the 2 quaternions - Scalar theta = std::acos(absD); - Scalar sinTheta = ei_sin(theta); - - scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta; - scale1 = ei_sin( ( t * theta) ) / sinTheta; - if (d<0) - scale1 = -scale1; - } - - return Quaternion(scale0 * coeffs() + scale1 * other.coeffs()); -} - -// set from a rotation matrix -template -struct ei_quaternion_assign_impl -{ - typedef typename Other::Scalar Scalar; - static inline void run(Quaternion& q, const Other& mat) - { - // This algorithm comes from "Quaternion Calculus and Fast Animation", - // Ken Shoemake, 1987 SIGGRAPH course notes - Scalar t = mat.trace(); - if (t > 0) - { - t = ei_sqrt(t + Scalar(1.0)); - q.w() = Scalar(0.5)*t; - t = Scalar(0.5)/t; - q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; - q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; - q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; - } - else - { - int i = 0; - if (mat.coeff(1,1) > mat.coeff(0,0)) - i = 1; - if (mat.coeff(2,2) > mat.coeff(i,i)) - i = 2; - int j = (i+1)%3; - int k = (j+1)%3; - - t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); - q.coeffs().coeffRef(i) = Scalar(0.5) * t; - t = Scalar(0.5)/t; - q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; - q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; - q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; - } - } -}; - -// set from a vector of coefficients assumed to be a quaternion -template -struct ei_quaternion_assign_impl -{ - typedef typename Other::Scalar Scalar; - static inline void run(Quaternion& q, const Other& vec) - { - q.coeffs() = vec; - } -}; - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/Rotation2D.h b/Eigen/src/Eigen2Support/Geometry/Rotation2D.h deleted file mode 100644 index 19b8582a1..000000000 --- a/Eigen/src/Eigen2Support/Geometry/Rotation2D.h +++ /dev/null @@ -1,145 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Rotation2D - * - * \brief Represents a rotation/orientation in a 2 dimensional space. - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * - * This class is equivalent to a single scalar representing a counter clock wise rotation - * as a single angle in radian. It provides some additional features such as the automatic - * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar - * interface to Quaternion in order to facilitate the writing of generic algorithms - * dealing with rotations. - * - * \sa class Quaternion, class Transform - */ -template struct ei_traits > -{ - typedef _Scalar Scalar; -}; - -template -class Rotation2D : public RotationBase,2> -{ - typedef RotationBase,2> Base; - -public: - - using Base::operator*; - - enum { Dim = 2 }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Matrix Vector2; - typedef Matrix Matrix2; - -protected: - - Scalar m_angle; - -public: - - /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ - inline Rotation2D(Scalar a) : m_angle(a) {} - - /** \returns the rotation angle */ - inline Scalar angle() const { return m_angle; } - - /** \returns a read-write reference to the rotation angle */ - inline Scalar& angle() { return m_angle; } - - /** \returns the inverse rotation */ - inline Rotation2D inverse() const { return -m_angle; } - - /** Concatenates two rotations */ - inline Rotation2D operator*(const Rotation2D& other) const - { return m_angle + other.m_angle; } - - /** Concatenates two rotations */ - inline Rotation2D& operator*=(const Rotation2D& other) - { return m_angle += other.m_angle; return *this; } - - /** Applies the rotation to a 2D vector */ - Vector2 operator* (const Vector2& vec) const - { return toRotationMatrix() * vec; } - - template - Rotation2D& fromRotationMatrix(const MatrixBase& m); - Matrix2 toRotationMatrix(void) const; - - /** \returns the spherical interpolation between \c *this and \a other using - * parameter \a t. It is in fact equivalent to a linear interpolation. - */ - inline Rotation2D slerp(Scalar t, const Rotation2D& other) const - { return m_angle * (1-t) + other.angle() * t; } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit Rotation2D(const Rotation2D& other) - { - m_angle = Scalar(other.angle()); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Rotation2D& other, typename NumTraits::Real prec = precision()) const - { return ei_isApprox(m_angle,other.m_angle, prec); } -}; - -/** \ingroup Geometry_Module - * single precision 2D rotation type */ -typedef Rotation2D Rotation2Df; -/** \ingroup Geometry_Module - * double precision 2D rotation type */ -typedef Rotation2D Rotation2Dd; - -/** Set \c *this from a 2x2 rotation matrix \a mat. - * In other words, this function extract the rotation angle - * from the rotation matrix. - */ -template -template -Rotation2D& Rotation2D::fromRotationMatrix(const MatrixBase& mat) -{ - EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) - m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0)); - return *this; -} - -/** Constructs and \returns an equivalent 2x2 rotation matrix. - */ -template -typename Rotation2D::Matrix2 -Rotation2D::toRotationMatrix(void) const -{ - Scalar sinA = ei_sin(m_angle); - Scalar cosA = ei_cos(m_angle); - return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); -} - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/RotationBase.h b/Eigen/src/Eigen2Support/Geometry/RotationBase.h deleted file mode 100644 index b1c8f38da..000000000 --- a/Eigen/src/Eigen2Support/Geometry/RotationBase.h +++ /dev/null @@ -1,123 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -// this file aims to contains the various representations of rotation/orientation -// in 2D and 3D space excepted Matrix and Quaternion. - -/** \class RotationBase - * - * \brief Common base class for compact rotation representations - * - * \param Derived is the derived type, i.e., a rotation type - * \param _Dim the dimension of the space - */ -template -class RotationBase -{ - public: - enum { Dim = _Dim }; - /** the scalar type of the coefficients */ - typedef typename ei_traits::Scalar Scalar; - - /** corresponding linear transformation matrix type */ - typedef Matrix RotationMatrixType; - - inline const Derived& derived() const { return *static_cast(this); } - inline Derived& derived() { return *static_cast(this); } - - /** \returns an equivalent rotation matrix */ - inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } - - /** \returns the inverse rotation */ - inline Derived inverse() const { return derived().inverse(); } - - /** \returns the concatenation of the rotation \c *this with a translation \a t */ - inline Transform operator*(const Translation& t) const - { return toRotationMatrix() * t; } - - /** \returns the concatenation of the rotation \c *this with a scaling \a s */ - inline RotationMatrixType operator*(const Scaling& s) const - { return toRotationMatrix() * s; } - - /** \returns the concatenation of the rotation \c *this with an affine transformation \a t */ - inline Transform operator*(const Transform& t) const - { return toRotationMatrix() * t; } -}; - -/** \geometry_module - * - * Constructs a Dim x Dim rotation matrix from the rotation \a r - */ -template -template -Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> -::Matrix(const RotationBase& r) -{ - EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) - *this = r.toRotationMatrix(); -} - -/** \geometry_module - * - * Set a Dim x Dim rotation matrix from the rotation \a r - */ -template -template -Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>& -Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> -::operator=(const RotationBase& r) -{ - EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) - return *this = r.toRotationMatrix(); -} - -/** \internal - * - * Helper function to return an arbitrary rotation object to a rotation matrix. - * - * \param Scalar the numeric type of the matrix coefficients - * \param Dim the dimension of the current space - * - * It returns a Dim x Dim fixed size matrix. - * - * Default specializations are provided for: - * - any scalar type (2D), - * - any matrix expression, - * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) - * - * Currently ei_toRotationMatrix is only used by Transform. - * - * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis - */ -template -static inline Matrix ei_toRotationMatrix(const Scalar& s) -{ - EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) - return Rotation2D(s).toRotationMatrix(); -} - -template -static inline Matrix ei_toRotationMatrix(const RotationBase& r) -{ - return r.toRotationMatrix(); -} - -template -static inline const MatrixBase& ei_toRotationMatrix(const MatrixBase& mat) -{ - EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, - YOU_MADE_A_PROGRAMMING_MISTAKE) - return mat; -} - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/Scaling.h b/Eigen/src/Eigen2Support/Geometry/Scaling.h deleted file mode 100644 index b8fa6cd3f..000000000 --- a/Eigen/src/Eigen2Support/Geometry/Scaling.h +++ /dev/null @@ -1,167 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Scaling - * - * \brief Represents a possibly non uniform scaling transformation - * - * \param _Scalar the scalar type, i.e., the type of the coefficients. - * \param _Dim the dimension of the space, can be a compile time value or Dynamic - * - * \note This class is not aimed to be used to store a scaling transformation, - * but rather to make easier the constructions and updates of Transform objects. - * - * \sa class Translation, class Transform - */ -template -class Scaling -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) - /** dimension of the space */ - enum { Dim = _Dim }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - /** corresponding vector type */ - typedef Matrix VectorType; - /** corresponding linear transformation matrix type */ - typedef Matrix LinearMatrixType; - /** corresponding translation type */ - typedef Translation TranslationType; - /** corresponding affine transformation type */ - typedef Transform TransformType; - -protected: - - VectorType m_coeffs; - -public: - - /** Default constructor without initialization. */ - Scaling() {} - /** Constructs and initialize a uniform scaling transformation */ - explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); } - /** 2D only */ - inline Scaling(const Scalar& sx, const Scalar& sy) - { - ei_assert(Dim==2); - m_coeffs.x() = sx; - m_coeffs.y() = sy; - } - /** 3D only */ - inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) - { - ei_assert(Dim==3); - m_coeffs.x() = sx; - m_coeffs.y() = sy; - m_coeffs.z() = sz; - } - /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */ - explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {} - - const VectorType& coeffs() const { return m_coeffs; } - VectorType& coeffs() { return m_coeffs; } - - /** Concatenates two scaling */ - inline Scaling operator* (const Scaling& other) const - { return Scaling(coeffs().cwise() * other.coeffs()); } - - /** Concatenates a scaling and a translation */ - inline TransformType operator* (const TranslationType& t) const; - - /** Concatenates a scaling and an affine transformation */ - inline TransformType operator* (const TransformType& t) const; - - /** Concatenates a scaling and a linear transformation matrix */ - // TODO returns an expression - inline LinearMatrixType operator* (const LinearMatrixType& other) const - { return coeffs().asDiagonal() * other; } - - /** Concatenates a linear transformation matrix and a scaling */ - // TODO returns an expression - friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s) - { return other * s.coeffs().asDiagonal(); } - - template - inline LinearMatrixType operator*(const RotationBase& r) const - { return *this * r.toRotationMatrix(); } - - /** Applies scaling to vector */ - inline VectorType operator* (const VectorType& other) const - { return coeffs().asDiagonal() * other; } - - /** \returns the inverse scaling */ - inline Scaling inverse() const - { return Scaling(coeffs().cwise().inverse()); } - - inline Scaling& operator=(const Scaling& other) - { - m_coeffs = other.m_coeffs; - return *this; - } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit Scaling(const Scaling& other) - { m_coeffs = other.coeffs().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Scaling& other, typename NumTraits::Real prec = precision()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -}; - -/** \addtogroup Geometry_Module */ -//@{ -typedef Scaling Scaling2f; -typedef Scaling Scaling2d; -typedef Scaling Scaling3f; -typedef Scaling Scaling3d; -//@} - -template -inline typename Scaling::TransformType -Scaling::operator* (const TranslationType& t) const -{ - TransformType res; - res.matrix().setZero(); - res.linear().diagonal() = coeffs(); - res.translation() = m_coeffs.cwise() * t.vector(); - res(Dim,Dim) = Scalar(1); - return res; -} - -template -inline typename Scaling::TransformType -Scaling::operator* (const TransformType& t) const -{ - TransformType res = t; - res.prescale(m_coeffs); - return res; -} - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/Transform.h b/Eigen/src/Eigen2Support/Geometry/Transform.h deleted file mode 100644 index fab60b251..000000000 --- a/Eigen/src/Eigen2Support/Geometry/Transform.h +++ /dev/null @@ -1,786 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -// Note that we have to pass Dim and HDim because it is not allowed to use a template -// parameter to define a template specialization. To be more precise, in the following -// specializations, it is not allowed to use Dim+1 instead of HDim. -template< typename Other, - int Dim, - int HDim, - int OtherRows=Other::RowsAtCompileTime, - int OtherCols=Other::ColsAtCompileTime> -struct ei_transform_product_impl; - -/** \geometry_module \ingroup Geometry_Module - * - * \class Transform - * - * \brief Represents an homogeneous transformation in a N dimensional space - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * \param _Dim the dimension of the space - * - * The homography is internally represented and stored as a (Dim+1)^2 matrix which - * is available through the matrix() method. - * - * Conversion methods from/to Qt's QMatrix and QTransform are available if the - * preprocessor token EIGEN_QT_SUPPORT is defined. - * - * \sa class Matrix, class Quaternion - */ -template -class Transform -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) - enum { - Dim = _Dim, ///< space dimension in which the transformation holds - HDim = _Dim+1 ///< size of a respective homogeneous vector - }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - /** type of the matrix used to represent the transformation */ - typedef Matrix MatrixType; - /** type of the matrix used to represent the linear part of the transformation */ - typedef Matrix LinearMatrixType; - /** type of read/write reference to the linear part of the transformation */ - typedef Block LinearPart; - /** type of read/write reference to the linear part of the transformation */ - typedef const Block ConstLinearPart; - /** type of a vector */ - typedef Matrix VectorType; - /** type of a read/write reference to the translation part of the rotation */ - typedef Block TranslationPart; - /** type of a read/write reference to the translation part of the rotation */ - typedef const Block ConstTranslationPart; - /** corresponding translation type */ - typedef Translation TranslationType; - /** corresponding scaling transformation type */ - typedef Scaling ScalingType; - -protected: - - MatrixType m_matrix; - -public: - - /** Default constructor without initialization of the coefficients. */ - inline Transform() { } - - inline Transform(const Transform& other) - { - m_matrix = other.m_matrix; - } - - inline explicit Transform(const TranslationType& t) { *this = t; } - inline explicit Transform(const ScalingType& s) { *this = s; } - template - inline explicit Transform(const RotationBase& r) { *this = r; } - - inline Transform& operator=(const Transform& other) - { m_matrix = other.m_matrix; return *this; } - - template // MSVC 2005 will commit suicide if BigMatrix has a default value - struct construct_from_matrix - { - static inline void run(Transform *transform, const MatrixBase& other) - { - transform->matrix() = other; - } - }; - - template struct construct_from_matrix - { - static inline void run(Transform *transform, const MatrixBase& other) - { - transform->linear() = other; - transform->translation().setZero(); - transform->matrix()(Dim,Dim) = Scalar(1); - transform->matrix().template block<1,Dim>(Dim,0).setZero(); - } - }; - - /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ - template - inline explicit Transform(const MatrixBase& other) - { - construct_from_matrix::run(this, other); - } - - /** Set \c *this from a (Dim+1)^2 matrix. */ - template - inline Transform& operator=(const MatrixBase& other) - { m_matrix = other; return *this; } - - #ifdef EIGEN_QT_SUPPORT - inline Transform(const QMatrix& other); - inline Transform& operator=(const QMatrix& other); - inline QMatrix toQMatrix(void) const; - inline Transform(const QTransform& other); - inline Transform& operator=(const QTransform& other); - inline QTransform toQTransform(void) const; - #endif - - /** shortcut for m_matrix(row,col); - * \sa MatrixBase::operaror(int,int) const */ - inline Scalar operator() (int row, int col) const { return m_matrix(row,col); } - /** shortcut for m_matrix(row,col); - * \sa MatrixBase::operaror(int,int) */ - inline Scalar& operator() (int row, int col) { return m_matrix(row,col); } - - /** \returns a read-only expression of the transformation matrix */ - inline const MatrixType& matrix() const { return m_matrix; } - /** \returns a writable expression of the transformation matrix */ - inline MatrixType& matrix() { return m_matrix; } - - /** \returns a read-only expression of the linear (linear) part of the transformation */ - inline ConstLinearPart linear() const { return m_matrix.template block(0,0); } - /** \returns a writable expression of the linear (linear) part of the transformation */ - inline LinearPart linear() { return m_matrix.template block(0,0); } - - /** \returns a read-only expression of the translation vector of the transformation */ - inline ConstTranslationPart translation() const { return m_matrix.template block(0,Dim); } - /** \returns a writable expression of the translation vector of the transformation */ - inline TranslationPart translation() { return m_matrix.template block(0,Dim); } - - /** \returns an expression of the product between the transform \c *this and a matrix expression \a other - * - * The right hand side \a other might be either: - * \li a vector of size Dim, - * \li an homogeneous vector of size Dim+1, - * \li a transformation matrix of size Dim+1 x Dim+1. - */ - // note: this function is defined here because some compilers cannot find the respective declaration - template - inline const typename ei_transform_product_impl::ResultType - operator * (const MatrixBase &other) const - { return ei_transform_product_impl::run(*this,other.derived()); } - - /** \returns the product expression of a transformation matrix \a a times a transform \a b - * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */ - template - friend inline const typename ProductReturnType::Type - operator * (const MatrixBase &a, const Transform &b) - { return a.derived() * b.matrix(); } - - /** Contatenates two transformations */ - inline const Transform - operator * (const Transform& other) const - { return Transform(m_matrix * other.matrix()); } - - /** \sa MatrixBase::setIdentity() */ - void setIdentity() { m_matrix.setIdentity(); } - static const typename MatrixType::IdentityReturnType Identity() - { - return MatrixType::Identity(); - } - - template - inline Transform& scale(const MatrixBase &other); - - template - inline Transform& prescale(const MatrixBase &other); - - inline Transform& scale(Scalar s); - inline Transform& prescale(Scalar s); - - template - inline Transform& translate(const MatrixBase &other); - - template - inline Transform& pretranslate(const MatrixBase &other); - - template - inline Transform& rotate(const RotationType& rotation); - - template - inline Transform& prerotate(const RotationType& rotation); - - Transform& shear(Scalar sx, Scalar sy); - Transform& preshear(Scalar sx, Scalar sy); - - inline Transform& operator=(const TranslationType& t); - inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } - inline Transform operator*(const TranslationType& t) const; - - inline Transform& operator=(const ScalingType& t); - inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); } - inline Transform operator*(const ScalingType& s) const; - friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t) - { - Transform res = t; - res.matrix().row(Dim) = t.matrix().row(Dim); - res.matrix().template block(0,0) = (mat * t.matrix().template block(0,0)).lazy(); - return res; - } - - template - inline Transform& operator=(const RotationBase& r); - template - inline Transform& operator*=(const RotationBase& r) { return rotate(r.toRotationMatrix()); } - template - inline Transform operator*(const RotationBase& r) const; - - LinearMatrixType rotation() const; - template - void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; - template - void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; - - template - Transform& fromPositionOrientationScale(const MatrixBase &position, - const OrientationType& orientation, const MatrixBase &scale); - - inline const MatrixType inverse(TransformTraits traits = Affine) const; - - /** \returns a const pointer to the column major internal matrix */ - const Scalar* data() const { return m_matrix.data(); } - /** \returns a non-const pointer to the column major internal matrix */ - Scalar* data() { return m_matrix.data(); } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit Transform(const Transform& other) - { m_matrix = other.matrix().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Transform& other, typename NumTraits::Real prec = precision()) const - { return m_matrix.isApprox(other.m_matrix, prec); } - - #ifdef EIGEN_TRANSFORM_PLUGIN - #include EIGEN_TRANSFORM_PLUGIN - #endif - -protected: - -}; - -/** \ingroup Geometry_Module */ -typedef Transform Transform2f; -/** \ingroup Geometry_Module */ -typedef Transform Transform3f; -/** \ingroup Geometry_Module */ -typedef Transform Transform2d; -/** \ingroup Geometry_Module */ -typedef Transform Transform3d; - -/************************** -*** Optional QT support *** -**************************/ - -#ifdef EIGEN_QT_SUPPORT -/** Initialises \c *this from a QMatrix assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform::Transform(const QMatrix& other) -{ - *this = other; -} - -/** Set \c *this from a QMatrix assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform& Transform::operator=(const QMatrix& other) -{ - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - m_matrix << other.m11(), other.m21(), other.dx(), - other.m12(), other.m22(), other.dy(), - 0, 0, 1; - return *this; -} - -/** \returns a QMatrix from \c *this assuming the dimension is 2. - * - * \warning this convertion might loss data if \c *this is not affine - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -QMatrix Transform::toQMatrix(void) const -{ - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), - m_matrix.coeff(0,1), m_matrix.coeff(1,1), - m_matrix.coeff(0,2), m_matrix.coeff(1,2)); -} - -/** Initialises \c *this from a QTransform assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform::Transform(const QTransform& other) -{ - *this = other; -} - -/** Set \c *this from a QTransform assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform& Transform::operator=(const QTransform& other) -{ - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - m_matrix << other.m11(), other.m21(), other.dx(), - other.m12(), other.m22(), other.dy(), - other.m13(), other.m23(), other.m33(); - return *this; -} - -/** \returns a QTransform from \c *this assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -QTransform Transform::toQTransform(void) const -{ - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), - m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), - m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); -} -#endif - -/********************* -*** Procedural API *** -*********************/ - -/** Applies on the right the non uniform scale transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \sa prescale() - */ -template -template -Transform& -Transform::scale(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - linear() = (linear() * other.asDiagonal()).lazy(); - return *this; -} - -/** Applies on the right a uniform scale of a factor \a c to \c *this - * and returns a reference to \c *this. - * \sa prescale(Scalar) - */ -template -inline Transform& Transform::scale(Scalar s) -{ - linear() *= s; - return *this; -} - -/** Applies on the left the non uniform scale transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \sa scale() - */ -template -template -Transform& -Transform::prescale(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - m_matrix.template block(0,0) = (other.asDiagonal() * m_matrix.template block(0,0)).lazy(); - return *this; -} - -/** Applies on the left a uniform scale of a factor \a c to \c *this - * and returns a reference to \c *this. - * \sa scale(Scalar) - */ -template -inline Transform& Transform::prescale(Scalar s) -{ - m_matrix.template corner(TopLeft) *= s; - return *this; -} - -/** Applies on the right the translation matrix represented by the vector \a other - * to \c *this and returns a reference to \c *this. - * \sa pretranslate() - */ -template -template -Transform& -Transform::translate(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - translation() += linear() * other; - return *this; -} - -/** Applies on the left the translation matrix represented by the vector \a other - * to \c *this and returns a reference to \c *this. - * \sa translate() - */ -template -template -Transform& -Transform::pretranslate(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - translation() += other; - return *this; -} - -/** Applies on the right the rotation represented by the rotation \a rotation - * to \c *this and returns a reference to \c *this. - * - * The template parameter \a RotationType is the type of the rotation which - * must be known by ei_toRotationMatrix<>. - * - * Natively supported types includes: - * - any scalar (2D), - * - a Dim x Dim matrix expression, - * - a Quaternion (3D), - * - a AngleAxis (3D) - * - * This mechanism is easily extendable to support user types such as Euler angles, - * or a pair of Quaternion for 4D rotations. - * - * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) - */ -template -template -Transform& -Transform::rotate(const RotationType& rotation) -{ - linear() *= ei_toRotationMatrix(rotation); - return *this; -} - -/** Applies on the left the rotation represented by the rotation \a rotation - * to \c *this and returns a reference to \c *this. - * - * See rotate() for further details. - * - * \sa rotate() - */ -template -template -Transform& -Transform::prerotate(const RotationType& rotation) -{ - m_matrix.template block(0,0) = ei_toRotationMatrix(rotation) - * m_matrix.template block(0,0); - return *this; -} - -/** Applies on the right the shear transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \warning 2D only. - * \sa preshear() - */ -template -Transform& -Transform::shear(Scalar sx, Scalar sy) -{ - EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - VectorType tmp = linear().col(0)*sy + linear().col(1); - linear() << linear().col(0) + linear().col(1)*sx, tmp; - return *this; -} - -/** Applies on the left the shear transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \warning 2D only. - * \sa shear() - */ -template -Transform& -Transform::preshear(Scalar sx, Scalar sy) -{ - EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - m_matrix.template block(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block(0,0); - return *this; -} - -/****************************************************** -*** Scaling, Translation and Rotation compatibility *** -******************************************************/ - -template -inline Transform& Transform::operator=(const TranslationType& t) -{ - linear().setIdentity(); - translation() = t.vector(); - m_matrix.template block<1,Dim>(Dim,0).setZero(); - m_matrix(Dim,Dim) = Scalar(1); - return *this; -} - -template -inline Transform Transform::operator*(const TranslationType& t) const -{ - Transform res = *this; - res.translate(t.vector()); - return res; -} - -template -inline Transform& Transform::operator=(const ScalingType& s) -{ - m_matrix.setZero(); - linear().diagonal() = s.coeffs(); - m_matrix.coeffRef(Dim,Dim) = Scalar(1); - return *this; -} - -template -inline Transform Transform::operator*(const ScalingType& s) const -{ - Transform res = *this; - res.scale(s.coeffs()); - return res; -} - -template -template -inline Transform& Transform::operator=(const RotationBase& r) -{ - linear() = ei_toRotationMatrix(r); - translation().setZero(); - m_matrix.template block<1,Dim>(Dim,0).setZero(); - m_matrix.coeffRef(Dim,Dim) = Scalar(1); - return *this; -} - -template -template -inline Transform Transform::operator*(const RotationBase& r) const -{ - Transform res = *this; - res.rotate(r.derived()); - return res; -} - -/************************ -*** Special functions *** -************************/ - -/** \returns the rotation part of the transformation - * \nonstableyet - * - * \svd_module - * - * \sa computeRotationScaling(), computeScalingRotation(), class SVD - */ -template -typename Transform::LinearMatrixType -Transform::rotation() const -{ - LinearMatrixType result; - computeRotationScaling(&result, (LinearMatrixType*)0); - return result; -} - - -/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being - * not necessarily positive. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * \nonstableyet - * - * \svd_module - * - * \sa computeScalingRotation(), rotation(), class SVD - */ -template -template -void Transform::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const -{ - JacobiSVD svd(linear(), ComputeFullU|ComputeFullV); - Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 - Matrix sv(svd.singularValues()); - sv.coeffRef(0) *= x; - if(scaling) - { - scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); - } - if(rotation) - { - LinearMatrixType m(svd.matrixU()); - m.col(0) /= x; - rotation->noalias() = m * svd.matrixV().adjoint(); - } -} - -/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being - * not necessarily positive. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * \nonstableyet - * - * \svd_module - * - * \sa computeRotationScaling(), rotation(), class SVD - */ -template -template -void Transform::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const -{ - JacobiSVD svd(linear(), ComputeFullU|ComputeFullV); - Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 - Matrix sv(svd.singularValues()); - sv.coeffRef(0) *= x; - if(scaling) - { - scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); - } - if(rotation) - { - LinearMatrixType m(svd.matrixU()); - m.col(0) /= x; - rotation->noalias() = m * svd.matrixV().adjoint(); - } -} - -/** Convenient method to set \c *this from a position, orientation and scale - * of a 3D object. - */ -template -template -Transform& -Transform::fromPositionOrientationScale(const MatrixBase &position, - const OrientationType& orientation, const MatrixBase &scale) -{ - linear() = ei_toRotationMatrix(orientation); - linear() *= scale.asDiagonal(); - translation() = position; - m_matrix.template block<1,Dim>(Dim,0).setZero(); - m_matrix(Dim,Dim) = Scalar(1); - return *this; -} - -/** \nonstableyet - * - * \returns the inverse transformation matrix according to some given knowledge - * on \c *this. - * - * \param traits allows to optimize the inversion process when the transformion - * is known to be not a general transformation. The possible values are: - * - Projective if the transformation is not necessarily affine, i.e., if the - * last row is not guaranteed to be [0 ... 0 1] - * - Affine is the default, the last row is assumed to be [0 ... 0 1] - * - Isometry if the transformation is only a concatenations of translations - * and rotations. - * - * \warning unless \a traits is always set to NoShear or NoScaling, this function - * requires the generic inverse method of MatrixBase defined in the LU module. If - * you forget to include this module, then you will get hard to debug linking errors. - * - * \sa MatrixBase::inverse() - */ -template -inline const typename Transform::MatrixType -Transform::inverse(TransformTraits traits) const -{ - if (traits == Projective) - { - return m_matrix.inverse(); - } - else - { - MatrixType res; - if (traits == Affine) - { - res.template corner(TopLeft) = linear().inverse(); - } - else if (traits == Isometry) - { - res.template corner(TopLeft) = linear().transpose(); - } - else - { - ei_assert("invalid traits value in Transform::inverse()"); - } - // translation and remaining parts - res.template corner(TopRight) = - res.template corner(TopLeft) * translation(); - res.template corner<1,Dim>(BottomLeft).setZero(); - res.coeffRef(Dim,Dim) = Scalar(1); - return res; - } -} - -/***************************************************** -*** Specializations of operator* with a MatrixBase *** -*****************************************************/ - -template -struct ei_transform_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef typename ProductReturnType::Type ResultType; - static ResultType run(const TransformType& tr, const Other& other) - { return tr.matrix() * other; } -}; - -template -struct ei_transform_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef TransformType ResultType; - static ResultType run(const TransformType& tr, const Other& other) - { - TransformType res; - res.translation() = tr.translation(); - res.matrix().row(Dim) = tr.matrix().row(Dim); - res.linear() = (tr.linear() * other).lazy(); - return res; - } -}; - -template -struct ei_transform_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef typename ProductReturnType::Type ResultType; - static ResultType run(const TransformType& tr, const Other& other) - { return tr.matrix() * other; } -}; - -template -struct ei_transform_product_impl -{ - typedef typename Other::Scalar Scalar; - typedef Transform TransformType; - typedef Matrix ResultType; - static ResultType run(const TransformType& tr, const Other& other) - { return ((tr.linear() * other) + tr.translation()) - * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); } -}; - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/Geometry/Translation.h b/Eigen/src/Eigen2Support/Geometry/Translation.h deleted file mode 100644 index 2b9859f6f..000000000 --- a/Eigen/src/Eigen2Support/Geometry/Translation.h +++ /dev/null @@ -1,184 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Translation - * - * \brief Represents a translation transformation - * - * \param _Scalar the scalar type, i.e., the type of the coefficients. - * \param _Dim the dimension of the space, can be a compile time value or Dynamic - * - * \note This class is not aimed to be used to store a translation transformation, - * but rather to make easier the constructions and updates of Transform objects. - * - * \sa class Scaling, class Transform - */ -template -class Translation -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) - /** dimension of the space */ - enum { Dim = _Dim }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - /** corresponding vector type */ - typedef Matrix VectorType; - /** corresponding linear transformation matrix type */ - typedef Matrix LinearMatrixType; - /** corresponding scaling transformation type */ - typedef Scaling ScalingType; - /** corresponding affine transformation type */ - typedef Transform TransformType; - -protected: - - VectorType m_coeffs; - -public: - - /** Default constructor without initialization. */ - Translation() {} - /** */ - inline Translation(const Scalar& sx, const Scalar& sy) - { - ei_assert(Dim==2); - m_coeffs.x() = sx; - m_coeffs.y() = sy; - } - /** */ - inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) - { - ei_assert(Dim==3); - m_coeffs.x() = sx; - m_coeffs.y() = sy; - m_coeffs.z() = sz; - } - /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */ - explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} - - const VectorType& vector() const { return m_coeffs; } - VectorType& vector() { return m_coeffs; } - - /** Concatenates two translation */ - inline Translation operator* (const Translation& other) const - { return Translation(m_coeffs + other.m_coeffs); } - - /** Concatenates a translation and a scaling */ - inline TransformType operator* (const ScalingType& other) const; - - /** Concatenates a translation and a linear transformation */ - inline TransformType operator* (const LinearMatrixType& linear) const; - - template - inline TransformType operator*(const RotationBase& r) const - { return *this * r.toRotationMatrix(); } - - /** Concatenates a linear transformation and a translation */ - // its a nightmare to define a templated friend function outside its declaration - friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t) - { - TransformType res; - res.matrix().setZero(); - res.linear() = linear; - res.translation() = linear * t.m_coeffs; - res.matrix().row(Dim).setZero(); - res(Dim,Dim) = Scalar(1); - return res; - } - - /** Concatenates a translation and an affine transformation */ - inline TransformType operator* (const TransformType& t) const; - - /** Applies translation to vector */ - inline VectorType operator* (const VectorType& other) const - { return m_coeffs + other; } - - /** \returns the inverse translation (opposite) */ - Translation inverse() const { return Translation(-m_coeffs); } - - Translation& operator=(const Translation& other) - { - m_coeffs = other.m_coeffs; - return *this; - } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit Translation(const Translation& other) - { m_coeffs = other.vector().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Translation& other, typename NumTraits::Real prec = precision()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -}; - -/** \addtogroup Geometry_Module */ -//@{ -typedef Translation Translation2f; -typedef Translation Translation2d; -typedef Translation Translation3f; -typedef Translation Translation3d; -//@} - - -template -inline typename Translation::TransformType -Translation::operator* (const ScalingType& other) const -{ - TransformType res; - res.matrix().setZero(); - res.linear().diagonal() = other.coeffs(); - res.translation() = m_coeffs; - res(Dim,Dim) = Scalar(1); - return res; -} - -template -inline typename Translation::TransformType -Translation::operator* (const LinearMatrixType& linear) const -{ - TransformType res; - res.matrix().setZero(); - res.linear() = linear; - res.translation() = m_coeffs; - res.matrix().row(Dim).setZero(); - res(Dim,Dim) = Scalar(1); - return res; -} - -template -inline typename Translation::TransformType -Translation::operator* (const TransformType& t) const -{ - TransformType res = t; - res.pretranslate(m_coeffs); - return res; -} - -} // end namespace Eigen diff --git a/Eigen/src/Eigen2Support/LU.h b/Eigen/src/Eigen2Support/LU.h deleted file mode 100644 index 49f19ad76..000000000 --- a/Eigen/src/Eigen2Support/LU.h +++ /dev/null @@ -1,120 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_LU_H -#define EIGEN2_LU_H - -namespace Eigen { - -template -class LU : public FullPivLU -{ - public: - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix IntRowVectorType; - typedef Matrix IntColVectorType; - typedef Matrix RowVectorType; - typedef Matrix ColVectorType; - - typedef Matrix KernelResultType; - - typedef Matrix ImageResultType; - - typedef FullPivLU Base; - - template - explicit LU(const T& t) : Base(t), m_originalMatrix(t) {} - - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = static_cast(this)->solve(b); - return true; - } - - template - inline void computeInverse(ResultType *result) const - { - solve(MatrixType::Identity(this->rows(), this->cols()), result); - } - - template - void computeKernel(KernelMatrixType *result) const - { - *result = static_cast(this)->kernel(); - } - - template - void computeImage(ImageMatrixType *result) const - { - *result = static_cast(this)->image(m_originalMatrix); - } - - const ImageResultType image() const - { - return static_cast(this)->image(m_originalMatrix); - } - - const MatrixType& m_originalMatrix; -}; - -#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS -/** \lu_module - * - * Synonym of partialPivLu(). - * - * \return the partial-pivoting LU decomposition of \c *this. - * - * \sa class PartialPivLU - */ -template -inline const LU::PlainObject> -MatrixBase::lu() const -{ - return LU(eval()); -} -#endif - -#ifdef EIGEN2_SUPPORT -/** \lu_module - * - * Synonym of partialPivLu(). - * - * \return the partial-pivoting LU decomposition of \c *this. - * - * \sa class PartialPivLU - */ -template -inline const LU::PlainObject> -MatrixBase::eigen2_lu() const -{ - return LU(eval()); -} -#endif - -} // end namespace Eigen - -#endif // EIGEN2_LU_H diff --git a/Eigen/src/Eigen2Support/Lazy.h b/Eigen/src/Eigen2Support/Lazy.h deleted file mode 100644 index 593fc78e6..000000000 --- a/Eigen/src/Eigen2Support/Lazy.h +++ /dev/null @@ -1,71 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_LAZY_H -#define EIGEN_LAZY_H - -namespace Eigen { - -/** \deprecated it is only used by lazy() which is deprecated - * - * \returns an expression of *this with added flags - * - * Example: \include MatrixBase_marked.cpp - * Output: \verbinclude MatrixBase_marked.out - * - * \sa class Flagged, extract(), part() - */ -template -template -inline const Flagged -MatrixBase::marked() const -{ - return derived(); -} - -/** \deprecated use MatrixBase::noalias() - * - * \returns an expression of *this with the EvalBeforeAssigningBit flag removed. - * - * Example: \include MatrixBase_lazy.cpp - * Output: \verbinclude MatrixBase_lazy.out - * - * \sa class Flagged, marked() - */ -template -inline const Flagged -MatrixBase::lazy() const -{ - return derived(); -} - - -/** \internal - * Overloaded to perform an efficient C += (A*B).lazy() */ -template -template -Derived& MatrixBase::operator+=(const Flagged, 0, - EvalBeforeAssigningBit>& other) -{ - other._expression().derived().addTo(derived()); return derived(); -} - -/** \internal - * Overloaded to perform an efficient C -= (A*B).lazy() */ -template -template -Derived& MatrixBase::operator-=(const Flagged, 0, - EvalBeforeAssigningBit>& other) -{ - other._expression().derived().subTo(derived()); return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_LAZY_H diff --git a/Eigen/src/Eigen2Support/LeastSquares.h b/Eigen/src/Eigen2Support/LeastSquares.h deleted file mode 100644 index 0e6fdb488..000000000 --- a/Eigen/src/Eigen2Support/LeastSquares.h +++ /dev/null @@ -1,170 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_LEASTSQUARES_H -#define EIGEN2_LEASTSQUARES_H - -namespace Eigen { - -/** \ingroup LeastSquares_Module - * - * \leastsquares_module - * - * For a set of points, this function tries to express - * one of the coords as a linear (affine) function of the other coords. - * - * This is best explained by an example. This function works in full - * generality, for points in a space of arbitrary dimension, and also over - * the complex numbers, but for this example we will work in dimension 3 - * over the real numbers (doubles). - * - * So let us work with the following set of 5 points given by their - * \f$(x,y,z)\f$ coordinates: - * @code - Vector3d points[5]; - points[0] = Vector3d( 3.02, 6.89, -4.32 ); - points[1] = Vector3d( 2.01, 5.39, -3.79 ); - points[2] = Vector3d( 2.41, 6.01, -4.01 ); - points[3] = Vector3d( 2.09, 5.55, -3.86 ); - points[4] = Vector3d( 2.58, 6.32, -4.10 ); - * @endcode - * Suppose that we want to express the second coordinate (\f$y\f$) as a linear - * expression in \f$x\f$ and \f$z\f$, that is, - * \f[ y=ax+bz+c \f] - * for some constants \f$a,b,c\f$. Thus, we want to find the best possible - * constants \f$a,b,c\f$ so that the plane of equation \f$y=ax+bz+c\f$ fits - * best the five above points. To do that, call this function as follows: - * @code - Vector3d coeffs; // will store the coefficients a, b, c - linearRegression( - 5, - &points, - &coeffs, - 1 // the coord to express as a function of - // the other ones. 0 means x, 1 means y, 2 means z. - ); - * @endcode - * Now the vector \a coeffs is approximately - * \f$( 0.495 , -1.927 , -2.906 )\f$. - * Thus, we get \f$a=0.495, b = -1.927, c = -2.906\f$. Let us check for - * instance how near points[0] is from the plane of equation \f$y=ax+bz+c\f$. - * Looking at the coords of points[0], we see that: - * \f[ax+bz+c = 0.495 * 3.02 + (-1.927) * (-4.32) + (-2.906) = 6.91.\f] - * On the other hand, we have \f$y=6.89\f$. We see that the values - * \f$6.91\f$ and \f$6.89\f$ - * are near, so points[0] is very near the plane of equation \f$y=ax+bz+c\f$. - * - * Let's now describe precisely the parameters: - * @param numPoints the number of points - * @param points the array of pointers to the points on which to perform the linear regression - * @param result pointer to the vector in which to store the result. - This vector must be of the same type and size as the - data points. The meaning of its coords is as follows. - For brevity, let \f$n=Size\f$, - \f$r_i=result[i]\f$, - and \f$f=funcOfOthers\f$. Denote by - \f$x_0,\ldots,x_{n-1}\f$ - the n coordinates in the n-dimensional space. - Then the resulting equation is: - \f[ x_f = r_0 x_0 + \cdots + r_{f-1}x_{f-1} - + r_{f+1}x_{f+1} + \cdots + r_{n-1}x_{n-1} + r_n. \f] - * @param funcOfOthers Determines which coord to express as a function of the - others. Coords are numbered starting from 0, so that a - value of 0 means \f$x\f$, 1 means \f$y\f$, - 2 means \f$z\f$, ... - * - * \sa fitHyperplane() - */ -template -void linearRegression(int numPoints, - VectorType **points, - VectorType *result, - int funcOfOthers ) -{ - typedef typename VectorType::Scalar Scalar; - typedef Hyperplane HyperplaneType; - const int size = points[0]->size(); - result->resize(size); - HyperplaneType h(size); - fitHyperplane(numPoints, points, &h); - for(int i = 0; i < funcOfOthers; i++) - result->coeffRef(i) = - h.coeffs()[i] / h.coeffs()[funcOfOthers]; - for(int i = funcOfOthers; i < size; i++) - result->coeffRef(i) = - h.coeffs()[i+1] / h.coeffs()[funcOfOthers]; -} - -/** \ingroup LeastSquares_Module - * - * \leastsquares_module - * - * This function is quite similar to linearRegression(), so we refer to the - * documentation of this function and only list here the differences. - * - * The main difference from linearRegression() is that this function doesn't - * take a \a funcOfOthers argument. Instead, it finds a general equation - * of the form - * \f[ r_0 x_0 + \cdots + r_{n-1}x_{n-1} + r_n = 0, \f] - * where \f$n=Size\f$, \f$r_i=retCoefficients[i]\f$, and we denote by - * \f$x_0,\ldots,x_{n-1}\f$ the n coordinates in the n-dimensional space. - * - * Thus, the vector \a retCoefficients has size \f$n+1\f$, which is another - * difference from linearRegression(). - * - * In practice, this function performs an hyper-plane fit in a total least square sense - * via the following steps: - * 1 - center the data to the mean - * 2 - compute the covariance matrix - * 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix - * The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance - * of the solution. This value is optionally returned in \a soundness. - * - * \sa linearRegression() - */ -template -void fitHyperplane(int numPoints, - VectorType **points, - HyperplaneType *result, - typename NumTraits::Real* soundness = 0) -{ - typedef typename VectorType::Scalar Scalar; - typedef Matrix CovMatrixType; - EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType) - ei_assert(numPoints >= 1); - int size = points[0]->size(); - ei_assert(size+1 == result->coeffs().size()); - - // compute the mean of the data - VectorType mean = VectorType::Zero(size); - for(int i = 0; i < numPoints; ++i) - mean += *(points[i]); - mean /= numPoints; - - // compute the covariance matrix - CovMatrixType covMat = CovMatrixType::Zero(size, size); - VectorType remean = VectorType::Zero(size); - for(int i = 0; i < numPoints; ++i) - { - VectorType diff = (*(points[i]) - mean).conjugate(); - covMat += diff * diff.adjoint(); - } - - // now we just have to pick the eigen vector with smallest eigen value - SelfAdjointEigenSolver eig(covMat); - result->normal() = eig.eigenvectors().col(0); - if (soundness) - *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1); - - // let's compute the constant coefficient such that the - // plane pass trough the mean point: - result->offset() = - (result->normal().cwise()* mean).sum(); -} - -} // end namespace Eigen - -#endif // EIGEN2_LEASTSQUARES_H diff --git a/Eigen/src/Eigen2Support/Macros.h b/Eigen/src/Eigen2Support/Macros.h deleted file mode 100644 index 351c32afb..000000000 --- a/Eigen/src/Eigen2Support/Macros.h +++ /dev/null @@ -1,20 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_MACROS_H -#define EIGEN2_MACROS_H - -#define ei_assert eigen_assert -#define ei_internal_assert eigen_internal_assert - -#define EIGEN_ALIGN_128 EIGEN_ALIGN16 - -#define EIGEN_ARCH_WANTS_ALIGNMENT EIGEN_ALIGN_STATICALLY - -#endif // EIGEN2_MACROS_H diff --git a/Eigen/src/Eigen2Support/MathFunctions.h b/Eigen/src/Eigen2Support/MathFunctions.h deleted file mode 100644 index 3544af253..000000000 --- a/Eigen/src/Eigen2Support/MathFunctions.h +++ /dev/null @@ -1,57 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_MATH_FUNCTIONS_H -#define EIGEN2_MATH_FUNCTIONS_H - -namespace Eigen { - -template inline typename NumTraits::Real ei_real(const T& x) { return numext::real(x); } -template inline typename NumTraits::Real ei_imag(const T& x) { return numext::imag(x); } -template inline T ei_conj(const T& x) { return numext::conj(x); } -template inline typename NumTraits::Real ei_abs (const T& x) { using std::abs; return abs(x); } -template inline typename NumTraits::Real ei_abs2(const T& x) { return numext::abs2(x); } -template inline T ei_sqrt(const T& x) { using std::sqrt; return sqrt(x); } -template inline T ei_exp (const T& x) { using std::exp; return exp(x); } -template inline T ei_log (const T& x) { using std::log; return log(x); } -template inline T ei_sin (const T& x) { using std::sin; return sin(x); } -template inline T ei_cos (const T& x) { using std::cos; return cos(x); } -template inline T ei_atan2(const T& x,const T& y) { using std::atan2; return atan2(x,y); } -template inline T ei_pow (const T& x,const T& y) { return numext::pow(x,y); } -template inline T ei_random () { return internal::random(); } -template inline T ei_random (const T& x, const T& y) { return internal::random(x, y); } - -template inline T precision () { return NumTraits::dummy_precision(); } -template inline T machine_epsilon () { return NumTraits::epsilon(); } - - -template -inline bool ei_isMuchSmallerThan(const Scalar& x, const OtherScalar& y, - typename NumTraits::Real precision = NumTraits::dummy_precision()) -{ - return internal::isMuchSmallerThan(x, y, precision); -} - -template -inline bool ei_isApprox(const Scalar& x, const Scalar& y, - typename NumTraits::Real precision = NumTraits::dummy_precision()) -{ - return internal::isApprox(x, y, precision); -} - -template -inline bool ei_isApproxOrLessThan(const Scalar& x, const Scalar& y, - typename NumTraits::Real precision = NumTraits::dummy_precision()) -{ - return internal::isApproxOrLessThan(x, y, precision); -} - -} // end namespace Eigen - -#endif // EIGEN2_MATH_FUNCTIONS_H diff --git a/Eigen/src/Eigen2Support/Memory.h b/Eigen/src/Eigen2Support/Memory.h deleted file mode 100644 index f86372b6b..000000000 --- a/Eigen/src/Eigen2Support/Memory.h +++ /dev/null @@ -1,45 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_MEMORY_H -#define EIGEN2_MEMORY_H - -namespace Eigen { - -inline void* ei_aligned_malloc(size_t size) { return internal::aligned_malloc(size); } -inline void ei_aligned_free(void *ptr) { internal::aligned_free(ptr); } -inline void* ei_aligned_realloc(void *ptr, size_t new_size, size_t old_size) { return internal::aligned_realloc(ptr, new_size, old_size); } -inline void* ei_handmade_aligned_malloc(size_t size) { return internal::handmade_aligned_malloc(size); } -inline void ei_handmade_aligned_free(void *ptr) { internal::handmade_aligned_free(ptr); } - -template inline void* ei_conditional_aligned_malloc(size_t size) -{ - return internal::conditional_aligned_malloc(size); -} -template inline void ei_conditional_aligned_free(void *ptr) -{ - internal::conditional_aligned_free(ptr); -} -template inline void* ei_conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size) -{ - return internal::conditional_aligned_realloc(ptr, new_size, old_size); -} - -template inline T* ei_aligned_new(size_t size) -{ - return internal::aligned_new(size); -} -template inline void ei_aligned_delete(T *ptr, size_t size) -{ - return internal::aligned_delete(ptr, size); -} - -} // end namespace Eigen - -#endif // EIGEN2_MACROS_H diff --git a/Eigen/src/Eigen2Support/Meta.h b/Eigen/src/Eigen2Support/Meta.h deleted file mode 100644 index fa37cfc96..000000000 --- a/Eigen/src/Eigen2Support/Meta.h +++ /dev/null @@ -1,75 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_META_H -#define EIGEN2_META_H - -namespace Eigen { - -template -struct ei_traits : internal::traits -{}; - -struct ei_meta_true { enum { ret = 1 }; }; -struct ei_meta_false { enum { ret = 0 }; }; - -template -struct ei_meta_if { typedef Then ret; }; - -template -struct ei_meta_if { typedef Else ret; }; - -template struct ei_is_same_type { enum { ret = 0 }; }; -template struct ei_is_same_type { enum { ret = 1 }; }; - -template struct ei_unref { typedef T type; }; -template struct ei_unref { typedef T type; }; - -template struct ei_unpointer { typedef T type; }; -template struct ei_unpointer { typedef T type; }; -template struct ei_unpointer { typedef T type; }; - -template struct ei_unconst { typedef T type; }; -template struct ei_unconst { typedef T type; }; -template struct ei_unconst { typedef T & type; }; -template struct ei_unconst { typedef T * type; }; - -template struct ei_cleantype { typedef T type; }; -template struct ei_cleantype { typedef typename ei_cleantype::type type; }; -template struct ei_cleantype { typedef typename ei_cleantype::type type; }; -template struct ei_cleantype { typedef typename ei_cleantype::type type; }; -template struct ei_cleantype { typedef typename ei_cleantype::type type; }; -template struct ei_cleantype { typedef typename ei_cleantype::type type; }; - -/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. - * Usage example: \code ei_meta_sqrt<1023>::ret \endcode - */ -template Y))) > - // use ?: instead of || just to shut up a stupid gcc 4.3 warning -class ei_meta_sqrt -{ - enum { - MidX = (InfX+SupX)/2, - TakeInf = MidX*MidX > Y ? 1 : 0, - NewInf = int(TakeInf) ? InfX : int(MidX), - NewSup = int(TakeInf) ? int(MidX) : SupX - }; - public: - enum { ret = ei_meta_sqrt::ret }; -}; - -template -class ei_meta_sqrt { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; - -} // end namespace Eigen - -#endif // EIGEN2_META_H diff --git a/Eigen/src/Eigen2Support/Minor.h b/Eigen/src/Eigen2Support/Minor.h deleted file mode 100644 index 4cded5734..000000000 --- a/Eigen/src/Eigen2Support/Minor.h +++ /dev/null @@ -1,117 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MINOR_H -#define EIGEN_MINOR_H - -namespace Eigen { - -/** - * \class Minor - * - * \brief Expression of a minor - * - * \param MatrixType the type of the object in which we are taking a minor - * - * This class represents an expression of a minor. It is the return - * type of MatrixBase::minor() and most of the time this is the only way it - * is used. - * - * \sa MatrixBase::minor() - */ - -namespace internal { -template -struct traits > - : traits -{ - typedef typename nested::type MatrixTypeNested; - typedef typename remove_reference::type _MatrixTypeNested; - typedef typename MatrixType::StorageKind StorageKind; - enum { - RowsAtCompileTime = (MatrixType::RowsAtCompileTime != Dynamic) ? - int(MatrixType::RowsAtCompileTime) - 1 : Dynamic, - ColsAtCompileTime = (MatrixType::ColsAtCompileTime != Dynamic) ? - int(MatrixType::ColsAtCompileTime) - 1 : Dynamic, - MaxRowsAtCompileTime = (MatrixType::MaxRowsAtCompileTime != Dynamic) ? - int(MatrixType::MaxRowsAtCompileTime) - 1 : Dynamic, - MaxColsAtCompileTime = (MatrixType::MaxColsAtCompileTime != Dynamic) ? - int(MatrixType::MaxColsAtCompileTime) - 1 : Dynamic, - Flags = _MatrixTypeNested::Flags & (HereditaryBits | LvalueBit), - CoeffReadCost = _MatrixTypeNested::CoeffReadCost // minor is used typically on tiny matrices, - // where loops are unrolled and the 'if' evaluates at compile time - }; -}; -} - -template class Minor - : public MatrixBase > -{ - public: - - typedef MatrixBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Minor) - - inline Minor(const MatrixType& matrix, - Index row, Index col) - : m_matrix(matrix), m_row(row), m_col(col) - { - eigen_assert(row >= 0 && row < matrix.rows() - && col >= 0 && col < matrix.cols()); - } - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Minor) - - inline Index rows() const { return m_matrix.rows() - 1; } - inline Index cols() const { return m_matrix.cols() - 1; } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_matrix.const_cast_derived().coeffRef(row + (row >= m_row), col + (col >= m_col)); - } - - inline const Scalar coeff(Index row, Index col) const - { - return m_matrix.coeff(row + (row >= m_row), col + (col >= m_col)); - } - - protected: - const typename MatrixType::Nested m_matrix; - const Index m_row, m_col; -}; - -/** - * \return an expression of the (\a row, \a col)-minor of *this, - * i.e. an expression constructed from *this by removing the specified - * row and column. - * - * Example: \include MatrixBase_minor.cpp - * Output: \verbinclude MatrixBase_minor.out - * - * \sa class Minor - */ -template -inline Minor -MatrixBase::minor(Index row, Index col) -{ - return Minor(derived(), row, col); -} - -/** - * This is the const version of minor(). */ -template -inline const Minor -MatrixBase::minor(Index row, Index col) const -{ - return Minor(derived(), row, col); -} - -} // end namespace Eigen - -#endif // EIGEN_MINOR_H diff --git a/Eigen/src/Eigen2Support/QR.h b/Eigen/src/Eigen2Support/QR.h deleted file mode 100644 index 2042c9851..000000000 --- a/Eigen/src/Eigen2Support/QR.h +++ /dev/null @@ -1,67 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2011 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_QR_H -#define EIGEN2_QR_H - -namespace Eigen { - -template -class QR : public HouseholderQR -{ - public: - - typedef HouseholderQR Base; - typedef Block MatrixRBlockType; - - QR() : Base() {} - - template - explicit QR(const T& t) : Base(t) {} - - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = static_cast(this)->solve(b); - return true; - } - - MatrixType matrixQ(void) const { - MatrixType ret = MatrixType::Identity(this->rows(), this->cols()); - ret = this->householderQ() * ret; - return ret; - } - - bool isFullRank() const { - return true; - } - - const TriangularView - matrixR(void) const - { - int cols = this->cols(); - return MatrixRBlockType(this->matrixQR(), 0, 0, cols, cols).template triangularView(); - } -}; - -/** \return the QR decomposition of \c *this. - * - * \sa class QR - */ -template -const QR::PlainObject> -MatrixBase::qr() const -{ - return QR(eval()); -} - -} // end namespace Eigen - -#endif // EIGEN2_QR_H diff --git a/Eigen/src/Eigen2Support/SVD.h b/Eigen/src/Eigen2Support/SVD.h deleted file mode 100644 index 3d03d2288..000000000 --- a/Eigen/src/Eigen2Support/SVD.h +++ /dev/null @@ -1,637 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_SVD_H -#define EIGEN2_SVD_H - -namespace Eigen { - -/** \ingroup SVD_Module - * \nonstableyet - * - * \class SVD - * - * \brief Standard SVD decomposition of a matrix and associated features - * - * \param MatrixType the type of the matrix of which we are computing the SVD decomposition - * - * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N - * with \c M \>= \c N. - * - * - * \sa MatrixBase::SVD() - */ -template class SVD -{ - private: - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - - enum { - PacketSize = internal::packet_traits::size, - AlignmentMask = int(PacketSize)-1, - MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime) - }; - - typedef Matrix ColVector; - typedef Matrix RowVector; - - typedef Matrix MatrixUType; - typedef Matrix MatrixVType; - typedef Matrix SingularValuesType; - - public: - - SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7 - - SVD(const MatrixType& matrix) - : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())), - m_matV(matrix.cols(),matrix.cols()), - m_sigma((std::min)(matrix.rows(),matrix.cols())) - { - compute(matrix); - } - - template - bool solve(const MatrixBase &b, ResultType* result) const; - - const MatrixUType& matrixU() const { return m_matU; } - const SingularValuesType& singularValues() const { return m_sigma; } - const MatrixVType& matrixV() const { return m_matV; } - - void compute(const MatrixType& matrix); - SVD& sort(); - - template - void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const; - template - void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const; - template - void computeRotationScaling(RotationType *unitary, ScalingType *positive) const; - template - void computeScalingRotation(ScalingType *positive, RotationType *unitary) const; - - protected: - /** \internal */ - MatrixUType m_matU; - /** \internal */ - MatrixVType m_matV; - /** \internal */ - SingularValuesType m_sigma; -}; - -/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix - * - * \note this code has been adapted from JAMA (public domain) - */ -template -void SVD::compute(const MatrixType& matrix) -{ - const int m = matrix.rows(); - const int n = matrix.cols(); - const int nu = (std::min)(m,n); - ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!"); - ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices"); - - m_matU.resize(m, nu); - m_matU.setZero(); - m_sigma.resize((std::min)(m,n)); - m_matV.resize(n,n); - - RowVector e(n); - ColVector work(m); - MatrixType matA(matrix); - const bool wantu = true; - const bool wantv = true; - int i=0, j=0, k=0; - - // Reduce A to bidiagonal form, storing the diagonal elements - // in s and the super-diagonal elements in e. - int nct = (std::min)(m-1,n); - int nrt = (std::max)(0,(std::min)(n-2,m)); - for (k = 0; k < (std::max)(nct,nrt); ++k) - { - if (k < nct) - { - // Compute the transformation for the k-th column and - // place the k-th diagonal in m_sigma[k]. - m_sigma[k] = matA.col(k).end(m-k).norm(); - if (m_sigma[k] != 0.0) // FIXME - { - if (matA(k,k) < 0.0) - m_sigma[k] = -m_sigma[k]; - matA.col(k).end(m-k) /= m_sigma[k]; - matA(k,k) += 1.0; - } - m_sigma[k] = -m_sigma[k]; - } - - for (j = k+1; j < n; ++j) - { - if ((k < nct) && (m_sigma[k] != 0.0)) - { - // Apply the transformation. - Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ?? - t = -t/matA(k,k); - matA.col(j).end(m-k) += t * matA.col(k).end(m-k); - } - - // Place the k-th row of A into e for the - // subsequent calculation of the row transformation. - e[j] = matA(k,j); - } - - // Place the transformation in U for subsequent back multiplication. - if (wantu & (k < nct)) - m_matU.col(k).end(m-k) = matA.col(k).end(m-k); - - if (k < nrt) - { - // Compute the k-th row transformation and place the - // k-th super-diagonal in e[k]. - e[k] = e.end(n-k-1).norm(); - if (e[k] != 0.0) - { - if (e[k+1] < 0.0) - e[k] = -e[k]; - e.end(n-k-1) /= e[k]; - e[k+1] += 1.0; - } - e[k] = -e[k]; - if ((k+1 < m) & (e[k] != 0.0)) - { - // Apply the transformation. - work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1); - for (j = k+1; j < n; ++j) - matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1); - } - - // Place the transformation in V for subsequent back multiplication. - if (wantv) - m_matV.col(k).end(n-k-1) = e.end(n-k-1); - } - } - - - // Set up the final bidiagonal matrix or order p. - int p = (std::min)(n,m+1); - if (nct < n) - m_sigma[nct] = matA(nct,nct); - if (m < p) - m_sigma[p-1] = 0.0; - if (nrt+1 < p) - e[nrt] = matA(nrt,p-1); - e[p-1] = 0.0; - - // If required, generate U. - if (wantu) - { - for (j = nct; j < nu; ++j) - { - m_matU.col(j).setZero(); - m_matU(j,j) = 1.0; - } - for (k = nct-1; k >= 0; k--) - { - if (m_sigma[k] != 0.0) - { - for (j = k+1; j < nu; ++j) - { - Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ? - t = -t/m_matU(k,k); - m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k); - } - m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k); - m_matU(k,k) = Scalar(1) + m_matU(k,k); - if (k-1>0) - m_matU.col(k).start(k-1).setZero(); - } - else - { - m_matU.col(k).setZero(); - m_matU(k,k) = 1.0; - } - } - } - - // If required, generate V. - if (wantv) - { - for (k = n-1; k >= 0; k--) - { - if ((k < nrt) & (e[k] != 0.0)) - { - for (j = k+1; j < nu; ++j) - { - Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ? - t = -t/m_matV(k+1,k); - m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1); - } - } - m_matV.col(k).setZero(); - m_matV(k,k) = 1.0; - } - } - - // Main iteration loop for the singular values. - int pp = p-1; - int iter = 0; - Scalar eps = ei_pow(Scalar(2),ei_is_same_type::ret ? Scalar(-23) : Scalar(-52)); - while (p > 0) - { - int k=0; - int kase=0; - - // Here is where a test for too many iterations would go. - - // This section of the program inspects for - // negligible elements in the s and e arrays. On - // completion the variables kase and k are set as follows. - - // kase = 1 if s(p) and e[k-1] are negligible and k

= -1; --k) - { - if (k == -1) - break; - if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1]))) - { - e[k] = 0.0; - break; - } - } - if (k == p-2) - { - kase = 4; - } - else - { - int ks; - for (ks = p-1; ks >= k; --ks) - { - if (ks == k) - break; - Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0)); - if (ei_abs(m_sigma[ks]) <= eps*t) - { - m_sigma[ks] = 0.0; - break; - } - } - if (ks == k) - { - kase = 3; - } - else if (ks == p-1) - { - kase = 1; - } - else - { - kase = 2; - k = ks; - } - } - ++k; - - // Perform the task indicated by kase. - switch (kase) - { - - // Deflate negligible s(p). - case 1: - { - Scalar f(e[p-2]); - e[p-2] = 0.0; - for (j = p-2; j >= k; --j) - { - Scalar t(numext::hypot(m_sigma[j],f)); - Scalar cs(m_sigma[j]/t); - Scalar sn(f/t); - m_sigma[j] = t; - if (j != k) - { - f = -sn*e[j-1]; - e[j-1] = cs*e[j-1]; - } - if (wantv) - { - for (i = 0; i < n; ++i) - { - t = cs*m_matV(i,j) + sn*m_matV(i,p-1); - m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1); - m_matV(i,j) = t; - } - } - } - } - break; - - // Split at negligible s(k). - case 2: - { - Scalar f(e[k-1]); - e[k-1] = 0.0; - for (j = k; j < p; ++j) - { - Scalar t(numext::hypot(m_sigma[j],f)); - Scalar cs( m_sigma[j]/t); - Scalar sn(f/t); - m_sigma[j] = t; - f = -sn*e[j]; - e[j] = cs*e[j]; - if (wantu) - { - for (i = 0; i < m; ++i) - { - t = cs*m_matU(i,j) + sn*m_matU(i,k-1); - m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1); - m_matU(i,j) = t; - } - } - } - } - break; - - // Perform one qr step. - case 3: - { - // Calculate the shift. - Scalar scale = (std::max)((std::max)((std::max)((std::max)( - ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])), - ei_abs(m_sigma[k])),ei_abs(e[k])); - Scalar sp = m_sigma[p-1]/scale; - Scalar spm1 = m_sigma[p-2]/scale; - Scalar epm1 = e[p-2]/scale; - Scalar sk = m_sigma[k]/scale; - Scalar ek = e[k]/scale; - Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2); - Scalar c = (sp*epm1)*(sp*epm1); - Scalar shift(0); - if ((b != 0.0) || (c != 0.0)) - { - shift = ei_sqrt(b*b + c); - if (b < 0.0) - shift = -shift; - shift = c/(b + shift); - } - Scalar f = (sk + sp)*(sk - sp) + shift; - Scalar g = sk*ek; - - // Chase zeros. - - for (j = k; j < p-1; ++j) - { - Scalar t = numext::hypot(f,g); - Scalar cs = f/t; - Scalar sn = g/t; - if (j != k) - e[j-1] = t; - f = cs*m_sigma[j] + sn*e[j]; - e[j] = cs*e[j] - sn*m_sigma[j]; - g = sn*m_sigma[j+1]; - m_sigma[j+1] = cs*m_sigma[j+1]; - if (wantv) - { - for (i = 0; i < n; ++i) - { - t = cs*m_matV(i,j) + sn*m_matV(i,j+1); - m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1); - m_matV(i,j) = t; - } - } - t = numext::hypot(f,g); - cs = f/t; - sn = g/t; - m_sigma[j] = t; - f = cs*e[j] + sn*m_sigma[j+1]; - m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1]; - g = sn*e[j+1]; - e[j+1] = cs*e[j+1]; - if (wantu && (j < m-1)) - { - for (i = 0; i < m; ++i) - { - t = cs*m_matU(i,j) + sn*m_matU(i,j+1); - m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1); - m_matU(i,j) = t; - } - } - } - e[p-2] = f; - iter = iter + 1; - } - break; - - // Convergence. - case 4: - { - // Make the singular values positive. - if (m_sigma[k] <= 0.0) - { - m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0); - if (wantv) - m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1); - } - - // Order the singular values. - while (k < pp) - { - if (m_sigma[k] >= m_sigma[k+1]) - break; - Scalar t = m_sigma[k]; - m_sigma[k] = m_sigma[k+1]; - m_sigma[k+1] = t; - if (wantv && (k < n-1)) - m_matV.col(k).swap(m_matV.col(k+1)); - if (wantu && (k < m-1)) - m_matU.col(k).swap(m_matU.col(k+1)); - ++k; - } - iter = 0; - p--; - } - break; - } // end big switch - } // end iterations -} - -template -SVD& SVD::sort() -{ - int mu = m_matU.rows(); - int mv = m_matV.rows(); - int n = m_matU.cols(); - - for (int i=0; i p) - { - k = j; - p = m_sigma.coeff(j); - } - } - if (k != i) - { - m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e. - m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements - - int j = mu; - for(int s=0; j!=0; ++s, --j) - std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k)); - - j = mv; - for (int s=0; j!=0; ++s, --j) - std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k)); - } - } - return *this; -} - -/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A. - * The parts of the solution corresponding to zero singular values are ignored. - * - * \sa MatrixBase::svd(), LU::solve(), LLT::solve() - */ -template -template -bool SVD::solve(const MatrixBase &b, ResultType* result) const -{ - ei_assert(b.rows() == m_matU.rows()); - - Scalar maxVal = m_sigma.cwise().abs().maxCoeff(); - for (int j=0; j aux = m_matU.transpose() * b.col(j); - - for (int i = 0; i col(j) = m_matV * aux; - } - return true; -} - -/** Computes the polar decomposition of the matrix, as a product unitary x positive. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * Only for square matrices. - * - * \sa computePositiveUnitary(), computeRotationScaling() - */ -template -template -void SVD::computeUnitaryPositive(UnitaryType *unitary, - PositiveType *positive) const -{ - ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices"); - if(unitary) *unitary = m_matU * m_matV.adjoint(); - if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint(); -} - -/** Computes the polar decomposition of the matrix, as a product positive x unitary. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * Only for square matrices. - * - * \sa computeUnitaryPositive(), computeRotationScaling() - */ -template -template -void SVD::computePositiveUnitary(UnitaryType *positive, - PositiveType *unitary) const -{ - ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); - if(unitary) *unitary = m_matU * m_matV.adjoint(); - if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint(); -} - -/** decomposes the matrix as a product rotation x scaling, the scaling being - * not necessarily positive. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * This method requires the Geometry module. - * - * \sa computeScalingRotation(), computeUnitaryPositive() - */ -template -template -void SVD::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const -{ - ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); - Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 - Matrix sv(m_sigma); - sv.coeffRef(0) *= x; - if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint()); - if(rotation) - { - MatrixType m(m_matU); - m.col(0) /= x; - rotation->lazyAssign(m * m_matV.adjoint()); - } -} - -/** decomposes the matrix as a product scaling x rotation, the scaling being - * not necessarily positive. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * This method requires the Geometry module. - * - * \sa computeRotationScaling(), computeUnitaryPositive() - */ -template -template -void SVD::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const -{ - ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); - Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 - Matrix sv(m_sigma); - sv.coeffRef(0) *= x; - if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint()); - if(rotation) - { - MatrixType m(m_matU); - m.col(0) /= x; - rotation->lazyAssign(m * m_matV.adjoint()); - } -} - - -/** \svd_module - * \returns the SVD decomposition of \c *this - */ -template -inline SVD::PlainObject> -MatrixBase::svd() const -{ - return SVD(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN2_SVD_H diff --git a/Eigen/src/Eigen2Support/TriangularSolver.h b/Eigen/src/Eigen2Support/TriangularSolver.h deleted file mode 100644 index ebbeb3b49..000000000 --- a/Eigen/src/Eigen2Support/TriangularSolver.h +++ /dev/null @@ -1,42 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRIANGULAR_SOLVER2_H -#define EIGEN_TRIANGULAR_SOLVER2_H - -namespace Eigen { - -const unsigned int UnitDiagBit = UnitDiag; -const unsigned int SelfAdjointBit = SelfAdjoint; -const unsigned int UpperTriangularBit = Upper; -const unsigned int LowerTriangularBit = Lower; - -const unsigned int UpperTriangular = Upper; -const unsigned int LowerTriangular = Lower; -const unsigned int UnitUpperTriangular = UnitUpper; -const unsigned int UnitLowerTriangular = UnitLower; - -template -template -typename ExpressionType::PlainObject -Flagged::solveTriangular(const MatrixBase& other) const -{ - return m_matrix.template triangularView().solve(other.derived()); -} - -template -template -void Flagged::solveTriangularInPlace(const MatrixBase& other) const -{ - m_matrix.template triangularView().solveInPlace(other.derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULAR_SOLVER2_H diff --git a/Eigen/src/Eigen2Support/VectorBlock.h b/Eigen/src/Eigen2Support/VectorBlock.h deleted file mode 100644 index 71a8080a9..000000000 --- a/Eigen/src/Eigen2Support/VectorBlock.h +++ /dev/null @@ -1,94 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2_VECTORBLOCK_H -#define EIGEN2_VECTORBLOCK_H - -namespace Eigen { - -/** \deprecated use DenseMase::head(Index) */ -template -inline VectorBlock -MatrixBase::start(Index size) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), 0, size); -} - -/** \deprecated use DenseMase::head(Index) */ -template -inline const VectorBlock -MatrixBase::start(Index size) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), 0, size); -} - -/** \deprecated use DenseMase::tail(Index) */ -template -inline VectorBlock -MatrixBase::end(Index size) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), this->size() - size, size); -} - -/** \deprecated use DenseMase::tail(Index) */ -template -inline const VectorBlock -MatrixBase::end(Index size) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), this->size() - size, size); -} - -/** \deprecated use DenseMase::head() */ -template -template -inline VectorBlock -MatrixBase::start() -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), 0); -} - -/** \deprecated use DenseMase::head() */ -template -template -inline const VectorBlock -MatrixBase::start() const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), 0); -} - -/** \deprecated use DenseMase::tail() */ -template -template -inline VectorBlock -MatrixBase::end() -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), size() - Size); -} - -/** \deprecated use DenseMase::tail() */ -template -template -inline const VectorBlock -MatrixBase::end() const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return VectorBlock(derived(), size() - Size); -} - -} // end namespace Eigen - -#endif // EIGEN2_VECTORBLOCK_H diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h index b8146d04d..d10eba201 100644 --- a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h @@ -346,40 +346,6 @@ template class SelfAdjointEigenSolver */ static const int m_maxIterations = 30; - #ifdef EIGEN2_SUPPORT - EIGEN_DEVICE_FUNC - SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors) - : m_eivec(matrix.rows(), matrix.cols()), - m_eivalues(matrix.cols()), - m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), - m_isInitialized(false) - { - compute(matrix, computeEigenvectors); - } - - EIGEN_DEVICE_FUNC - SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true) - : m_eivec(matA.cols(), matA.cols()), - m_eivalues(matA.cols()), - m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1), - m_isInitialized(false) - { - static_cast*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly); - } - - EIGEN_DEVICE_FUNC - void compute(const MatrixType& matrix, bool computeEigenvectors) - { - compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly); - } - - EIGEN_DEVICE_FUNC - void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true) - { - compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly); - } - #endif // EIGEN2_SUPPORT - protected: MatrixType m_eivec; RealVectorType m_eivalues; diff --git a/Eigen/src/LU/PartialPivLU.h b/Eigen/src/LU/PartialPivLU.h index 1d389ecac..91383db31 100644 --- a/Eigen/src/LU/PartialPivLU.h +++ b/Eigen/src/LU/PartialPivLU.h @@ -481,7 +481,6 @@ MatrixBase::partialPivLu() const } #endif -#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS /** \lu_module * * Synonym of partialPivLu(). @@ -499,8 +498,6 @@ MatrixBase::lu() const } #endif -#endif - } // end namespace Eigen #endif // EIGEN_PARTIALLU_H diff --git a/Eigen/src/SparseCore/SparseMatrixBase.h b/Eigen/src/SparseCore/SparseMatrixBase.h index bbcf7fb1c..c64d74da0 100644 --- a/Eigen/src/SparseCore/SparseMatrixBase.h +++ b/Eigen/src/SparseCore/SparseMatrixBase.h @@ -369,17 +369,6 @@ template class SparseMatrixBase : public EigenBase template Derived& operator*=(const SparseMatrixBase& other); - #ifdef EIGEN2_SUPPORT - // deprecated - template - typename internal::plain_matrix_type_column_major::type - solveTriangular(const MatrixBase& other) const; - - // deprecated - template - void solveTriangularInPlace(MatrixBase& other) const; - #endif // EIGEN2_SUPPORT - template inline const SparseTriangularView triangularView() const; diff --git a/Eigen/src/SparseCore/TriangularSolver.h b/Eigen/src/SparseCore/TriangularSolver.h index cb8ad82b4..f958ab300 100644 --- a/Eigen/src/SparseCore/TriangularSolver.h +++ b/Eigen/src/SparseCore/TriangularSolver.h @@ -305,30 +305,6 @@ void SparseTriangularView::solveInPlace(SparseMatrixBase -template -void SparseMatrixBase::solveTriangularInPlace(MatrixBase& other) const -{ - this->template triangular().solveInPlace(other); -} - -/** \deprecated */ -template -template -typename internal::plain_matrix_type_column_major::type -SparseMatrixBase::solveTriangular(const MatrixBase& other) const -{ - typename internal::plain_matrix_type_column_major::type res(other); - derived().solveTriangularInPlace(res); - return res; -} -#endif // EIGEN2_SUPPORT - } // end namespace Eigen #endif // EIGEN_SPARSETRIANGULARSOLVER_H diff --git a/doc/A05_PortingFrom2To3.dox b/doc/A05_PortingFrom2To3.dox index d885b4f6d..47011aec0 100644 --- a/doc/A05_PortingFrom2To3.dox +++ b/doc/A05_PortingFrom2To3.dox @@ -9,11 +9,8 @@ and gives tips to help porting your application from Eigen2 to Eigen3. \section CompatibilitySupport Eigen2 compatibility support -In order to ease the switch from Eigen2 to Eigen3, Eigen3 features \subpage Eigen2SupportModes "Eigen2 support modes". - -The quick way to enable this is to define the \c EIGEN2_SUPPORT preprocessor token \b before including any Eigen header (typically it should be set in your project options). - -A more powerful, \em staged migration path is also provided, which may be useful to migrate larger projects from Eigen2 to Eigen3. This is explained in the \ref Eigen2SupportModes "Eigen 2 support modes" page. +Up to version 3.2 %Eigen provides Eigen2 support modes. These are removed now, because they were barely used anymore and became hard to maintain after internal re-designs. +You can still use them by first porting your code to Eigen 3.2. \section Using The USING_PART_OF_NAMESPACE_EIGEN macro diff --git a/doc/A10_Eigen2SupportModes.dox b/doc/A10_Eigen2SupportModes.dox deleted file mode 100644 index abfdb4683..000000000 --- a/doc/A10_Eigen2SupportModes.dox +++ /dev/null @@ -1,93 +0,0 @@ -namespace Eigen { - -/** \page Eigen2SupportModes Eigen 2 support modes - -This page documents the Eigen2 support modes, a powerful tool to help migrating your project from Eigen 2 to Eigen 3. -Don't miss our page on \ref Eigen2ToEigen3 "API changes" between Eigen 2 and Eigen 3. - -\eigenAutoToc - -\section EIGEN2_SUPPORT_Macro The quick way: define EIGEN2_SUPPORT - -By defining EIGEN2_SUPPORT before including any Eigen 3 header, you get back a large part of the Eigen 2 API, while keeping the Eigen 3 API and ABI unchanged. - -This defaults to the \ref Stage30 "stage 30" described below. - -The rest of this page describes an optional, more powerful \em staged migration path. - -\section StagedMigrationPathOverview Overview of the staged migration path - -The primary reason why EIGEN2_SUPPORT alone may not be enough to migrate a large project from Eigen 2 to Eigen 3 is that some of the Eigen 2 API is inherently incompatible with the Eigen 3 API. This happens when the same identifier is used in Eigen 2 and in Eigen 3 with different meanings. To help migrate projects that rely on such API, we provide a staged migration path allowing to perform the migration \em incrementally. - -It goes as follows: -\li Step 0: start with a project using Eigen 2. -\li Step 1: build your project against Eigen 3 with \ref Stage10 "Eigen 2 support stage 10". This mode enables maximum compatibility with the Eigen 2 API, with just a few exceptions. -\li Step 2: build your project against Eigen 3 with \ref Stage20 "Eigen 2 support stage 20". This mode forces you to add eigen2_ prefixes to the Eigen2 identifiers that conflict with Eigen 3 API. -\li Step 3: build your project against Eigen 3 with \ref Stage30 "Eigen 2 support stage 30". This mode enables the full Eigen 3 API. -\li Step 4: build your project against Eigen 3 with \ref Stage40 "Eigen 2 support stage 40". This mode enables the full Eigen 3 strictness on matters, such as const-correctness, where Eigen 2 was looser. -\li Step 5: build your project against Eigen 3 without any Eigen 2 support mode. - -\section Stage10 Stage 10: define EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API - -Enable this mode by defining the EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API preprocessor macro before including any Eigen 3 header. - -This mode maximizes support for the Eigen 2 API. As a result, it does not offer the full Eigen 3 API. Also, it doesn't offer quite 100% of the Eigen 2 API. - -The part of the Eigen 3 API that is not present in this mode, is Eigen 3's Geometry module. Indeed, this mode completely replaces it by a copy of Eigen 2's Geometry module. - -The parts of the API that are still not 100% Eigen 2 compatible in this mode are: -\li Dot products over complex numbers. Eigen 2's dot product was linear in the first variable. Eigen 3's dot product is linear in the second variable. In other words, the Eigen 2 code \code x.dot(y) \endcode is equivalent to the Eigen 3 code \code y.dot(x) \endcode In yet other words, dot products are complex-conjugated in Eigen 3 compared to Eigen 2. The switch to the new convention was commanded by common usage, especially with the notation \f$ x^Ty \f$ for dot products of column-vectors. -\li The Sparse module. -\li Certain fine details of linear algebraic decompositions. For example, LDLT decomposition is now pivoting in Eigen 3 whereas it wasn't in Eigen 2, so code that was relying on its underlying matrix structure will break. -\li Usage of Eigen types in STL containers, \ref Eigen2ToEigen3 "as explained on this page". - -\section Stage20 Stage 20: define EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS - -Enable this mode by defining the EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API preprocessor macro before including any Eigen 3 header. - -This mode removes the Eigen 2 API that is directly conflicting with Eigen 3 API. Instead, these bits of Eigen 2 API remain available with eigen2_ prefixes. The main examples of such API are: -\li the whole Geometry module. For example, replace \c Quaternion by \c eigen2_Quaternion, replace \c Transform3f by \c eigen2_Transform3f, etc. -\li the lu() method to obtain a LU decomposition. Replace by eigen2_lu(). - -There is also one more eigen2_-prefixed identifier that you should know about, even though its use is not checked at compile time by this mode: the dot() method. As was discussed above, over complex numbers, its meaning is different between Eigen 2 and Eigen 3. You can use eigen2_dot() to get the Eigen 2 behavior. - -\section Stage30 Stage 30: define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API - -Enable this mode by defining the EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API preprocessor macro before including any Eigen 3 header. Also, this mode is what you get by default when you just define EIGEN2_SUPPORT. - -This mode gives you the full unaltered Eigen 3 API, while still keeping as much support as possible for the Eigen 2 API. - -The eigen2_-prefixed identifiers are still available, but at this stage you should now replace them by Eigen 3 identifiers. Have a look at our page on \ref Eigen2ToEigen3 "API changes" between Eigen 2 and Eigen 3. - -\section Stage40 Stage 40: define EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS - -Enable this mode by defining the EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS preprocessor macro before including any Eigen 3 header. - -This mode tightens the last bits of strictness, especially const-correctness, that had to be loosened to support what Eigen 2 allowed. For example, this code compiled in Eigen 2: -\code -const float array[4]; -x = Map(array); -\endcode -That allowed to circumvent constness. This is no longer allowed in Eigen 3. If you have to map const data in Eigen 3, map it as a const-qualified type. However, rather than explictly constructing Map objects, we strongly encourage you to use the static Map methods instead, as they take care of all of this for you: -\code -const float array[4]; -x = Vector4f::Map(array); -\endcode -This lets Eigen do the right thing for you and works equally well in Eigen 2 and in Eigen 3. - -\section FinallyDropAllEigen2Support Finally drop all Eigen 2 support - -Stage 40 is the first where it's "comfortable" to stay for a little longer period, since it preserves 100% Eigen 3 compatibility. However, we still encourage you to complete your migration as quickly as possible. While we do run the Eigen 2 test suite against Eigen 3's stage 10 support mode, we can't guarantee the same level of support and quality assurance for Eigen 2 support as we do for Eigen 3 itself, especially not in the long term. \ref Eigen2ToEigen3 "This page" describes a large part of the changes that you may need to perform. - -\section ABICompatibility What about ABI compatibility? - -It goes as follows: -\li Stage 10 already is ABI compatible with Eigen 3 for the basic (Matrix, Array, SparseMatrix...) types. However, since this stage uses a copy of Eigen 2's Geometry module instead of Eigen 3's own Geometry module, the ABI in the Geometry module is not Eigen 3 compatible. -\li Stage 20 removes the Eigen 3-incompatible Eigen 2 Geometry module (it remains available with eigen2_ prefix). So at this stage, all the identifiers that exist in Eigen 3 have the Eigen 3 ABI (and API). -\li Stage 30 introduces the remaining Eigen 3 identifiers. So at this stage, you have the full Eigen 3 ABI. -\li Stage 40 is no different than Stage 30 in these matters. - - -*/ - -} diff --git a/doc/Doxyfile.in b/doc/Doxyfile.in index 509bd357a..2ceee5e20 100644 --- a/doc/Doxyfile.in +++ b/doc/Doxyfile.in @@ -1584,7 +1584,6 @@ PREDEFINED = EIGEN_EMPTY_STRUCT \ EIGEN_QT_SUPPORT \ EIGEN_STRONG_INLINE=inline \ EIGEN_DEVICE_FUNC= \ - "EIGEN2_SUPPORT_STAGE=99" \ "EIGEN_MAKE_CWISE_BINARY_OP(METHOD,FUNCTOR)=template const CwiseBinaryOp, const Derived, const OtherDerived> METHOD(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const;" \ "EIGEN_CWISE_PRODUCT_RETURN_TYPE(LHS,RHS)=CwiseBinaryOp, const LHS, const RHS>" @@ -1601,8 +1600,7 @@ EXPAND_AS_DEFINED = EIGEN_MAKE_TYPEDEFS \ EIGEN_CWISE_BINOP_RETURN_TYPE \ EIGEN_CURRENT_STORAGE_BASE_CLASS \ EIGEN_MATHFUNC_IMPL \ - _EIGEN_GENERIC_PUBLIC_INTERFACE \ - EIGEN2_SUPPORT + _EIGEN_GENERIC_PUBLIC_INTERFACE # If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then # doxygen's preprocessor will remove all references to function-like macros diff --git a/doc/PreprocessorDirectives.dox b/doc/PreprocessorDirectives.dox index 6e40f919f..e67991fb7 100644 --- a/doc/PreprocessorDirectives.dox +++ b/doc/PreprocessorDirectives.dox @@ -5,7 +5,7 @@ namespace Eigen { You can control some aspects of %Eigen by defining the preprocessor tokens using \c \#define. These macros should be defined before any %Eigen headers are included. Often they are best set in the project options. -This page lists the preprocesor tokens recognised by %Eigen. +This page lists the preprocessor tokens recognized by %Eigen. \eigenAutoToc @@ -18,10 +18,9 @@ one option, and other parts (or libraries that you use) are compiled with anothe fail to link or exhibit subtle bugs. Nevertheless, these options can be useful for people who know what they are doing. - - \b EIGEN2_SUPPORT - if defined, enables the Eigen2 compatibility mode. This is meant to ease the transition - of Eigen2 to Eigen3 (see \ref Eigen2ToEigen3). Not defined by default. - - \b EIGEN2_SUPPORT_STAGEnn_xxx (for various values of nn and xxx) - staged migration path from Eigen2 to - Eigen3; see \ref Eigen2SupportModes. + - \b EIGEN2_SUPPORT and \b EIGEN2_SUPPORT_STAGEnn_xxx are disabled starting from the 3.3 release. + Defining one of these will raise a compile-error. If you need to compile Eigen2 code, + check this site. - \b EIGEN_DEFAULT_DENSE_INDEX_TYPE - the type for column and row indices in matrices, vectors and array (DenseBase::Index). Set to \c std::ptrdiff_t by default. - \b EIGEN_DEFAULT_IO_FORMAT - the IOFormat to use when printing a matrix if no %IOFormat is specified. @@ -55,7 +54,7 @@ run time. However, these assertions do cost time and can thus be turned off. \section TopicPreprocessorDirectivesPerformance Alignment, vectorization and performance tweaking - - \b EIGEN_MALLOC_ALREADY_ALIGNED - Can be set to 0 or 1 to tell whether default system malloc already + - \b EIGEN_MALLOC_ALREADY_ALIGNED - Can be set to 0 or 1 to tell whether default system \c malloc already returns aligned buffers. In not defined, then this information is automatically deduced from the compiler and system preprocessor tokens. - \b EIGEN_DONT_ALIGN - disables alignment completely. %Eigen will not try to align its objects and does not diff --git a/doc/examples/MatrixBase_cwise_const.cpp b/doc/examples/MatrixBase_cwise_const.cpp deleted file mode 100644 index 23700e0b6..000000000 --- a/doc/examples/MatrixBase_cwise_const.cpp +++ /dev/null @@ -1,18 +0,0 @@ -#define EIGEN2_SUPPORT -#include -#include - -using namespace Eigen; -using namespace std; - -int main() -{ - Matrix3i m = Matrix3i::Random(); - cout << "Here is the matrix m:" << endl << m << endl; - Matrix3i n = Matrix3i::Random(); - cout << "And here is the matrix n:" << endl << n << endl; - cout << "The coefficient-wise product of m and n is:" << endl; - cout << m.cwise() * n << endl; - cout << "Taking the cube of the coefficients of m yields:" << endl; - cout << m.cwise().pow(3) << endl; -} diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index c2d827051..62c9c78a6 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -157,7 +157,6 @@ ei_add_test(vectorization_logic) ei_add_test(basicstuff) ei_add_test(linearstructure) ei_add_test(integer_types) -ei_add_test(cwiseop) ei_add_test(unalignedcount) ei_add_test(exceptions) ei_add_test(redux) @@ -258,8 +257,6 @@ if(QT4_FOUND) ei_add_test(qtvector "" "${QT_QTCORE_LIBRARY}") endif(QT4_FOUND) -ei_add_test(eigen2support) - if(UMFPACK_FOUND) ei_add_test(umfpack_support "" "${UMFPACK_ALL_LIBS}") endif() @@ -303,7 +300,7 @@ ei_add_property(EIGEN_TESTING_SUMMARY "Sparse lib flags: ${SPARSE_LIBS}\n") option(EIGEN_TEST_EIGEN2 "Run whole Eigen2 test suite against EIGEN2_SUPPORT" OFF) if(EIGEN_TEST_EIGEN2) - add_subdirectory(eigen2) + message(WARNING "The Eigen2 test suite has been removed") endif() diff --git a/test/cwiseop.cpp b/test/cwiseop.cpp deleted file mode 100644 index 247fa2a09..000000000 --- a/test/cwiseop.cpp +++ /dev/null @@ -1,182 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN2_SUPPORT -#define EIGEN_NO_STATIC_ASSERT -#include "main.h" -#include - -#ifdef min -#undef min -#endif - -#ifdef max -#undef max -#endif - -using namespace std; - -template struct AddIfNull { - const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} - enum { Cost = NumTraits::AddCost }; -}; - -template -typename Eigen::internal::enable_if::IsInteger,typename MatrixType::Scalar>::type -cwiseops_real_only(MatrixType& m1, MatrixType& m2, MatrixType& m3, MatrixType& mones) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - - VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse())); - m3 = m1.cwise().abs().cwise().sqrt(); - VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); - VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); - VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); - - VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); - m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); - VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); - m3 = m1.cwise().abs(); - VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); - -// VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); - VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); - m3 = m1; - m3.cwise() /= m2; - VERIFY_IS_APPROX(m3, m1.cwise() / m2); - - return Scalar(0); -} - -template -typename Eigen::internal::enable_if::IsInteger,typename MatrixType::Scalar>::type -cwiseops_real_only(MatrixType& , MatrixType& , MatrixType& , MatrixType& ) -{ - return 0; -} - -template void cwiseops(const MatrixType& m) -{ - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - typedef Matrix VectorType; - - Index rows = m.rows(); - Index cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols), - m1bis = m1, - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - m4(rows, cols), - mzero = MatrixType::Zero(rows, cols), - mones = MatrixType::Ones(rows, cols), - identity = Matrix - ::Identity(rows, rows); - VectorType vzero = VectorType::Zero(rows), - vones = VectorType::Ones(rows), - v3(rows); - - Index r = internal::random(0, rows-1), - c = internal::random(0, cols-1); - - Scalar s1 = internal::random(); - - // test Zero, Ones, Constant, and the set* variants - m3 = MatrixType::Constant(rows, cols, s1); - for (int j=0; j >(mones); - - VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); - VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); - VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); - - VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); - VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); - m3 = m1; m3.cwise() += 1; - VERIFY_IS_APPROX(m1 + mones, m3); - m3 = m1; m3.cwise() -= 1; - VERIFY_IS_APPROX(m1 - mones, m3); - - VERIFY_IS_APPROX(m2, m2.cwise() * mones); - VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1); - m3 = m1; - m3.cwise() *= m2; - VERIFY_IS_APPROX(m3, m1.cwise() * m2); - - VERIFY_IS_APPROX(mones, m2.cwise()/m2); - - // check min - VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); - VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); - VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); - - // check max - VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); - VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); - VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); - - VERIFY( (m1.cwise() == m1).all() ); - VERIFY( (m1.cwise() != m2).any() ); - VERIFY(!(m1.cwise() == (m1+mones)).any() ); - if (rows*cols>1) - { - m3 = m1; - m3(r,c) += 1; - VERIFY( (m1.cwise() == m3).any() ); - VERIFY( !(m1.cwise() == m3).all() ); - } - VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); - VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); - VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); - VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); - - VERIFY( (m1.cwise()(), Scalar(1)))).all() ); - VERIFY( !(m1.cwise()(), Scalar(1)))).all() ); - VERIFY( !(m1.cwise()>m1bis.unaryExpr(bind2nd(plus(), Scalar(1)))).any() ); - - cwiseops_real_only(m1, m2, m3, mones); -} - -void test_cwiseop() -{ - for(int i = 0; i < g_repeat ; i++) { - CALL_SUBTEST_1( cwiseops(Matrix()) ); - CALL_SUBTEST_2( cwiseops(Matrix4d()) ); - CALL_SUBTEST_3( cwiseops(MatrixXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); - CALL_SUBTEST_4( cwiseops(MatrixXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); - CALL_SUBTEST_5( cwiseops(MatrixXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); - CALL_SUBTEST_6( cwiseops(MatrixXd(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); - } -} diff --git a/test/eigen2/CMakeLists.txt b/test/eigen2/CMakeLists.txt deleted file mode 100644 index 41a02f4ad..000000000 --- a/test/eigen2/CMakeLists.txt +++ /dev/null @@ -1,65 +0,0 @@ -add_custom_target(eigen2_buildtests) -add_custom_target(eigen2_check COMMAND "ctest -R eigen2") -add_dependencies(eigen2_check eigen2_buildtests) -add_dependencies(buildtests eigen2_buildtests) - -add_definitions("-DEIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API") - -# Disable unused warnings for this module -# As EIGEN2 support is deprecated, it is not really worth fixing them -ei_add_cxx_compiler_flag("-Wno-unused-local-typedefs") -ei_add_cxx_compiler_flag("-Wno-unused-but-set-variable") - -ei_add_test(eigen2_meta) -ei_add_test(eigen2_sizeof) -ei_add_test(eigen2_dynalloc) -ei_add_test(eigen2_nomalloc) -#ei_add_test(eigen2_first_aligned) -ei_add_test(eigen2_mixingtypes) -#ei_add_test(eigen2_packetmath) -ei_add_test(eigen2_unalignedassert) -#ei_add_test(eigen2_vectorization_logic) -ei_add_test(eigen2_basicstuff) -ei_add_test(eigen2_linearstructure) -ei_add_test(eigen2_cwiseop) -ei_add_test(eigen2_sum) -ei_add_test(eigen2_product_small) -ei_add_test(eigen2_product_large ${EI_OFLAG}) -ei_add_test(eigen2_adjoint) -ei_add_test(eigen2_submatrices) -ei_add_test(eigen2_miscmatrices) -ei_add_test(eigen2_commainitializer) -ei_add_test(eigen2_smallvectors) -ei_add_test(eigen2_map) -ei_add_test(eigen2_array) -ei_add_test(eigen2_triangular) -ei_add_test(eigen2_cholesky " " "${GSL_LIBRARIES}") -ei_add_test(eigen2_lu ${EI_OFLAG}) -ei_add_test(eigen2_determinant ${EI_OFLAG}) -ei_add_test(eigen2_inverse) -ei_add_test(eigen2_qr) -ei_add_test(eigen2_eigensolver " " "${GSL_LIBRARIES}") -ei_add_test(eigen2_svd) -ei_add_test(eigen2_geometry) -ei_add_test(eigen2_geometry_with_eigen2_prefix) -ei_add_test(eigen2_hyperplane) -ei_add_test(eigen2_parametrizedline) -ei_add_test(eigen2_alignedbox) -ei_add_test(eigen2_regression) -ei_add_test(eigen2_stdvector) -ei_add_test(eigen2_newstdvector) -if(QT4_FOUND) - ei_add_test(eigen2_qtvector " " "${QT_QTCORE_LIBRARY}") -endif(QT4_FOUND) -# no support for eigen2 sparse module -# if(NOT EIGEN_DEFAULT_TO_ROW_MAJOR) -# ei_add_test(eigen2_sparse_vector) -# ei_add_test(eigen2_sparse_basic) -# ei_add_test(eigen2_sparse_solvers " " "${SPARSE_LIBS}") -# ei_add_test(eigen2_sparse_product) -# endif() -ei_add_test(eigen2_swap) -ei_add_test(eigen2_visitor) -ei_add_test(eigen2_bug_132) - -ei_add_test(eigen2_prec_inverse_4x4 ${EI_OFLAG}) diff --git a/test/eigen2/eigen2_adjoint.cpp b/test/eigen2/eigen2_adjoint.cpp deleted file mode 100644 index 8ec9c9202..000000000 --- a/test/eigen2/eigen2_adjoint.cpp +++ /dev/null @@ -1,101 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void adjoint(const MatrixType& m) -{ - /* this test covers the following files: - Transpose.h Conjugate.h Dot.h - */ - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - typedef Matrix SquareMatrixType; - int rows = m.rows(); - int cols = m.cols(); - - RealScalar largerEps = test_precision(); - if (ei_is_same_type::ret) - largerEps = RealScalar(1e-3f); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - mzero = MatrixType::Zero(rows, cols), - identity = SquareMatrixType::Identity(rows, rows), - square = SquareMatrixType::Random(rows, rows); - VectorType v1 = VectorType::Random(rows), - v2 = VectorType::Random(rows), - v3 = VectorType::Random(rows), - vzero = VectorType::Zero(rows); - - Scalar s1 = ei_random(), - s2 = ei_random(); - - // check basic compatibility of adjoint, transpose, conjugate - VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); - VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); - - // check multiplicative behavior - VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); - VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); - - // check basic properties of dot, norm, norm2 - typedef typename NumTraits::Real RealScalar; - VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3), s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps)); - VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps)); - VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)), v2.eigen2_dot(v1)); - VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)), v1.squaredNorm()); - if(NumTraits::HasFloatingPoint) - VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); - VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)), static_cast(1)); - if(NumTraits::HasFloatingPoint) - VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast(1)); - - // check compatibility of dot and adjoint - VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps)); - - // like in testBasicStuff, test operator() to check const-qualification - int r = ei_random(0, rows-1), - c = ei_random(0, cols-1); - VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); - VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); - - if(NumTraits::HasFloatingPoint) - { - // check that Random().normalized() works: tricky as the random xpr must be evaluated by - // normalized() in order to produce a consistent result. - VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); - } - - // check inplace transpose - m3 = m1; - m3.transposeInPlace(); - VERIFY_IS_APPROX(m3,m1.transpose()); - m3.transposeInPlace(); - VERIFY_IS_APPROX(m3,m1); - -} - -void test_eigen2_adjoint() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( adjoint(Matrix()) ); - CALL_SUBTEST_2( adjoint(Matrix3d()) ); - CALL_SUBTEST_3( adjoint(Matrix4f()) ); - CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) ); - CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) ); - CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) ); - } - // test a large matrix only once - CALL_SUBTEST_7( adjoint(Matrix()) ); -} - diff --git a/test/eigen2/eigen2_alignedbox.cpp b/test/eigen2/eigen2_alignedbox.cpp deleted file mode 100644 index 35043b958..000000000 --- a/test/eigen2/eigen2_alignedbox.cpp +++ /dev/null @@ -1,60 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include -#include -#include - -template void alignedbox(const BoxType& _box) -{ - /* this test covers the following files: - AlignedBox.h - */ - - const int dim = _box.dim(); - typedef typename BoxType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - VectorType p0 = VectorType::Random(dim); - VectorType p1 = VectorType::Random(dim); - RealScalar s1 = ei_random(0,1); - - BoxType b0(dim); - BoxType b1(VectorType::Random(dim),VectorType::Random(dim)); - BoxType b2; - - b0.extend(p0); - b0.extend(p1); - VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1)); - VERIFY(!b0.contains(p0 + (1+s1)*(p1-p0))); - - (b2 = b0).extend(b1); - VERIFY(b2.contains(b0)); - VERIFY(b2.contains(b1)); - VERIFY_IS_APPROX(b2.clamp(b0), b0); - - // casting - const int Dim = BoxType::AmbientDimAtCompileTime; - typedef typename GetDifferentType::type OtherScalar; - AlignedBox hp1f = b0.template cast(); - VERIFY_IS_APPROX(hp1f.template cast(),b0); - AlignedBox hp1d = b0.template cast(); - VERIFY_IS_APPROX(hp1d.template cast(),b0); -} - -void test_eigen2_alignedbox() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( alignedbox(AlignedBox()) ); - CALL_SUBTEST_2( alignedbox(AlignedBox()) ); - CALL_SUBTEST_3( alignedbox(AlignedBox()) ); - } -} diff --git a/test/eigen2/eigen2_array.cpp b/test/eigen2/eigen2_array.cpp deleted file mode 100644 index c1ff40ce7..000000000 --- a/test/eigen2/eigen2_array.cpp +++ /dev/null @@ -1,142 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -template void array(const MatrixType& m) -{ - /* this test covers the following files: - Array.cpp - */ - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - int rows = m.rows(); - int cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols); - - Scalar s1 = ei_random(), - s2 = ei_random(); - - // scalar addition - VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); - VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); - VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) ); - m3 = m1; - m3.cwise() += s2; - VERIFY_IS_APPROX(m3, m1.cwise() + s2); - m3 = m1; - m3.cwise() -= s1; - VERIFY_IS_APPROX(m3, m1.cwise() - s1); - - // reductions - VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); - VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); - if (!ei_isApprox(m1.sum(), (m1+m2).sum())) - VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); - VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op())); -} - -template void comparisons(const MatrixType& m) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - int rows = m.rows(); - int cols = m.cols(); - - int r = ei_random(0, rows-1), - c = ei_random(0, cols-1); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols); - - VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all()); - VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all()); - if (rows*cols>1) - { - m3 = m1; - m3(r,c) += 1; - VERIFY(! (m1.cwise() < m3).all() ); - VERIFY(! (m1.cwise() > m3).all() ); - } - - // comparisons to scalar - VERIFY( (m1.cwise() != (m1(r,c)+1) ).any() ); - VERIFY( (m1.cwise() > (m1(r,c)-1) ).any() ); - VERIFY( (m1.cwise() < (m1(r,c)+1) ).any() ); - VERIFY( (m1.cwise() == m1(r,c) ).any() ); - - // test Select - VERIFY_IS_APPROX( (m1.cwise()m2).select(m1,m2), m1.cwise().max(m2) ); - Scalar mid = (m1.cwise().abs().minCoeff() + m1.cwise().abs().maxCoeff())/Scalar(2); - for (int j=0; j=MatrixType::Constant(rows,cols,mid)) - .select(m1,0), m3); - // even shorter version: - VERIFY_IS_APPROX( (m1.cwise().abs().cwise()RealScalar(0.1)).count() == rows*cols); - VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).colwise().count().template cast(), RowVectorXi::Constant(cols,rows)); - VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).rowwise().count().template cast(), VectorXi::Constant(rows, cols)); -} - -template void lpNorm(const VectorType& v) -{ - VectorType u = VectorType::Random(v.size()); - - VERIFY_IS_APPROX(u.template lpNorm(), u.cwise().abs().maxCoeff()); - VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum()); - VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum())); - VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum()); -} - -void test_eigen2_array() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( array(Matrix()) ); - CALL_SUBTEST_2( array(Matrix2f()) ); - CALL_SUBTEST_3( array(Matrix4d()) ); - CALL_SUBTEST_4( array(MatrixXcf(3, 3)) ); - CALL_SUBTEST_5( array(MatrixXf(8, 12)) ); - CALL_SUBTEST_6( array(MatrixXi(8, 12)) ); - } - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( comparisons(Matrix()) ); - CALL_SUBTEST_2( comparisons(Matrix2f()) ); - CALL_SUBTEST_3( comparisons(Matrix4d()) ); - CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) ); - CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) ); - } - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( lpNorm(Matrix()) ); - CALL_SUBTEST_2( lpNorm(Vector2f()) ); - CALL_SUBTEST_3( lpNorm(Vector3d()) ); - CALL_SUBTEST_4( lpNorm(Vector4f()) ); - CALL_SUBTEST_5( lpNorm(VectorXf(16)) ); - CALL_SUBTEST_7( lpNorm(VectorXcd(10)) ); - } -} diff --git a/test/eigen2/eigen2_basicstuff.cpp b/test/eigen2/eigen2_basicstuff.cpp deleted file mode 100644 index 4fa16d5ae..000000000 --- a/test/eigen2/eigen2_basicstuff.cpp +++ /dev/null @@ -1,108 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void basicStuff(const MatrixType& m) -{ - typedef typename MatrixType::Scalar Scalar; - typedef Matrix VectorType; - - int rows = m.rows(); - int cols = m.cols(); - - // this test relies a lot on Random.h, and there's not much more that we can do - // to test it, hence I consider that we will have tested Random.h - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - mzero = MatrixType::Zero(rows, cols), - identity = Matrix - ::Identity(rows, rows), - square = Matrix::Random(rows, rows); - VectorType v1 = VectorType::Random(rows), - v2 = VectorType::Random(rows), - vzero = VectorType::Zero(rows); - - Scalar x = ei_random(); - - int r = ei_random(0, rows-1), - c = ei_random(0, cols-1); - - m1.coeffRef(r,c) = x; - VERIFY_IS_APPROX(x, m1.coeff(r,c)); - m1(r,c) = x; - VERIFY_IS_APPROX(x, m1(r,c)); - v1.coeffRef(r) = x; - VERIFY_IS_APPROX(x, v1.coeff(r)); - v1(r) = x; - VERIFY_IS_APPROX(x, v1(r)); - v1[r] = x; - VERIFY_IS_APPROX(x, v1[r]); - - VERIFY_IS_APPROX( v1, v1); - VERIFY_IS_NOT_APPROX( v1, 2*v1); - VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); - if(NumTraits::HasFloatingPoint) - VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm()); - VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); - VERIFY_IS_APPROX( vzero, v1-v1); - VERIFY_IS_APPROX( m1, m1); - VERIFY_IS_NOT_APPROX( m1, 2*m1); - VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); - VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); - VERIFY_IS_APPROX( mzero, m1-m1); - - // always test operator() on each read-only expression class, - // in order to check const-qualifiers. - // indeed, if an expression class (here Zero) is meant to be read-only, - // hence has no _write() method, the corresponding MatrixBase method (here zero()) - // should return a const-qualified object so that it is the const-qualified - // operator() that gets called, which in turn calls _read(). - VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast(1)); - - // now test copying a row-vector into a (column-)vector and conversely. - square.col(r) = square.row(r).eval(); - Matrix rv(rows); - Matrix cv(rows); - rv = square.row(r); - cv = square.col(r); - VERIFY_IS_APPROX(rv, cv.transpose()); - - if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) - { - VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); - } - - VERIFY_IS_APPROX(m3 = m1,m1); - MatrixType m4; - VERIFY_IS_APPROX(m4 = m1,m1); - - // test swap - m3 = m1; - m1.swap(m2); - VERIFY_IS_APPROX(m3, m2); - if(rows*cols>=3) - { - VERIFY_IS_NOT_APPROX(m3, m1); - } -} - -void test_eigen2_basicstuff() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( basicStuff(Matrix()) ); - CALL_SUBTEST_2( basicStuff(Matrix4d()) ); - CALL_SUBTEST_3( basicStuff(MatrixXcf(3, 3)) ); - CALL_SUBTEST_4( basicStuff(MatrixXi(8, 12)) ); - CALL_SUBTEST_5( basicStuff(MatrixXcd(20, 20)) ); - CALL_SUBTEST_6( basicStuff(Matrix()) ); - CALL_SUBTEST_7( basicStuff(Matrix(10,10)) ); - } -} diff --git a/test/eigen2/eigen2_bug_132.cpp b/test/eigen2/eigen2_bug_132.cpp deleted file mode 100644 index 7fe3610ce..000000000 --- a/test/eigen2/eigen2_bug_132.cpp +++ /dev/null @@ -1,26 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -void test_eigen2_bug_132() { - int size = 100; - MatrixXd A(size, size); - VectorXd b(size), c(size); - { - VectorXd y = A.transpose() * (b-c); // bug 132: infinite recursion in coeffRef - VectorXd z = (b-c).transpose() * A; // bug 132: infinite recursion in coeffRef - } - - // the following ones weren't failing, but let's include them for completeness: - { - VectorXd y = A * (b-c); - VectorXd z = (b-c).transpose() * A.transpose(); - } -} diff --git a/test/eigen2/eigen2_cholesky.cpp b/test/eigen2/eigen2_cholesky.cpp deleted file mode 100644 index 9c4b6f561..000000000 --- a/test/eigen2/eigen2_cholesky.cpp +++ /dev/null @@ -1,113 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_NO_ASSERTION_CHECKING -#include "main.h" -#include -#include - -#ifdef HAS_GSL -#include "gsl_helper.h" -#endif - -template void cholesky(const MatrixType& m) -{ - /* this test covers the following files: - LLT.h LDLT.h - */ - int rows = m.rows(); - int cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix SquareMatrixType; - typedef Matrix VectorType; - - MatrixType a0 = MatrixType::Random(rows,cols); - VectorType vecB = VectorType::Random(rows), vecX(rows); - MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); - SquareMatrixType symm = a0 * a0.adjoint(); - // let's make sure the matrix is not singular or near singular - MatrixType a1 = MatrixType::Random(rows,cols); - symm += a1 * a1.adjoint(); - - #ifdef HAS_GSL - if (ei_is_same_type::ret) - { - typedef GslTraits Gsl; - typename Gsl::Matrix gMatA=0, gSymm=0; - typename Gsl::Vector gVecB=0, gVecX=0; - convert(symm, gSymm); - convert(symm, gMatA); - convert(vecB, gVecB); - convert(vecB, gVecX); - Gsl::cholesky(gMatA); - Gsl::cholesky_solve(gMatA, gVecB, gVecX); - VectorType vecX(rows), _vecX, _vecB; - convert(gVecX, _vecX); - symm.llt().solve(vecB, &vecX); - Gsl::prod(gSymm, gVecX, gVecB); - convert(gVecB, _vecB); - // test gsl itself ! - VERIFY_IS_APPROX(vecB, _vecB); - VERIFY_IS_APPROX(vecX, _vecX); - - Gsl::free(gMatA); - Gsl::free(gSymm); - Gsl::free(gVecB); - Gsl::free(gVecX); - } - #endif - - { - LDLT ldlt(symm); - VERIFY(ldlt.isPositiveDefinite()); - // in eigen3, LDLT is pivoting - //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); - ldlt.solve(vecB, &vecX); - VERIFY_IS_APPROX(symm * vecX, vecB); - ldlt.solve(matB, &matX); - VERIFY_IS_APPROX(symm * matX, matB); - } - - { - LLT chol(symm); - VERIFY(chol.isPositiveDefinite()); - VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint()); - chol.solve(vecB, &vecX); - VERIFY_IS_APPROX(symm * vecX, vecB); - chol.solve(matB, &matX); - VERIFY_IS_APPROX(symm * matX, matB); - } - -#if 0 // cholesky is not rank-revealing anyway - // test isPositiveDefinite on non definite matrix - if (rows>4) - { - SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint(); - LLT chol(symm); - VERIFY(!chol.isPositiveDefinite()); - LDLT cholnosqrt(symm); - VERIFY(!cholnosqrt.isPositiveDefinite()); - } -#endif -} - -void test_eigen2_cholesky() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( cholesky(Matrix()) ); - CALL_SUBTEST_2( cholesky(Matrix2d()) ); - CALL_SUBTEST_3( cholesky(Matrix3f()) ); - CALL_SUBTEST_4( cholesky(Matrix4d()) ); - CALL_SUBTEST_5( cholesky(MatrixXcd(7,7)) ); - CALL_SUBTEST_6( cholesky(MatrixXf(17,17)) ); - CALL_SUBTEST_7( cholesky(MatrixXd(33,33)) ); - } -} diff --git a/test/eigen2/eigen2_commainitializer.cpp b/test/eigen2/eigen2_commainitializer.cpp deleted file mode 100644 index e0f901e0b..000000000 --- a/test/eigen2/eigen2_commainitializer.cpp +++ /dev/null @@ -1,46 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -void test_eigen2_commainitializer() -{ - Matrix3d m3; - Matrix4d m4; - - VERIFY_RAISES_ASSERT( (m3 << 1, 2, 3, 4, 5, 6, 7, 8) ); - - #ifndef _MSC_VER - VERIFY_RAISES_ASSERT( (m3 << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) ); - #endif - - double data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; - Matrix3d ref = Map >(data); - - m3 = Matrix3d::Random(); - m3 << 1, 2, 3, 4, 5, 6, 7, 8, 9; - VERIFY_IS_APPROX(m3, ref ); - - Vector3d vec[3]; - vec[0] << 1, 4, 7; - vec[1] << 2, 5, 8; - vec[2] << 3, 6, 9; - m3 = Matrix3d::Random(); - m3 << vec[0], vec[1], vec[2]; - VERIFY_IS_APPROX(m3, ref); - - vec[0] << 1, 2, 3; - vec[1] << 4, 5, 6; - vec[2] << 7, 8, 9; - m3 = Matrix3d::Random(); - m3 << vec[0].transpose(), - 4, 5, 6, - vec[2].transpose(); - VERIFY_IS_APPROX(m3, ref); -} diff --git a/test/eigen2/eigen2_cwiseop.cpp b/test/eigen2/eigen2_cwiseop.cpp deleted file mode 100644 index 4391d19b4..000000000 --- a/test/eigen2/eigen2_cwiseop.cpp +++ /dev/null @@ -1,158 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include -#include - -using namespace std; - -template struct AddIfNull { - const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} - enum { Cost = NumTraits::AddCost }; -}; - -template void cwiseops(const MatrixType& m) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - int rows = m.rows(); - int cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - m4(rows, cols), - mzero = MatrixType::Zero(rows, cols), - mones = MatrixType::Ones(rows, cols), - identity = Matrix - ::Identity(rows, rows), - square = Matrix::Random(rows, rows); - VectorType v1 = VectorType::Random(rows), - v2 = VectorType::Random(rows), - vzero = VectorType::Zero(rows), - vones = VectorType::Ones(rows), - v3(rows); - - int r = ei_random(0, rows-1), - c = ei_random(0, cols-1); - - Scalar s1 = ei_random(); - - // test Zero, Ones, Constant, and the set* variants - m3 = MatrixType::Constant(rows, cols, s1); - for (int j=0; j >(mones); - - VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); - VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); - VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); - - VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); - VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); - m3 = m1; m3.cwise() += 1; - VERIFY_IS_APPROX(m1 + mones, m3); - m3 = m1; m3.cwise() -= 1; - VERIFY_IS_APPROX(m1 - mones, m3); - - VERIFY_IS_APPROX(m2, m2.cwise() * mones); - VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1); - m3 = m1; - m3.cwise() *= m2; - VERIFY_IS_APPROX(m3, m1.cwise() * m2); - - VERIFY_IS_APPROX(mones, m2.cwise()/m2); - if(NumTraits::HasFloatingPoint) - { - VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse())); - m3 = m1.cwise().abs().cwise().sqrt(); - VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); - VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); - VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); - - VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); - m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); - VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); - m3 = m1.cwise().abs(); - VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); - -// VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); - VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); - m3 = m1; - m3.cwise() /= m2; - VERIFY_IS_APPROX(m3, m1.cwise() / m2); - } - - // check min - VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); - VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); - VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); - - // check max - VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); - VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); - VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); - - VERIFY( (m1.cwise() == m1).all() ); - VERIFY( (m1.cwise() != m2).any() ); - VERIFY(!(m1.cwise() == (m1+mones)).any() ); - if (rows*cols>1) - { - m3 = m1; - m3(r,c) += 1; - VERIFY( (m1.cwise() == m3).any() ); - VERIFY( !(m1.cwise() == m3).all() ); - } - VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); - VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); - VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); - VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); - - VERIFY( (m1.cwise()(), Scalar(1)))).all() ); - VERIFY( !(m1.cwise()(), Scalar(1)))).all() ); - VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus(), Scalar(1)))).any() ); -} - -void test_eigen2_cwiseop() -{ - for(int i = 0; i < g_repeat ; i++) { - CALL_SUBTEST_1( cwiseops(Matrix()) ); - CALL_SUBTEST_2( cwiseops(Matrix4d()) ); - CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) ); - CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) ); - CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) ); - CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) ); - } -} diff --git a/test/eigen2/eigen2_determinant.cpp b/test/eigen2/eigen2_determinant.cpp deleted file mode 100644 index c7b4ad053..000000000 --- a/test/eigen2/eigen2_determinant.cpp +++ /dev/null @@ -1,61 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -template void determinant(const MatrixType& m) -{ - /* this test covers the following files: - Determinant.h - */ - int size = m.rows(); - - MatrixType m1(size, size), m2(size, size); - m1.setRandom(); - m2.setRandom(); - typedef typename MatrixType::Scalar Scalar; - Scalar x = ei_random(); - VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); - VERIFY_IS_APPROX((m1*m2).determinant(), m1.determinant() * m2.determinant()); - if(size==1) return; - int i = ei_random(0, size-1); - int j; - do { - j = ei_random(0, size-1); - } while(j==i); - m2 = m1; - m2.row(i).swap(m2.row(j)); - VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); - m2 = m1; - m2.col(i).swap(m2.col(j)); - VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); - VERIFY_IS_APPROX(m2.determinant(), m2.transpose().determinant()); - VERIFY_IS_APPROX(ei_conj(m2.determinant()), m2.adjoint().determinant()); - m2 = m1; - m2.row(i) += x*m2.row(j); - VERIFY_IS_APPROX(m2.determinant(), m1.determinant()); - m2 = m1; - m2.row(i) *= x; - VERIFY_IS_APPROX(m2.determinant(), m1.determinant() * x); -} - -void test_eigen2_determinant() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( determinant(Matrix()) ); - CALL_SUBTEST_2( determinant(Matrix()) ); - CALL_SUBTEST_3( determinant(Matrix()) ); - CALL_SUBTEST_4( determinant(Matrix()) ); - CALL_SUBTEST_5( determinant(Matrix, 10, 10>()) ); - CALL_SUBTEST_6( determinant(MatrixXd(20, 20)) ); - } - CALL_SUBTEST_6( determinant(MatrixXd(200, 200)) ); -} diff --git a/test/eigen2/eigen2_dynalloc.cpp b/test/eigen2/eigen2_dynalloc.cpp deleted file mode 100644 index 1891a9e33..000000000 --- a/test/eigen2/eigen2_dynalloc.cpp +++ /dev/null @@ -1,131 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -#if EIGEN_ARCH_WANTS_ALIGNMENT -#define ALIGNMENT 16 -#else -#define ALIGNMENT 1 -#endif - -void check_handmade_aligned_malloc() -{ - for(int i = 1; i < 1000; i++) - { - char *p = (char*)ei_handmade_aligned_malloc(i); - VERIFY(std::size_t(p)%ALIGNMENT==0); - // if the buffer is wrongly allocated this will give a bad write --> check with valgrind - for(int j = 0; j < i; j++) p[j]=0; - ei_handmade_aligned_free(p); - } -} - -void check_aligned_malloc() -{ - for(int i = 1; i < 1000; i++) - { - char *p = (char*)ei_aligned_malloc(i); - VERIFY(std::size_t(p)%ALIGNMENT==0); - // if the buffer is wrongly allocated this will give a bad write --> check with valgrind - for(int j = 0; j < i; j++) p[j]=0; - ei_aligned_free(p); - } -} - -void check_aligned_new() -{ - for(int i = 1; i < 1000; i++) - { - float *p = ei_aligned_new(i); - VERIFY(std::size_t(p)%ALIGNMENT==0); - // if the buffer is wrongly allocated this will give a bad write --> check with valgrind - for(int j = 0; j < i; j++) p[j]=0; - ei_aligned_delete(p,i); - } -} - -void check_aligned_stack_alloc() -{ - for(int i = 1; i < 1000; i++) - { - ei_declare_aligned_stack_constructed_variable(float, p, i, 0); - VERIFY(std::size_t(p)%ALIGNMENT==0); - // if the buffer is wrongly allocated this will give a bad write --> check with valgrind - for(int j = 0; j < i; j++) p[j]=0; - } -} - - -// test compilation with both a struct and a class... -struct MyStruct -{ - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - char dummychar; - Vector4f avec; -}; - -class MyClassA -{ - public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - char dummychar; - Vector4f avec; -}; - -template void check_dynaligned() -{ - T* obj = new T; - VERIFY(std::size_t(obj)%ALIGNMENT==0); - delete obj; -} - -void test_eigen2_dynalloc() -{ - // low level dynamic memory allocation - CALL_SUBTEST(check_handmade_aligned_malloc()); - CALL_SUBTEST(check_aligned_malloc()); - CALL_SUBTEST(check_aligned_new()); - CALL_SUBTEST(check_aligned_stack_alloc()); - - for (int i=0; i() ); - CALL_SUBTEST( check_dynaligned() ); - CALL_SUBTEST( check_dynaligned() ); - CALL_SUBTEST( check_dynaligned() ); - CALL_SUBTEST( check_dynaligned() ); - } - - // check static allocation, who knows ? - { - MyStruct foo0; VERIFY(std::size_t(foo0.avec.data())%ALIGNMENT==0); - MyClassA fooA; VERIFY(std::size_t(fooA.avec.data())%ALIGNMENT==0); - } - - // dynamic allocation, single object - for (int i=0; iavec.data())%ALIGNMENT==0); - MyClassA *fooA = new MyClassA(); VERIFY(std::size_t(fooA->avec.data())%ALIGNMENT==0); - delete foo0; - delete fooA; - } - - // dynamic allocation, array - const int N = 10; - for (int i=0; iavec.data())%ALIGNMENT==0); - MyClassA *fooA = new MyClassA[N]; VERIFY(std::size_t(fooA->avec.data())%ALIGNMENT==0); - delete[] foo0; - delete[] fooA; - } - -} diff --git a/test/eigen2/eigen2_eigensolver.cpp b/test/eigen2/eigen2_eigensolver.cpp deleted file mode 100644 index 48b4ace43..000000000 --- a/test/eigen2/eigen2_eigensolver.cpp +++ /dev/null @@ -1,146 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -#ifdef HAS_GSL -#include "gsl_helper.h" -#endif - -template void selfadjointeigensolver(const MatrixType& m) -{ - /* this test covers the following files: - EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) - */ - int rows = m.rows(); - int cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - typedef Matrix RealVectorType; - typedef typename std::complex::Real> Complex; - - RealScalar largerEps = 10*test_precision(); - - MatrixType a = MatrixType::Random(rows,cols); - MatrixType a1 = MatrixType::Random(rows,cols); - MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; - - MatrixType b = MatrixType::Random(rows,cols); - MatrixType b1 = MatrixType::Random(rows,cols); - MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; - - SelfAdjointEigenSolver eiSymm(symmA); - // generalized eigen pb - SelfAdjointEigenSolver eiSymmGen(symmA, symmB); - - #ifdef HAS_GSL - if (ei_is_same_type::ret) - { - typedef GslTraits Gsl; - typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; - typename GslTraits::Vector gEval=0; - RealVectorType _eval; - MatrixType _evec; - convert(symmA, gSymmA); - convert(symmB, gSymmB); - convert(symmA, gEvec); - gEval = GslTraits::createVector(rows); - - Gsl::eigen_symm(gSymmA, gEval, gEvec); - convert(gEval, _eval); - convert(gEvec, _evec); - - // test gsl itself ! - VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps)); - - // compare with eigen - VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); - VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs()); - - // generalized pb - Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); - convert(gEval, _eval); - convert(gEvec, _evec); - // test GSL itself: - VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps)); - - // compare with eigen - MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); - VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); - VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs()); - - Gsl::free(gSymmA); - Gsl::free(gSymmB); - GslTraits::free(gEval); - Gsl::free(gEvec); - } - #endif - - VERIFY((symmA * eiSymm.eigenvectors()).isApprox( - eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); - - // generalized eigen problem Ax = lBx - VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox( - symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); - - MatrixType sqrtSymmA = eiSymm.operatorSqrt(); - VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA); - VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt()); -} - -template void eigensolver(const MatrixType& m) -{ - /* this test covers the following files: - EigenSolver.h - */ - int rows = m.rows(); - int cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - typedef Matrix RealVectorType; - typedef typename std::complex::Real> Complex; - - // RealScalar largerEps = 10*test_precision(); - - MatrixType a = MatrixType::Random(rows,cols); - MatrixType a1 = MatrixType::Random(rows,cols); - MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; - - EigenSolver ei0(symmA); - VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); - VERIFY_IS_APPROX((symmA.template cast()) * (ei0.pseudoEigenvectors().template cast()), - (ei0.pseudoEigenvectors().template cast()) * (ei0.eigenvalues().asDiagonal())); - - EigenSolver ei1(a); - VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); - VERIFY_IS_APPROX(a.template cast() * ei1.eigenvectors(), - ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); - -} - -void test_eigen2_eigensolver() -{ - for(int i = 0; i < g_repeat; i++) { - // very important to test a 3x3 matrix since we provide a special path for it - CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); - CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); - CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(7,7)) ); - CALL_SUBTEST_4( selfadjointeigensolver(MatrixXcd(5,5)) ); - CALL_SUBTEST_5( selfadjointeigensolver(MatrixXd(19,19)) ); - - CALL_SUBTEST_6( eigensolver(Matrix4f()) ); - CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) ); - } -} - diff --git a/test/eigen2/eigen2_first_aligned.cpp b/test/eigen2/eigen2_first_aligned.cpp deleted file mode 100644 index 51bb3cad1..000000000 --- a/test/eigen2/eigen2_first_aligned.cpp +++ /dev/null @@ -1,49 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template -void test_eigen2_first_aligned_helper(Scalar *array, int size) -{ - const int packet_size = sizeof(Scalar) * ei_packet_traits::size; - VERIFY(((std::size_t(array) + sizeof(Scalar) * ei_alignmentOffset(array, size)) % packet_size) == 0); -} - -template -void test_eigen2_none_aligned_helper(Scalar *array, int size) -{ - VERIFY(ei_packet_traits::size == 1 || ei_alignmentOffset(array, size) == size); -} - -struct some_non_vectorizable_type { float x; }; - -void test_eigen2_first_aligned() -{ - EIGEN_ALIGN_128 float array_float[100]; - test_first_aligned_helper(array_float, 50); - test_first_aligned_helper(array_float+1, 50); - test_first_aligned_helper(array_float+2, 50); - test_first_aligned_helper(array_float+3, 50); - test_first_aligned_helper(array_float+4, 50); - test_first_aligned_helper(array_float+5, 50); - - EIGEN_ALIGN_128 double array_double[100]; - test_first_aligned_helper(array_double, 50); - test_first_aligned_helper(array_double+1, 50); - test_first_aligned_helper(array_double+2, 50); - - double *array_double_plus_4_bytes = (double*)(std::size_t(array_double)+4); - test_none_aligned_helper(array_double_plus_4_bytes, 50); - test_none_aligned_helper(array_double_plus_4_bytes+1, 50); - - some_non_vectorizable_type array_nonvec[100]; - test_first_aligned_helper(array_nonvec, 100); - test_none_aligned_helper(array_nonvec, 100); -} diff --git a/test/eigen2/eigen2_geometry.cpp b/test/eigen2/eigen2_geometry.cpp deleted file mode 100644 index 70b4ab5f1..000000000 --- a/test/eigen2/eigen2_geometry.cpp +++ /dev/null @@ -1,431 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include -#include -#include - -template void geometry(void) -{ - /* this test covers the following files: - Cross.h Quaternion.h, Transform.cpp - */ - - typedef Matrix Matrix2; - typedef Matrix Matrix3; - typedef Matrix Matrix4; - typedef Matrix Vector2; - typedef Matrix Vector3; - typedef Matrix Vector4; - typedef Quaternion Quaternionx; - typedef AngleAxis AngleAxisx; - typedef Transform Transform2; - typedef Transform Transform3; - typedef Scaling Scaling2; - typedef Scaling Scaling3; - typedef Translation Translation2; - typedef Translation Translation3; - - Scalar largeEps = test_precision(); - if (ei_is_same_type::ret) - largeEps = 1e-2f; - - Vector3 v0 = Vector3::Random(), - v1 = Vector3::Random(), - v2 = Vector3::Random(); - Vector2 u0 = Vector2::Random(); - Matrix3 matrot1; - - Scalar a = ei_random(-Scalar(M_PI), Scalar(M_PI)); - - // cross product - VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1)); - Matrix3 m; - m << v0.normalized(), - (v0.cross(v1)).normalized(), - (v0.cross(v1).cross(v0)).normalized(); - VERIFY(m.isUnitary()); - - // Quaternion: Identity(), setIdentity(); - Quaternionx q1, q2; - q2.setIdentity(); - VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); - q1.coeffs().setRandom(); - VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); - - // unitOrthogonal - VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1)); - VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1)); - VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); - VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1)); - - - VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); - VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); - VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); - m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); - VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); - VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); - - q1 = AngleAxisx(a, v0.normalized()); - q2 = AngleAxisx(a, v1.normalized()); - - // angular distance - Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); - if (refangle>Scalar(M_PI)) - refangle = Scalar(2)*Scalar(M_PI) - refangle; - - if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) - { - VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); - } - - // rotation matrix conversion - VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); - VERIFY_IS_APPROX(q1 * q2 * v2, - q1.toRotationMatrix() * q2.toRotationMatrix() * v2); - - VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox( - q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); - - q2 = q1.toRotationMatrix(); - VERIFY_IS_APPROX(q1*v1,q2*v1); - - matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) - * AngleAxisx(Scalar(0.2), Vector3::UnitY()) - * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); - VERIFY_IS_APPROX(matrot1 * v1, - AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() - * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() - * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); - - // angle-axis conversion - AngleAxisx aa = q1; - VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); - VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); - - // from two vector creation - VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); - VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); - - // inverse and conjugate - VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); - VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); - - // AngleAxis - VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), - Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); - - AngleAxisx aa1; - m = q1.toRotationMatrix(); - aa1 = m; - VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), - Quaternionx(m).toRotationMatrix()); - - // Transform - // TODO complete the tests ! - a = 0; - while (ei_abs(a)(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); - q1 = AngleAxisx(a, v0.normalized()); - Transform3 t0, t1, t2; - // first test setIdentity() and Identity() - t0.setIdentity(); - VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); - t0.matrix().setZero(); - t0 = Transform3::Identity(); - VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); - - t0.linear() = q1.toRotationMatrix(); - t1.setIdentity(); - t1.linear() = q1.toRotationMatrix(); - - v0 << 50, 2, 1;//= ei_random_matrix().cwiseProduct(Vector3(10,2,0.5)); - t0.scale(v0); - t1.prescale(v0); - - VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); - //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); - - t0.setIdentity(); - t1.setIdentity(); - v1 << 1, 2, 3; - t0.linear() = q1.toRotationMatrix(); - t0.pretranslate(v0); - t0.scale(v1); - t1.linear() = q1.conjugate().toRotationMatrix(); - t1.prescale(v1.cwise().inverse()); - t1.translate(-v0); - - VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision())); - - t1.fromPositionOrientationScale(v0, q1, v1); - VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); - VERIFY_IS_APPROX(t1*v1, t0*v1); - - t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); - t1.setIdentity(); t1.scale(v0).rotate(q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); - VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); - - // More transform constructors, operator=, operator*= - - Matrix3 mat3 = Matrix3::Random(); - Matrix4 mat4; - mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); - Transform3 tmat3(mat3), tmat4(mat4); - tmat4.matrix()(3,3) = Scalar(1); - VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); - - Scalar a3 = ei_random(-Scalar(M_PI), Scalar(M_PI)); - Vector3 v3 = Vector3::Random().normalized(); - AngleAxisx aa3(a3, v3); - Transform3 t3(aa3); - Transform3 t4; - t4 = aa3; - VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); - t4.rotate(AngleAxisx(-a3,v3)); - VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); - t4 *= aa3; - VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); - - v3 = Vector3::Random(); - Translation3 tv3(v3); - Transform3 t5(tv3); - t4 = tv3; - VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); - t4.translate(-v3); - VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); - t4 *= tv3; - VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); - - Scaling3 sv3(v3); - Transform3 t6(sv3); - t4 = sv3; - VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); - t4.scale(v3.cwise().inverse()); - VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); - t4 *= sv3; - VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); - - // matrix * transform - VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix()); - - // chained Transform product - VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); - - // check that Transform product doesn't have aliasing problems - t5 = t4; - t5 = t5*t5; - VERIFY_IS_APPROX(t5, t4*t4); - - // 2D transformation - Transform2 t20, t21; - Vector2 v20 = Vector2::Random(); - Vector2 v21 = Vector2::Random(); - for (int k=0; k<2; ++k) - if (ei_abs(v21[k])(a).toRotationMatrix(); - VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), - t21.pretranslate(v20).scale(v21).matrix()); - - t21.setIdentity(); - t21.linear() = Rotation2D(-a).toRotationMatrix(); - VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) - * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision()) ); - - // Transform - new API - // 3D - t0.setIdentity(); - t0.rotate(q1).scale(v0).translate(v0); - // mat * scaling and mat * translation - t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // mat * transformation and scaling * translation - t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - t0.setIdentity(); - t0.prerotate(q1).prescale(v0).pretranslate(v0); - // translation * scaling and transformation * mat - t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // scaling * mat and translation * mat - t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - t0.setIdentity(); - t0.scale(v0).translate(v0).rotate(q1); - // translation * mat and scaling * transformation - t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // transformation * scaling - t0.scale(v0); - t1 = t1 * Scaling3(v0); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // transformation * translation - t0.translate(v0); - t1 = t1 * Translation3(v0); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // translation * transformation - t0.pretranslate(v0); - t1 = Translation3(v0) * t1; - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // transform * quaternion - t0.rotate(q1); - t1 = t1 * q1; - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // translation * quaternion - t0.translate(v1).rotate(q1); - t1 = t1 * (Translation3(v1) * q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // scaling * quaternion - t0.scale(v1).rotate(q1); - t1 = t1 * (Scaling3(v1) * q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // quaternion * transform - t0.prerotate(q1); - t1 = q1 * t1; - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // quaternion * translation - t0.rotate(q1).translate(v1); - t1 = t1 * (q1 * Translation3(v1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // quaternion * scaling - t0.rotate(q1).scale(v1); - t1 = t1 * (q1 * Scaling3(v1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // translation * vector - t0.setIdentity(); - t0.translate(v0); - VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1); - - // scaling * vector - t0.setIdentity(); - t0.scale(v0); - VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1); - - // test transform inversion - t0.setIdentity(); - t0.translate(v0); - t0.linear().setRandom(); - VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse()); - t0.setIdentity(); - t0.translate(v0).rotate(q1); - VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse()); - - // test extract rotation and scaling - t0.setIdentity(); - t0.translate(v0).rotate(q1).scale(v1); - VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1); - - Matrix3 mat_rotation, mat_scaling; - t0.setIdentity(); - t0.translate(v0).rotate(q1).scale(v1); - t0.computeRotationScaling(&mat_rotation, &mat_scaling); - VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); - VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); - VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); - t0.computeScalingRotation(&mat_scaling, &mat_rotation); - VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); - VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); - VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); - - // test casting - Transform t1f = t1.template cast(); - VERIFY_IS_APPROX(t1f.template cast(),t1); - Transform t1d = t1.template cast(); - VERIFY_IS_APPROX(t1d.template cast(),t1); - - Translation3 tr1(v0); - Translation tr1f = tr1.template cast(); - VERIFY_IS_APPROX(tr1f.template cast(),tr1); - Translation tr1d = tr1.template cast(); - VERIFY_IS_APPROX(tr1d.template cast(),tr1); - - Scaling3 sc1(v0); - Scaling sc1f = sc1.template cast(); - VERIFY_IS_APPROX(sc1f.template cast(),sc1); - Scaling sc1d = sc1.template cast(); - VERIFY_IS_APPROX(sc1d.template cast(),sc1); - - Quaternion q1f = q1.template cast(); - VERIFY_IS_APPROX(q1f.template cast(),q1); - Quaternion q1d = q1.template cast(); - VERIFY_IS_APPROX(q1d.template cast(),q1); - - AngleAxis aa1f = aa1.template cast(); - VERIFY_IS_APPROX(aa1f.template cast(),aa1); - AngleAxis aa1d = aa1.template cast(); - VERIFY_IS_APPROX(aa1d.template cast(),aa1); - - Rotation2D r2d1(ei_random()); - Rotation2D r2d1f = r2d1.template cast(); - VERIFY_IS_APPROX(r2d1f.template cast(),r2d1); - Rotation2D r2d1d = r2d1.template cast(); - VERIFY_IS_APPROX(r2d1d.template cast(),r2d1); - - m = q1; -// m.col(1) = Vector3(0,ei_random(),ei_random()).normalized(); -// m.col(0) = Vector3(-1,0,0).normalized(); -// m.col(2) = m.col(0).cross(m.col(1)); - #define VERIFY_EULER(I,J,K, X,Y,Z) { \ - Vector3 ea = m.eulerAngles(I,J,K); \ - Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \ - VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \ - } - VERIFY_EULER(0,1,2, X,Y,Z); - VERIFY_EULER(0,1,0, X,Y,X); - VERIFY_EULER(0,2,1, X,Z,Y); - VERIFY_EULER(0,2,0, X,Z,X); - - VERIFY_EULER(1,2,0, Y,Z,X); - VERIFY_EULER(1,2,1, Y,Z,Y); - VERIFY_EULER(1,0,2, Y,X,Z); - VERIFY_EULER(1,0,1, Y,X,Y); - - VERIFY_EULER(2,0,1, Z,X,Y); - VERIFY_EULER(2,0,2, Z,X,Z); - VERIFY_EULER(2,1,0, Z,Y,X); - VERIFY_EULER(2,1,2, Z,Y,Z); - - // colwise/rowwise cross product - mat3.setRandom(); - Vector3 vec3 = Vector3::Random(); - Matrix3 mcross; - int i = ei_random(0,2); - mcross = mat3.colwise().cross(vec3); - VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); - mcross = mat3.rowwise().cross(vec3); - VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); - - -} - -void test_eigen2_geometry() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( geometry() ); - CALL_SUBTEST_2( geometry() ); - } -} diff --git a/test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp b/test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp deleted file mode 100644 index f83b57249..000000000 --- a/test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp +++ /dev/null @@ -1,434 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN2_SUPPORT_STAGE15_RESOLVE_API_CONFLICTS_WARN - -#include "main.h" -#include -#include -#include - -template void geometry(void) -{ - /* this test covers the following files: - Cross.h Quaternion.h, Transform.cpp - */ - - typedef Matrix Matrix2; - typedef Matrix Matrix3; - typedef Matrix Matrix4; - typedef Matrix Vector2; - typedef Matrix Vector3; - typedef Matrix Vector4; - typedef eigen2_Quaternion Quaternionx; - typedef eigen2_AngleAxis AngleAxisx; - typedef eigen2_Transform Transform2; - typedef eigen2_Transform Transform3; - typedef eigen2_Scaling Scaling2; - typedef eigen2_Scaling Scaling3; - typedef eigen2_Translation Translation2; - typedef eigen2_Translation Translation3; - - Scalar largeEps = test_precision(); - if (ei_is_same_type::ret) - largeEps = 1e-2f; - - Vector3 v0 = Vector3::Random(), - v1 = Vector3::Random(), - v2 = Vector3::Random(); - Vector2 u0 = Vector2::Random(); - Matrix3 matrot1; - - Scalar a = ei_random(-Scalar(M_PI), Scalar(M_PI)); - - // cross product - VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1)); - Matrix3 m; - m << v0.normalized(), - (v0.cross(v1)).normalized(), - (v0.cross(v1).cross(v0)).normalized(); - VERIFY(m.isUnitary()); - - // Quaternion: Identity(), setIdentity(); - Quaternionx q1, q2; - q2.setIdentity(); - VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); - q1.coeffs().setRandom(); - VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); - - // unitOrthogonal - VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1)); - VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1)); - VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); - VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1)); - - - VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); - VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); - VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); - m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); - VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); - VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); - - q1 = AngleAxisx(a, v0.normalized()); - q2 = AngleAxisx(a, v1.normalized()); - - // angular distance - Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); - if (refangle>Scalar(M_PI)) - refangle = Scalar(2)*Scalar(M_PI) - refangle; - - if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) - { - VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); - } - - // rotation matrix conversion - VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); - VERIFY_IS_APPROX(q1 * q2 * v2, - q1.toRotationMatrix() * q2.toRotationMatrix() * v2); - - VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox( - q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); - - q2 = q1.toRotationMatrix(); - VERIFY_IS_APPROX(q1*v1,q2*v1); - - matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) - * AngleAxisx(Scalar(0.2), Vector3::UnitY()) - * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); - VERIFY_IS_APPROX(matrot1 * v1, - AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() - * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() - * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); - - // angle-axis conversion - AngleAxisx aa = q1; - VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); - VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); - - // from two vector creation - VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); - VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); - - // inverse and conjugate - VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); - VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); - - // AngleAxis - VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), - Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); - - AngleAxisx aa1; - m = q1.toRotationMatrix(); - aa1 = m; - VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), - Quaternionx(m).toRotationMatrix()); - - // Transform - // TODO complete the tests ! - a = 0; - while (ei_abs(a)(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); - q1 = AngleAxisx(a, v0.normalized()); - Transform3 t0, t1, t2; - // first test setIdentity() and Identity() - t0.setIdentity(); - VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); - t0.matrix().setZero(); - t0 = Transform3::Identity(); - VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); - - t0.linear() = q1.toRotationMatrix(); - t1.setIdentity(); - t1.linear() = q1.toRotationMatrix(); - - v0 << 50, 2, 1;//= ei_random_matrix().cwiseProduct(Vector3(10,2,0.5)); - t0.scale(v0); - t1.prescale(v0); - - VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); - //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); - - t0.setIdentity(); - t1.setIdentity(); - v1 << 1, 2, 3; - t0.linear() = q1.toRotationMatrix(); - t0.pretranslate(v0); - t0.scale(v1); - t1.linear() = q1.conjugate().toRotationMatrix(); - t1.prescale(v1.cwise().inverse()); - t1.translate(-v0); - - VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision())); - - t1.fromPositionOrientationScale(v0, q1, v1); - VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); - VERIFY_IS_APPROX(t1*v1, t0*v1); - - t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); - t1.setIdentity(); t1.scale(v0).rotate(q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); - VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); - - // More transform constructors, operator=, operator*= - - Matrix3 mat3 = Matrix3::Random(); - Matrix4 mat4; - mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); - Transform3 tmat3(mat3), tmat4(mat4); - tmat4.matrix()(3,3) = Scalar(1); - VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); - - Scalar a3 = ei_random(-Scalar(M_PI), Scalar(M_PI)); - Vector3 v3 = Vector3::Random().normalized(); - AngleAxisx aa3(a3, v3); - Transform3 t3(aa3); - Transform3 t4; - t4 = aa3; - VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); - t4.rotate(AngleAxisx(-a3,v3)); - VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); - t4 *= aa3; - VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); - - v3 = Vector3::Random(); - Translation3 tv3(v3); - Transform3 t5(tv3); - t4 = tv3; - VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); - t4.translate(-v3); - VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); - t4 *= tv3; - VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); - - Scaling3 sv3(v3); - Transform3 t6(sv3); - t4 = sv3; - VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); - t4.scale(v3.cwise().inverse()); - VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); - t4 *= sv3; - VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); - - // matrix * transform - VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix()); - - // chained Transform product - VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); - - // check that Transform product doesn't have aliasing problems - t5 = t4; - t5 = t5*t5; - VERIFY_IS_APPROX(t5, t4*t4); - - // 2D transformation - Transform2 t20, t21; - Vector2 v20 = Vector2::Random(); - Vector2 v21 = Vector2::Random(); - for (int k=0; k<2; ++k) - if (ei_abs(v21[k])(a).toRotationMatrix(); - VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), - t21.pretranslate(v20).scale(v21).matrix()); - - t21.setIdentity(); - t21.linear() = Rotation2D(-a).toRotationMatrix(); - VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) - * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision()) ); - - // Transform - new API - // 3D - t0.setIdentity(); - t0.rotate(q1).scale(v0).translate(v0); - // mat * scaling and mat * translation - t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // mat * transformation and scaling * translation - t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - t0.setIdentity(); - t0.prerotate(q1).prescale(v0).pretranslate(v0); - // translation * scaling and transformation * mat - t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // scaling * mat and translation * mat - t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - t0.setIdentity(); - t0.scale(v0).translate(v0).rotate(q1); - // translation * mat and scaling * transformation - t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // transformation * scaling - t0.scale(v0); - t1 = t1 * Scaling3(v0); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // transformation * translation - t0.translate(v0); - t1 = t1 * Translation3(v0); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - // translation * transformation - t0.pretranslate(v0); - t1 = Translation3(v0) * t1; - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // transform * quaternion - t0.rotate(q1); - t1 = t1 * q1; - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // translation * quaternion - t0.translate(v1).rotate(q1); - t1 = t1 * (Translation3(v1) * q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // scaling * quaternion - t0.scale(v1).rotate(q1); - t1 = t1 * (Scaling3(v1) * q1); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // quaternion * transform - t0.prerotate(q1); - t1 = q1 * t1; - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // quaternion * translation - t0.rotate(q1).translate(v1); - t1 = t1 * (q1 * Translation3(v1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // quaternion * scaling - t0.rotate(q1).scale(v1); - t1 = t1 * (q1 * Scaling3(v1)); - VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); - - // translation * vector - t0.setIdentity(); - t0.translate(v0); - VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1); - - // scaling * vector - t0.setIdentity(); - t0.scale(v0); - VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1); - - // test transform inversion - t0.setIdentity(); - t0.translate(v0); - t0.linear().setRandom(); - VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse()); - t0.setIdentity(); - t0.translate(v0).rotate(q1); - VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse()); - - // test extract rotation and scaling - t0.setIdentity(); - t0.translate(v0).rotate(q1).scale(v1); - VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1); - - Matrix3 mat_rotation, mat_scaling; - t0.setIdentity(); - t0.translate(v0).rotate(q1).scale(v1); - t0.computeRotationScaling(&mat_rotation, &mat_scaling); - VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); - VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); - VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); - t0.computeScalingRotation(&mat_scaling, &mat_rotation); - VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); - VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); - VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); - - // test casting - eigen2_Transform t1f = t1.template cast(); - VERIFY_IS_APPROX(t1f.template cast(),t1); - eigen2_Transform t1d = t1.template cast(); - VERIFY_IS_APPROX(t1d.template cast(),t1); - - Translation3 tr1(v0); - eigen2_Translation tr1f = tr1.template cast(); - VERIFY_IS_APPROX(tr1f.template cast(),tr1); - eigen2_Translation tr1d = tr1.template cast(); - VERIFY_IS_APPROX(tr1d.template cast(),tr1); - - Scaling3 sc1(v0); - eigen2_Scaling sc1f = sc1.template cast(); - VERIFY_IS_APPROX(sc1f.template cast(),sc1); - eigen2_Scaling sc1d = sc1.template cast(); - VERIFY_IS_APPROX(sc1d.template cast(),sc1); - - eigen2_Quaternion q1f = q1.template cast(); - VERIFY_IS_APPROX(q1f.template cast(),q1); - eigen2_Quaternion q1d = q1.template cast(); - VERIFY_IS_APPROX(q1d.template cast(),q1); - - eigen2_AngleAxis aa1f = aa1.template cast(); - VERIFY_IS_APPROX(aa1f.template cast(),aa1); - eigen2_AngleAxis aa1d = aa1.template cast(); - VERIFY_IS_APPROX(aa1d.template cast(),aa1); - - eigen2_Rotation2D r2d1(ei_random()); - eigen2_Rotation2D r2d1f = r2d1.template cast(); - VERIFY_IS_APPROX(r2d1f.template cast(),r2d1); - eigen2_Rotation2D r2d1d = r2d1.template cast(); - VERIFY_IS_APPROX(r2d1d.template cast(),r2d1); - - m = q1; -// m.col(1) = Vector3(0,ei_random(),ei_random()).normalized(); -// m.col(0) = Vector3(-1,0,0).normalized(); -// m.col(2) = m.col(0).cross(m.col(1)); - #define VERIFY_EULER(I,J,K, X,Y,Z) { \ - Vector3 ea = m.eulerAngles(I,J,K); \ - Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \ - VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \ - } - VERIFY_EULER(0,1,2, X,Y,Z); - VERIFY_EULER(0,1,0, X,Y,X); - VERIFY_EULER(0,2,1, X,Z,Y); - VERIFY_EULER(0,2,0, X,Z,X); - - VERIFY_EULER(1,2,0, Y,Z,X); - VERIFY_EULER(1,2,1, Y,Z,Y); - VERIFY_EULER(1,0,2, Y,X,Z); - VERIFY_EULER(1,0,1, Y,X,Y); - - VERIFY_EULER(2,0,1, Z,X,Y); - VERIFY_EULER(2,0,2, Z,X,Z); - VERIFY_EULER(2,1,0, Z,Y,X); - VERIFY_EULER(2,1,2, Z,Y,Z); - - // colwise/rowwise cross product - mat3.setRandom(); - Vector3 vec3 = Vector3::Random(); - Matrix3 mcross; - int i = ei_random(0,2); - mcross = mat3.colwise().cross(vec3); - VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); - mcross = mat3.rowwise().cross(vec3); - VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); - - -} - -void test_eigen2_geometry_with_eigen2_prefix() -{ - std::cout << "eigen2 support: " << EIGEN2_SUPPORT_STAGE << std::endl; - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( geometry() ); - CALL_SUBTEST_2( geometry() ); - } -} diff --git a/test/eigen2/eigen2_hyperplane.cpp b/test/eigen2/eigen2_hyperplane.cpp deleted file mode 100644 index f3f85e14d..000000000 --- a/test/eigen2/eigen2_hyperplane.cpp +++ /dev/null @@ -1,126 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include -#include -#include - -template void hyperplane(const HyperplaneType& _plane) -{ - /* this test covers the following files: - Hyperplane.h - */ - - const int dim = _plane.dim(); - typedef typename HyperplaneType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - typedef Matrix MatrixType; - - VectorType p0 = VectorType::Random(dim); - VectorType p1 = VectorType::Random(dim); - - VectorType n0 = VectorType::Random(dim).normalized(); - VectorType n1 = VectorType::Random(dim).normalized(); - - HyperplaneType pl0(n0, p0); - HyperplaneType pl1(n1, p1); - HyperplaneType pl2 = pl1; - - Scalar s0 = ei_random(); - Scalar s1 = ei_random(); - - VERIFY_IS_APPROX( n1.eigen2_dot(n1), Scalar(1) ); - - VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) ); - VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 ); - VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) ); - VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) ); - - // transform - if (!NumTraits::IsComplex) - { - MatrixType rot = MatrixType::Random(dim,dim).qr().matrixQ(); - Scaling scaling(VectorType::Random()); - Translation translation(VectorType::Random()); - - pl2 = pl1; - VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) ); - pl2 = pl1; - VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) ); - pl2 = pl1; - VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) ); - pl2 = pl1; - VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation) - .absDistance((rot*scaling*translation) * p1), Scalar(1) ); - pl2 = pl1; - VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry) - .absDistance((rot*translation) * p1), Scalar(1) ); - } - - // casting - const int Dim = HyperplaneType::AmbientDimAtCompileTime; - typedef typename GetDifferentType::type OtherScalar; - Hyperplane hp1f = pl1.template cast(); - VERIFY_IS_APPROX(hp1f.template cast(),pl1); - Hyperplane hp1d = pl1.template cast(); - VERIFY_IS_APPROX(hp1d.template cast(),pl1); -} - -template void lines() -{ - typedef Hyperplane HLine; - typedef ParametrizedLine PLine; - typedef Matrix Vector; - typedef Matrix CoeffsType; - - for(int i = 0; i < 10; i++) - { - Vector center = Vector::Random(); - Vector u = Vector::Random(); - Vector v = Vector::Random(); - Scalar a = ei_random(); - while (ei_abs(a-1) < 1e-4) a = ei_random(); - while (u.norm() < 1e-4) u = Vector::Random(); - while (v.norm() < 1e-4) v = Vector::Random(); - - HLine line_u = HLine::Through(center + u, center + a*u); - HLine line_v = HLine::Through(center + v, center + a*v); - - // the line equations should be normalized so that a^2+b^2=1 - VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); - VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); - - Vector result = line_u.intersection(line_v); - - // the lines should intersect at the point we called "center" - VERIFY_IS_APPROX(result, center); - - // check conversions between two types of lines - PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable - CoeffsType converted_coeffs(HLine(pl).coeffs()); - converted_coeffs *= line_u.coeffs()(0)/converted_coeffs(0); - VERIFY(line_u.coeffs().isApprox(converted_coeffs)); - } -} - -void test_eigen2_hyperplane() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( hyperplane(Hyperplane()) ); - CALL_SUBTEST_2( hyperplane(Hyperplane()) ); - CALL_SUBTEST_3( hyperplane(Hyperplane()) ); - CALL_SUBTEST_4( hyperplane(Hyperplane,5>()) ); - CALL_SUBTEST_5( lines() ); - CALL_SUBTEST_6( lines() ); - } -} diff --git a/test/eigen2/eigen2_inverse.cpp b/test/eigen2/eigen2_inverse.cpp deleted file mode 100644 index 5de1dfefa..000000000 --- a/test/eigen2/eigen2_inverse.cpp +++ /dev/null @@ -1,63 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -template void inverse(const MatrixType& m) -{ - /* this test covers the following files: - Inverse.h - */ - int rows = m.rows(); - int cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - MatrixType m1 = MatrixType::Random(rows, cols), - m2(rows, cols), - mzero = MatrixType::Zero(rows, cols), - identity = MatrixType::Identity(rows, rows); - - while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8) - { - m1 = MatrixType::Random(rows, cols); - } - - m2 = m1.inverse(); - VERIFY_IS_APPROX(m1, m2.inverse() ); - - m1.computeInverse(&m2); - VERIFY_IS_APPROX(m1, m2.inverse() ); - - VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); - - VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); - VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); - - VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); - - // since for the general case we implement separately row-major and col-major, test that - VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); -} - -void test_eigen2_inverse() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( inverse(Matrix()) ); - CALL_SUBTEST_2( inverse(Matrix2d()) ); - CALL_SUBTEST_3( inverse(Matrix3f()) ); - CALL_SUBTEST_4( inverse(Matrix4f()) ); - CALL_SUBTEST_5( inverse(MatrixXf(8,8)) ); - CALL_SUBTEST_6( inverse(MatrixXcd(7,7)) ); - } -} diff --git a/test/eigen2/eigen2_linearstructure.cpp b/test/eigen2/eigen2_linearstructure.cpp deleted file mode 100644 index 22f02c396..000000000 --- a/test/eigen2/eigen2_linearstructure.cpp +++ /dev/null @@ -1,84 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void linearStructure(const MatrixType& m) -{ - /* this test covers the following files: - Sum.h Difference.h Opposite.h ScalarMultiple.h - */ - - typedef typename MatrixType::Scalar Scalar; - typedef Matrix VectorType; - - int rows = m.rows(); - int cols = m.cols(); - - // this test relies a lot on Random.h, and there's not much more that we can do - // to test it, hence I consider that we will have tested Random.h - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - mzero = MatrixType::Zero(rows, cols); - - Scalar s1 = ei_random(); - while (ei_abs(s1)<1e-3) s1 = ei_random(); - - int r = ei_random(0, rows-1), - c = ei_random(0, cols-1); - - VERIFY_IS_APPROX(-(-m1), m1); - VERIFY_IS_APPROX(m1+m1, 2*m1); - VERIFY_IS_APPROX(m1+m2-m1, m2); - VERIFY_IS_APPROX(-m2+m1+m2, m1); - VERIFY_IS_APPROX(m1*s1, s1*m1); - VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); - VERIFY_IS_APPROX((-m1+m2)*s1, -s1*m1+s1*m2); - m3 = m2; m3 += m1; - VERIFY_IS_APPROX(m3, m1+m2); - m3 = m2; m3 -= m1; - VERIFY_IS_APPROX(m3, m2-m1); - m3 = m2; m3 *= s1; - VERIFY_IS_APPROX(m3, s1*m2); - if(NumTraits::HasFloatingPoint) - { - m3 = m2; m3 /= s1; - VERIFY_IS_APPROX(m3, m2/s1); - } - - // again, test operator() to check const-qualification - VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c))); - VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c))); - VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); - VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c))); - VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1); - if(NumTraits::HasFloatingPoint) - VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1); - - // use .block to disable vectorization and compare to the vectorized version - VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1); - VERIFY_IS_APPROX(m1.cwise() * m1.block(0,0,rows,cols), m1.cwise() * m1); - VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1); - VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1); -} - -void test_eigen2_linearstructure() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( linearStructure(Matrix()) ); - CALL_SUBTEST_2( linearStructure(Matrix2f()) ); - CALL_SUBTEST_3( linearStructure(Vector3d()) ); - CALL_SUBTEST_4( linearStructure(Matrix4d()) ); - CALL_SUBTEST_5( linearStructure(MatrixXcf(3, 3)) ); - CALL_SUBTEST_6( linearStructure(MatrixXf(8, 12)) ); - CALL_SUBTEST_7( linearStructure(MatrixXi(8, 12)) ); - CALL_SUBTEST_8( linearStructure(MatrixXcd(20, 20)) ); - } -} diff --git a/test/eigen2/eigen2_lu.cpp b/test/eigen2/eigen2_lu.cpp deleted file mode 100644 index e993b1c7c..000000000 --- a/test/eigen2/eigen2_lu.cpp +++ /dev/null @@ -1,122 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -template -void doSomeRankPreservingOperations(Eigen::MatrixBase& m) -{ - typedef typename Derived::RealScalar RealScalar; - for(int a = 0; a < 3*(m.rows()+m.cols()); a++) - { - RealScalar d = Eigen::ei_random(-1,1); - int i = Eigen::ei_random(0,m.rows()-1); // i is a random row number - int j; - do { - j = Eigen::ei_random(0,m.rows()-1); - } while (i==j); // j is another one (must be different) - m.row(i) += d * m.row(j); - - i = Eigen::ei_random(0,m.cols()-1); // i is a random column number - do { - j = Eigen::ei_random(0,m.cols()-1); - } while (i==j); // j is another one (must be different) - m.col(i) += d * m.col(j); - } -} - -template void lu_non_invertible() -{ - /* this test covers the following files: - LU.h - */ - // NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function - int rows = ei_random(20,200), cols = ei_random(20,200), cols2 = ei_random(20,200); - int rank = ei_random(1, std::min(rows, cols)-1); - - MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1); - m1 = MatrixType::Random(rows,cols); - if(rows <= cols) - for(int i = rank; i < rows; i++) m1.row(i).setZero(); - else - for(int i = rank; i < cols; i++) m1.col(i).setZero(); - doSomeRankPreservingOperations(m1); - - LU lu(m1); - typename LU::KernelResultType m1kernel = lu.kernel(); - typename LU::ImageResultType m1image = lu.image(); - - VERIFY(rank == lu.rank()); - VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); - VERIFY(!lu.isInjective()); - VERIFY(!lu.isInvertible()); - VERIFY(lu.isSurjective() == (lu.rank() == rows)); - VERIFY((m1 * m1kernel).isMuchSmallerThan(m1)); - VERIFY(m1image.lu().rank() == rank); - MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols()); - sidebyside << m1, m1image; - VERIFY(sidebyside.lu().rank() == rank); - m2 = MatrixType::Random(cols,cols2); - m3 = m1*m2; - m2 = MatrixType::Random(cols,cols2); - lu.solve(m3, &m2); - VERIFY_IS_APPROX(m3, m1*m2); - /* solve now always returns true - m3 = MatrixType::Random(rows,cols2); - VERIFY(!lu.solve(m3, &m2)); - */ -} - -template void lu_invertible() -{ - /* this test covers the following files: - LU.h - */ - typedef typename NumTraits::Real RealScalar; - int size = ei_random(10,200); - - MatrixType m1(size, size), m2(size, size), m3(size, size); - m1 = MatrixType::Random(size,size); - - if (ei_is_same_type::ret) - { - // let's build a matrix more stable to inverse - MatrixType a = MatrixType::Random(size,size*2); - m1 += a * a.adjoint(); - } - - LU lu(m1); - VERIFY(0 == lu.dimensionOfKernel()); - VERIFY(size == lu.rank()); - VERIFY(lu.isInjective()); - VERIFY(lu.isSurjective()); - VERIFY(lu.isInvertible()); - VERIFY(lu.image().lu().isInvertible()); - m3 = MatrixType::Random(size,size); - lu.solve(m3, &m2); - VERIFY_IS_APPROX(m3, m1*m2); - VERIFY_IS_APPROX(m2, lu.inverse()*m3); - m3 = MatrixType::Random(size,size); - VERIFY(lu.solve(m3, &m2)); -} - -void test_eigen2_lu() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( lu_non_invertible() ); - CALL_SUBTEST_2( lu_non_invertible() ); - CALL_SUBTEST_3( lu_non_invertible() ); - CALL_SUBTEST_4( lu_non_invertible() ); - CALL_SUBTEST_1( lu_invertible() ); - CALL_SUBTEST_2( lu_invertible() ); - CALL_SUBTEST_3( lu_invertible() ); - CALL_SUBTEST_4( lu_invertible() ); - } -} diff --git a/test/eigen2/eigen2_map.cpp b/test/eigen2/eigen2_map.cpp deleted file mode 100644 index 4a1c4e11a..000000000 --- a/test/eigen2/eigen2_map.cpp +++ /dev/null @@ -1,114 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2007-2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void map_class_vector(const VectorType& m) -{ - typedef typename VectorType::Scalar Scalar; - - int size = m.size(); - - // test Map.h - Scalar* array1 = ei_aligned_new(size); - Scalar* array2 = ei_aligned_new(size); - Scalar* array3 = new Scalar[size+1]; - Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3; - - Map(array1, size) = VectorType::Random(size); - Map(array2, size) = Map(array1, size); - Map(array3unaligned, size) = Map((const Scalar*)array1, size); // test non-const-correctness support in eigen2 - VectorType ma1 = Map(array1, size); - VectorType ma2 = Map(array2, size); - VectorType ma3 = Map(array3unaligned, size); - VERIFY_IS_APPROX(ma1, ma2); - VERIFY_IS_APPROX(ma1, ma3); - - ei_aligned_delete(array1, size); - ei_aligned_delete(array2, size); - delete[] array3; -} - -template void map_class_matrix(const MatrixType& m) -{ - typedef typename MatrixType::Scalar Scalar; - - int rows = m.rows(), cols = m.cols(), size = rows*cols; - - // test Map.h - Scalar* array1 = ei_aligned_new(size); - for(int i = 0; i < size; i++) array1[i] = Scalar(1); - Scalar* array2 = ei_aligned_new(size); - for(int i = 0; i < size; i++) array2[i] = Scalar(1); - Scalar* array3 = new Scalar[size+1]; - for(int i = 0; i < size+1; i++) array3[i] = Scalar(1); - Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3; - Map(array1, rows, cols) = MatrixType::Ones(rows,cols); - Map(array2, rows, cols) = Map((const Scalar*)array1, rows, cols); // test non-const-correctness support in eigen2 - Map(array3unaligned, rows, cols) = Map(array1, rows, cols); - MatrixType ma1 = Map(array1, rows, cols); - MatrixType ma2 = Map(array2, rows, cols); - VERIFY_IS_APPROX(ma1, ma2); - MatrixType ma3 = Map(array3unaligned, rows, cols); - VERIFY_IS_APPROX(ma1, ma3); - - ei_aligned_delete(array1, size); - ei_aligned_delete(array2, size); - delete[] array3; -} - -template void map_static_methods(const VectorType& m) -{ - typedef typename VectorType::Scalar Scalar; - - int size = m.size(); - - // test Map.h - Scalar* array1 = ei_aligned_new(size); - Scalar* array2 = ei_aligned_new(size); - Scalar* array3 = new Scalar[size+1]; - Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3; - - VectorType::MapAligned(array1, size) = VectorType::Random(size); - VectorType::Map(array2, size) = VectorType::Map(array1, size); - VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); - VectorType ma1 = VectorType::Map(array1, size); - VectorType ma2 = VectorType::MapAligned(array2, size); - VectorType ma3 = VectorType::Map(array3unaligned, size); - VERIFY_IS_APPROX(ma1, ma2); - VERIFY_IS_APPROX(ma1, ma3); - - ei_aligned_delete(array1, size); - ei_aligned_delete(array2, size); - delete[] array3; -} - - -void test_eigen2_map() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( map_class_vector(Matrix()) ); - CALL_SUBTEST_2( map_class_vector(Vector4d()) ); - CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); - CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) ); - CALL_SUBTEST_5( map_class_vector(VectorXi(12)) ); - - CALL_SUBTEST_1( map_class_matrix(Matrix()) ); - CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); - CALL_SUBTEST_6( map_class_matrix(Matrix()) ); - CALL_SUBTEST_4( map_class_matrix(MatrixXcf(ei_random(1,10),ei_random(1,10))) ); - CALL_SUBTEST_5( map_class_matrix(MatrixXi(ei_random(1,10),ei_random(1,10))) ); - - CALL_SUBTEST_1( map_static_methods(Matrix()) ); - CALL_SUBTEST_2( map_static_methods(Vector3f()) ); - CALL_SUBTEST_7( map_static_methods(RowVector3d()) ); - CALL_SUBTEST_4( map_static_methods(VectorXcd(8)) ); - CALL_SUBTEST_5( map_static_methods(VectorXf(12)) ); - } -} diff --git a/test/eigen2/eigen2_meta.cpp b/test/eigen2/eigen2_meta.cpp deleted file mode 100644 index 1d01bd84d..000000000 --- a/test/eigen2/eigen2_meta.cpp +++ /dev/null @@ -1,60 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -void test_eigen2_meta() -{ - typedef float & FloatRef; - typedef const float & ConstFloatRef; - - VERIFY((ei_meta_if<(3<4),ei_meta_true, ei_meta_false>::ret::ret)); - VERIFY(( ei_is_same_type::ret)); - VERIFY((!ei_is_same_type::ret)); - VERIFY((!ei_is_same_type::ret)); - VERIFY((!ei_is_same_type::ret)); - - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - VERIFY(( ei_is_same_type::type >::ret)); - - VERIFY(ei_meta_sqrt<1>::ret == 1); - #define VERIFY_META_SQRT(X) VERIFY(ei_meta_sqrt::ret == int(ei_sqrt(double(X)))) - VERIFY_META_SQRT(2); - VERIFY_META_SQRT(3); - VERIFY_META_SQRT(4); - VERIFY_META_SQRT(5); - VERIFY_META_SQRT(6); - VERIFY_META_SQRT(8); - VERIFY_META_SQRT(9); - VERIFY_META_SQRT(15); - VERIFY_META_SQRT(16); - VERIFY_META_SQRT(17); - VERIFY_META_SQRT(255); - VERIFY_META_SQRT(256); - VERIFY_META_SQRT(257); - VERIFY_META_SQRT(1023); - VERIFY_META_SQRT(1024); - VERIFY_META_SQRT(1025); -} diff --git a/test/eigen2/eigen2_miscmatrices.cpp b/test/eigen2/eigen2_miscmatrices.cpp deleted file mode 100644 index 8bbb20cc8..000000000 --- a/test/eigen2/eigen2_miscmatrices.cpp +++ /dev/null @@ -1,48 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void miscMatrices(const MatrixType& m) -{ - /* this test covers the following files: - DiagonalMatrix.h Ones.h - */ - - typedef typename MatrixType::Scalar Scalar; - typedef Matrix VectorType; - typedef Matrix RowVectorType; - int rows = m.rows(); - int cols = m.cols(); - - int r = ei_random(0, rows-1), r2 = ei_random(0, rows-1), c = ei_random(0, cols-1); - VERIFY_IS_APPROX(MatrixType::Ones(rows,cols)(r,c), static_cast(1)); - MatrixType m1 = MatrixType::Ones(rows,cols); - VERIFY_IS_APPROX(m1(r,c), static_cast(1)); - VectorType v1 = VectorType::Random(rows); - v1[0]; - Matrix - square = v1.asDiagonal(); - if(r==r2) VERIFY_IS_APPROX(square(r,r2), v1[r]); - else VERIFY_IS_MUCH_SMALLER_THAN(square(r,r2), static_cast(1)); - square = MatrixType::Zero(rows, rows); - square.diagonal() = VectorType::Ones(rows); - VERIFY_IS_APPROX(square, MatrixType::Identity(rows, rows)); -} - -void test_eigen2_miscmatrices() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( miscMatrices(Matrix()) ); - CALL_SUBTEST_2( miscMatrices(Matrix4d()) ); - CALL_SUBTEST_3( miscMatrices(MatrixXcf(3, 3)) ); - CALL_SUBTEST_4( miscMatrices(MatrixXi(8, 12)) ); - CALL_SUBTEST_5( miscMatrices(MatrixXcd(20, 20)) ); - } -} diff --git a/test/eigen2/eigen2_mixingtypes.cpp b/test/eigen2/eigen2_mixingtypes.cpp deleted file mode 100644 index fb5ac5dda..000000000 --- a/test/eigen2/eigen2_mixingtypes.cpp +++ /dev/null @@ -1,77 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_NO_STATIC_ASSERT -#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them -#endif - -#ifndef EIGEN_DONT_VECTORIZE -#define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types -#endif - -#include "main.h" - - -template void mixingtypes(int size = SizeAtCompileType) -{ - typedef Matrix Mat_f; - typedef Matrix Mat_d; - typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cf; - typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cd; - typedef Matrix Vec_f; - typedef Matrix Vec_d; - typedef Matrix, SizeAtCompileType, 1> Vec_cf; - typedef Matrix, SizeAtCompileType, 1> Vec_cd; - - Mat_f mf(size,size); - Mat_d md(size,size); - Mat_cf mcf(size,size); - Mat_cd mcd(size,size); - Vec_f vf(size,1); - Vec_d vd(size,1); - Vec_cf vcf(size,1); - Vec_cd vcd(size,1); - - mf+mf; - VERIFY_RAISES_ASSERT(mf+md); - VERIFY_RAISES_ASSERT(mf+mcf); - VERIFY_RAISES_ASSERT(vf=vd); - VERIFY_RAISES_ASSERT(vf+=vd); - VERIFY_RAISES_ASSERT(mcd=md); - - mf*mf; - md*mcd; - mcd*md; - mf*vcf; - mcf*vf; - mcf *= mf; - vcd = md*vcd; - vcf = mcf*vf; -#if 0 - // these are know generating hard build errors in eigen3 - VERIFY_RAISES_ASSERT(mf*md); - VERIFY_RAISES_ASSERT(mcf*mcd); - VERIFY_RAISES_ASSERT(mcf*vcd); - VERIFY_RAISES_ASSERT(vcf = mf*vf); - - vf.eigen2_dot(vf); - VERIFY_RAISES_ASSERT(vd.eigen2_dot(vf)); - VERIFY_RAISES_ASSERT(vcf.eigen2_dot(vf)); // yeah eventually we should allow this but i'm too lazy to make that change now in Dot.h - // especially as that might be rewritten as cwise product .sum() which would make that automatic. -#endif -} - -void test_eigen2_mixingtypes() -{ - // check that our operator new is indeed called: - CALL_SUBTEST_1(mixingtypes<3>()); - CALL_SUBTEST_2(mixingtypes<4>()); - CALL_SUBTEST_3(mixingtypes(20)); -} diff --git a/test/eigen2/eigen2_newstdvector.cpp b/test/eigen2/eigen2_newstdvector.cpp deleted file mode 100644 index 5f9009901..000000000 --- a/test/eigen2/eigen2_newstdvector.cpp +++ /dev/null @@ -1,149 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_USE_NEW_STDVECTOR -#include "main.h" -#include -#include - -template -void check_stdvector_matrix(const MatrixType& m) -{ - int rows = m.rows(); - int cols = m.cols(); - MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); - std::vector > v(10, MatrixType(rows,cols)), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.resize(22,y); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(MatrixType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - MatrixType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; i -void check_stdvector_transform(const TransformType&) -{ - typedef typename TransformType::MatrixType MatrixType; - TransformType x(MatrixType::Random()), y(MatrixType::Random()); - std::vector > v(10), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.resize(22,y); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(TransformType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - TransformType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; i -void check_stdvector_quaternion(const QuaternionType&) -{ - typedef typename QuaternionType::Coefficients Coefficients; - QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); - std::vector > v(10), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.resize(22,y); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(QuaternionType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - QuaternionType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; i -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// this hack is needed to make this file compiles with -pedantic (gcc) -#ifdef __GNUC__ -#define throw(X) -#endif -// discard stack allocation as that too bypasses malloc -#define EIGEN_STACK_ALLOCATION_LIMIT 0 -// any heap allocation will raise an assert -#define EIGEN_NO_MALLOC - -#include "main.h" - -template void nomalloc(const MatrixType& m) -{ - /* this test check no dynamic memory allocation are issued with fixed-size matrices - */ - - typedef typename MatrixType::Scalar Scalar; - typedef Matrix VectorType; - - int rows = m.rows(); - int cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - mzero = MatrixType::Zero(rows, cols), - identity = Matrix - ::Identity(rows, rows), - square = Matrix - ::Random(rows, rows); - VectorType v1 = VectorType::Random(rows), - v2 = VectorType::Random(rows), - vzero = VectorType::Zero(rows); - - Scalar s1 = ei_random(); - - int r = ei_random(0, rows-1), - c = ei_random(0, cols-1); - - VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); - VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); - VERIFY_IS_APPROX(m1.cwise() * m1.block(0,0,rows,cols), m1.cwise() * m1); - VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); -} - -void test_eigen2_nomalloc() -{ - // check that our operator new is indeed called: - VERIFY_RAISES_ASSERT(MatrixXd dummy = MatrixXd::Random(3,3)); - CALL_SUBTEST_1( nomalloc(Matrix()) ); - CALL_SUBTEST_2( nomalloc(Matrix4d()) ); - CALL_SUBTEST_3( nomalloc(Matrix()) ); -} diff --git a/test/eigen2/eigen2_packetmath.cpp b/test/eigen2/eigen2_packetmath.cpp deleted file mode 100644 index b1f325fe7..000000000 --- a/test/eigen2/eigen2_packetmath.cpp +++ /dev/null @@ -1,132 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -// using namespace Eigen; - -template bool areApprox(const Scalar* a, const Scalar* b, int size) -{ - for (int i=0; i const complex& min(const complex& a, const complex& b) -{ return a.real() < b.real() ? a : b; } - -template<> const complex& max(const complex& a, const complex& b) -{ return a.real() < b.real() ? b : a; } - -} - -template void packetmath() -{ - typedef typename ei_packet_traits::type Packet; - const int PacketSize = ei_packet_traits::size; - - const int size = PacketSize*4; - EIGEN_ALIGN_128 Scalar data1[ei_packet_traits::size*4]; - EIGEN_ALIGN_128 Scalar data2[ei_packet_traits::size*4]; - EIGEN_ALIGN_128 Packet packets[PacketSize*2]; - EIGEN_ALIGN_128 Scalar ref[ei_packet_traits::size*4]; - for (int i=0; i(); - data2[i] = ei_random(); - } - - ei_pstore(data2, ei_pload(data1)); - VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store"); - - for (int offset=0; offset(packets[0], packets[1]); - else if (offset==1) ei_palign<1>(packets[0], packets[1]); - else if (offset==2) ei_palign<2>(packets[0], packets[1]); - else if (offset==3) ei_palign<3>(packets[0], packets[1]); - ei_pstore(data2, packets[0]); - - for (int i=0; i Vector; - VERIFY(areApprox(ref, data2, PacketSize) && "ei_palign"); - } - - CHECK_CWISE(REF_ADD, ei_padd); - CHECK_CWISE(REF_SUB, ei_psub); - CHECK_CWISE(REF_MUL, ei_pmul); - #ifndef EIGEN_VECTORIZE_ALTIVEC - if (!ei_is_same_type::ret) - CHECK_CWISE(REF_DIV, ei_pdiv); - #endif - CHECK_CWISE(std::min, ei_pmin); - CHECK_CWISE(std::max, ei_pmax); - - for (int i=0; i() ); - CALL_SUBTEST_2( packetmath() ); - CALL_SUBTEST_3( packetmath() ); - CALL_SUBTEST_4( packetmath >() ); - } -} diff --git a/test/eigen2/eigen2_parametrizedline.cpp b/test/eigen2/eigen2_parametrizedline.cpp deleted file mode 100644 index 814728870..000000000 --- a/test/eigen2/eigen2_parametrizedline.cpp +++ /dev/null @@ -1,62 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include -#include -#include - -template void parametrizedline(const LineType& _line) -{ - /* this test covers the following files: - ParametrizedLine.h - */ - - const int dim = _line.dim(); - typedef typename LineType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - typedef Matrix MatrixType; - - VectorType p0 = VectorType::Random(dim); - VectorType p1 = VectorType::Random(dim); - - VectorType d0 = VectorType::Random(dim).normalized(); - - LineType l0(p0, d0); - - Scalar s0 = ei_random(); - Scalar s1 = ei_abs(ei_random()); - - VERIFY_IS_MUCH_SMALLER_THAN( l0.distance(p0), RealScalar(1) ); - VERIFY_IS_MUCH_SMALLER_THAN( l0.distance(p0+s0*d0), RealScalar(1) ); - VERIFY_IS_APPROX( (l0.projection(p1)-p1).norm(), l0.distance(p1) ); - VERIFY_IS_MUCH_SMALLER_THAN( l0.distance(l0.projection(p1)), RealScalar(1) ); - VERIFY_IS_APPROX( Scalar(l0.distance((p0+s0*d0) + d0.unitOrthogonal() * s1)), s1 ); - - // casting - const int Dim = LineType::AmbientDimAtCompileTime; - typedef typename GetDifferentType::type OtherScalar; - ParametrizedLine hp1f = l0.template cast(); - VERIFY_IS_APPROX(hp1f.template cast(),l0); - ParametrizedLine hp1d = l0.template cast(); - VERIFY_IS_APPROX(hp1d.template cast(),l0); -} - -void test_eigen2_parametrizedline() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( parametrizedline(ParametrizedLine()) ); - CALL_SUBTEST_2( parametrizedline(ParametrizedLine()) ); - CALL_SUBTEST_3( parametrizedline(ParametrizedLine()) ); - CALL_SUBTEST_4( parametrizedline(ParametrizedLine,5>()) ); - } -} diff --git a/test/eigen2/eigen2_prec_inverse_4x4.cpp b/test/eigen2/eigen2_prec_inverse_4x4.cpp deleted file mode 100644 index 8bfa55694..000000000 --- a/test/eigen2/eigen2_prec_inverse_4x4.cpp +++ /dev/null @@ -1,84 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include -#include - -template std::string type_name() { return "other"; } -template<> std::string type_name() { return "float"; } -template<> std::string type_name() { return "double"; } -template<> std::string type_name() { return "int"; } -template<> std::string type_name >() { return "complex"; } -template<> std::string type_name >() { return "complex"; } -template<> std::string type_name >() { return "complex"; } - -#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl; - -template inline typename NumTraits::Real epsilon() -{ - return std::numeric_limits::Real>::epsilon(); -} - -template void inverse_permutation_4x4() -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - Vector4i indices(0,1,2,3); - for(int i = 0; i < 24; ++i) - { - MatrixType m = MatrixType::Zero(); - m(indices(0),0) = 1; - m(indices(1),1) = 1; - m(indices(2),2) = 1; - m(indices(3),3) = 1; - MatrixType inv = m.inverse(); - double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon() ); - VERIFY(error == 0.0); - std::next_permutation(indices.data(),indices.data()+4); - } -} - -template void inverse_general_4x4(int repeat) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - double error_sum = 0., error_max = 0.; - for(int i = 0; i < repeat; ++i) - { - MatrixType m; - RealScalar absdet; - do { - m = MatrixType::Random(); - absdet = ei_abs(m.determinant()); - } while(absdet < 10 * epsilon()); - MatrixType inv = m.inverse(); - double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon() ); - error_sum += error; - error_max = std::max(error_max, error); - } - std::cerr << "inverse_general_4x4, Scalar = " << type_name() << std::endl; - double error_avg = error_sum / repeat; - EIGEN_DEBUG_VAR(error_avg); - EIGEN_DEBUG_VAR(error_max); - VERIFY(error_avg < (NumTraits::IsComplex ? 8.0 : 1.25)); - VERIFY(error_max < (NumTraits::IsComplex ? 64.0 : 20.0)); -} - -void test_eigen2_prec_inverse_4x4() -{ - CALL_SUBTEST_1((inverse_permutation_4x4())); - CALL_SUBTEST_1(( inverse_general_4x4(200000 * g_repeat) )); - - CALL_SUBTEST_2((inverse_permutation_4x4 >())); - CALL_SUBTEST_2(( inverse_general_4x4 >(200000 * g_repeat) )); - - CALL_SUBTEST_3((inverse_permutation_4x4())); - CALL_SUBTEST_3((inverse_general_4x4(50000 * g_repeat))); -} diff --git a/test/eigen2/eigen2_product_large.cpp b/test/eigen2/eigen2_product_large.cpp deleted file mode 100644 index 5149ef748..000000000 --- a/test/eigen2/eigen2_product_large.cpp +++ /dev/null @@ -1,45 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "product.h" - -void test_eigen2_product_large() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( product(MatrixXf(ei_random(1,320), ei_random(1,320))) ); - CALL_SUBTEST_2( product(MatrixXd(ei_random(1,320), ei_random(1,320))) ); - CALL_SUBTEST_3( product(MatrixXi(ei_random(1,320), ei_random(1,320))) ); - CALL_SUBTEST_4( product(MatrixXcf(ei_random(1,50), ei_random(1,50))) ); - CALL_SUBTEST_5( product(Matrix(ei_random(1,320), ei_random(1,320))) ); - } - -#ifdef EIGEN_TEST_PART_6 - { - // test a specific issue in DiagonalProduct - int N = 1000000; - VectorXf v = VectorXf::Ones(N); - MatrixXf m = MatrixXf::Ones(N,3); - m = (v+v).asDiagonal() * m; - VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2)); - } - - { - // test deferred resizing in Matrix::operator= - MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a; - VERIFY_IS_APPROX((a = a * b), (c * b).eval()); - } - - { - MatrixXf mat1(10,10); mat1.setRandom(); - MatrixXf mat2(32,10); mat2.setRandom(); - MatrixXf result = mat1.row(2)*mat2.transpose(); - VERIFY_IS_APPROX(result, (mat1.row(2)*mat2.transpose()).eval()); - } -#endif -} diff --git a/test/eigen2/eigen2_product_small.cpp b/test/eigen2/eigen2_product_small.cpp deleted file mode 100644 index 4cd8c102f..000000000 --- a/test/eigen2/eigen2_product_small.cpp +++ /dev/null @@ -1,22 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_NO_STATIC_ASSERT -#include "product.h" - -void test_eigen2_product_small() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( product(Matrix()) ); - CALL_SUBTEST_2( product(Matrix()) ); - CALL_SUBTEST_3( product(Matrix3d()) ); - CALL_SUBTEST_4( product(Matrix4d()) ); - CALL_SUBTEST_5( product(Matrix4f()) ); - } -} diff --git a/test/eigen2/eigen2_qr.cpp b/test/eigen2/eigen2_qr.cpp deleted file mode 100644 index 76977e4c1..000000000 --- a/test/eigen2/eigen2_qr.cpp +++ /dev/null @@ -1,69 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -template void qr(const MatrixType& m) -{ - /* this test covers the following files: - QR.h - */ - int rows = m.rows(); - int cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef Matrix SquareMatrixType; - typedef Matrix VectorType; - - MatrixType a = MatrixType::Random(rows,cols); - QR qrOfA(a); - VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR()); - VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR()); - - #if 0 // eigenvalues module not yet ready - SquareMatrixType b = a.adjoint() * a; - - // check tridiagonalization - Tridiagonalization tridiag(b); - VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); - - // check hessenberg decomposition - HessenbergDecomposition hess(b); - VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); - VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH()); - b = SquareMatrixType::Random(cols,cols); - hess.compute(b); - VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); - #endif -} - -void test_eigen2_qr() -{ - for(int i = 0; i < 1; i++) { - CALL_SUBTEST_1( qr(Matrix2f()) ); - CALL_SUBTEST_2( qr(Matrix4d()) ); - CALL_SUBTEST_3( qr(MatrixXf(12,8)) ); - CALL_SUBTEST_4( qr(MatrixXcd(5,5)) ); - CALL_SUBTEST_4( qr(MatrixXcd(7,3)) ); - } - -#ifdef EIGEN_TEST_PART_5 - // small isFullRank test - { - Matrix3d mat; - mat << 1, 45, 1, 2, 2, 2, 1, 2, 3; - VERIFY(mat.qr().isFullRank()); - mat << 1, 1, 1, 2, 2, 2, 1, 2, 3; - //always returns true in eigen2support - //VERIFY(!mat.qr().isFullRank()); - } - -#endif -} diff --git a/test/eigen2/eigen2_qtvector.cpp b/test/eigen2/eigen2_qtvector.cpp deleted file mode 100644 index 6cfb58a26..000000000 --- a/test/eigen2/eigen2_qtvector.cpp +++ /dev/null @@ -1,158 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_WORK_AROUND_QT_BUG_CALLING_WRONG_OPERATOR_NEW_FIXED_IN_QT_4_5 - -#include "main.h" - -#include -#include - -#include - -template -void check_qtvector_matrix(const MatrixType& m) -{ - int rows = m.rows(); - int cols = m.cols(); - MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); - QVector v(10, MatrixType(rows,cols)), w(20, y); - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], y); - } - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.fill(y,22); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - MatrixType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(int i=23; i -void check_qtvector_transform(const TransformType&) -{ - typedef typename TransformType::MatrixType MatrixType; - TransformType x(MatrixType::Random()), y(MatrixType::Random()); - QVector v(10), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.fill(y,22); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - TransformType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; int(i) -void check_qtvector_quaternion(const QuaternionType&) -{ - typedef typename QuaternionType::Coefficients Coefficients; - QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); - QVector v(10), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.fill(y,22); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - QuaternionType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; int(i) -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -template -void makeNoisyCohyperplanarPoints(int numPoints, - VectorType **points, - HyperplaneType *hyperplane, - typename VectorType::Scalar noiseAmplitude) -{ - typedef typename VectorType::Scalar Scalar; - const int size = points[0]->size(); - // pick a random hyperplane, store the coefficients of its equation - hyperplane->coeffs().resize(size + 1); - for(int j = 0; j < size + 1; j++) - { - do { - hyperplane->coeffs().coeffRef(j) = ei_random(); - } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5); - } - - // now pick numPoints random points on this hyperplane - for(int i = 0; i < numPoints; i++) - { - VectorType& cur_point = *(points[i]); - do - { - cur_point = VectorType::Random(size)/*.normalized()*/; - // project cur_point onto the hyperplane - Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum(); - cur_point *= hyperplane->coeffs().coeff(size) / x; - } while( cur_point.norm() < 0.5 - || cur_point.norm() > 2.0 ); - } - - // add some noise to these points - for(int i = 0; i < numPoints; i++ ) - *(points[i]) += noiseAmplitude * VectorType::Random(size); -} - -template -void check_linearRegression(int numPoints, - VectorType **points, - const VectorType& original, - typename VectorType::Scalar tolerance) -{ - int size = points[0]->size(); - assert(size==2); - VectorType result(size); - linearRegression(numPoints, points, &result, 1); - typename VectorType::Scalar error = (result - original).norm() / original.norm(); - VERIFY(ei_abs(error) < ei_abs(tolerance)); -} - -template -void check_fitHyperplane(int numPoints, - VectorType **points, - const HyperplaneType& original, - typename VectorType::Scalar tolerance) -{ - int size = points[0]->size(); - HyperplaneType result(size); - fitHyperplane(numPoints, points, &result); - result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size); - typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm(); - std::cout << ei_abs(error) << " xxx " << ei_abs(tolerance) << std::endl; - VERIFY(ei_abs(error) < ei_abs(tolerance)); -} - -void test_eigen2_regression() -{ - for(int i = 0; i < g_repeat; i++) - { -#ifdef EIGEN_TEST_PART_1 - { - Vector2f points2f [1000]; - Vector2f *points2f_ptrs [1000]; - for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); - Vector2f coeffs2f; - Hyperplane coeffs3f; - makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); - coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1]; - coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1]; - CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f)); - CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f)); - CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f)); - } -#endif -#ifdef EIGEN_TEST_PART_2 - { - Vector2f points2f [1000]; - Vector2f *points2f_ptrs [1000]; - for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); - Hyperplane coeffs3f; - makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); - CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f)); - CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f)); - CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f)); - } -#endif -#ifdef EIGEN_TEST_PART_3 - { - Vector4d points4d [1000]; - Vector4d *points4d_ptrs [1000]; - for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]); - Hyperplane coeffs5d; - makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01); - CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05)); - CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01)); - CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002)); - } -#endif -#ifdef EIGEN_TEST_PART_4 - { - VectorXcd *points11cd_ptrs[1000]; - for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11); - Hyperplane,Dynamic> *coeffs12cd = new Hyperplane,Dynamic>(11); - makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01); - CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025)); - CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006)); - delete coeffs12cd; - for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i]; - } -#endif - } -} diff --git a/test/eigen2/eigen2_sizeof.cpp b/test/eigen2/eigen2_sizeof.cpp deleted file mode 100644 index ec1af5a06..000000000 --- a/test/eigen2/eigen2_sizeof.cpp +++ /dev/null @@ -1,31 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void verifySizeOf(const MatrixType&) -{ - typedef typename MatrixType::Scalar Scalar; - if (MatrixType::RowsAtCompileTime!=Dynamic && MatrixType::ColsAtCompileTime!=Dynamic) - VERIFY(sizeof(MatrixType)==sizeof(Scalar)*MatrixType::SizeAtCompileTime); - else - VERIFY(sizeof(MatrixType)==sizeof(Scalar*) + 2 * sizeof(typename MatrixType::Index)); -} - -void test_eigen2_sizeof() -{ - CALL_SUBTEST( verifySizeOf(Matrix()) ); - CALL_SUBTEST( verifySizeOf(Matrix4d()) ); - CALL_SUBTEST( verifySizeOf(Matrix()) ); - CALL_SUBTEST( verifySizeOf(Matrix()) ); - CALL_SUBTEST( verifySizeOf(MatrixXcf(3, 3)) ); - CALL_SUBTEST( verifySizeOf(MatrixXi(8, 12)) ); - CALL_SUBTEST( verifySizeOf(MatrixXcd(20, 20)) ); - CALL_SUBTEST( verifySizeOf(Matrix()) ); -} diff --git a/test/eigen2/eigen2_smallvectors.cpp b/test/eigen2/eigen2_smallvectors.cpp deleted file mode 100644 index 03962b17d..000000000 --- a/test/eigen2/eigen2_smallvectors.cpp +++ /dev/null @@ -1,42 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void smallVectors() -{ - typedef Matrix V2; - typedef Matrix V3; - typedef Matrix V4; - Scalar x1 = ei_random(), - x2 = ei_random(), - x3 = ei_random(), - x4 = ei_random(); - V2 v2(x1, x2); - V3 v3(x1, x2, x3); - V4 v4(x1, x2, x3, x4); - VERIFY_IS_APPROX(x1, v2.x()); - VERIFY_IS_APPROX(x1, v3.x()); - VERIFY_IS_APPROX(x1, v4.x()); - VERIFY_IS_APPROX(x2, v2.y()); - VERIFY_IS_APPROX(x2, v3.y()); - VERIFY_IS_APPROX(x2, v4.y()); - VERIFY_IS_APPROX(x3, v3.z()); - VERIFY_IS_APPROX(x3, v4.z()); - VERIFY_IS_APPROX(x4, v4.w()); -} - -void test_eigen2_smallvectors() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST( smallVectors() ); - CALL_SUBTEST( smallVectors() ); - CALL_SUBTEST( smallVectors() ); - } -} diff --git a/test/eigen2/eigen2_sparse_basic.cpp b/test/eigen2/eigen2_sparse_basic.cpp deleted file mode 100644 index 049077670..000000000 --- a/test/eigen2/eigen2_sparse_basic.cpp +++ /dev/null @@ -1,317 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Daniel Gomez Ferro -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "sparse.h" - -template -bool test_random_setter(SparseMatrix& sm, const DenseType& ref, const std::vector& nonzeroCoords) -{ - typedef SparseMatrix SparseType; - { - sm.setZero(); - SetterType w(sm); - std::vector remaining = nonzeroCoords; - while(!remaining.empty()) - { - int i = ei_random(0,remaining.size()-1); - w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); - remaining[i] = remaining.back(); - remaining.pop_back(); - } - } - return sm.isApprox(ref); -} - -template -bool test_random_setter(DynamicSparseMatrix& sm, const DenseType& ref, const std::vector& nonzeroCoords) -{ - sm.setZero(); - std::vector remaining = nonzeroCoords; - while(!remaining.empty()) - { - int i = ei_random(0,remaining.size()-1); - sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); - remaining[i] = remaining.back(); - remaining.pop_back(); - } - return sm.isApprox(ref); -} - -template void sparse_basic(const SparseMatrixType& ref) -{ - const int rows = ref.rows(); - const int cols = ref.cols(); - typedef typename SparseMatrixType::Scalar Scalar; - enum { Flags = SparseMatrixType::Flags }; - - double density = std::max(8./(rows*cols), 0.01); - typedef Matrix DenseMatrix; - typedef Matrix DenseVector; - Scalar eps = 1e-6; - - SparseMatrixType m(rows, cols); - DenseMatrix refMat = DenseMatrix::Zero(rows, cols); - DenseVector vec1 = DenseVector::Random(rows); - Scalar s1 = ei_random(); - - std::vector zeroCoords; - std::vector nonzeroCoords; - initSparse(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); - - if (zeroCoords.size()==0 || nonzeroCoords.size()==0) - return; - - // test coeff and coeffRef - for (int i=0; i<(int)zeroCoords.size(); ++i) - { - VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); - if(ei_is_same_type >::ret) - VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); - } - VERIFY_IS_APPROX(m, refMat); - - m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); - refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); - - VERIFY_IS_APPROX(m, refMat); - /* - // test InnerIterators and Block expressions - for (int t=0; t<10; ++t) - { - int j = ei_random(0,cols-1); - int i = ei_random(0,rows-1); - int w = ei_random(1,cols-j-1); - int h = ei_random(1,rows-i-1); - -// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); - for(int c=0; c w(m); -// for (int i=0; icoeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); -// } -// } -// VERIFY_IS_APPROX(m, refMat); - - // random setter -// { -// m.setZero(); -// VERIFY_IS_NOT_APPROX(m, refMat); -// SparseSetter w(m); -// std::vector remaining = nonzeroCoords; -// while(!remaining.empty()) -// { -// int i = ei_random(0,remaining.size()-1); -// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); -// remaining[i] = remaining.back(); -// remaining.pop_back(); -// } -// } -// VERIFY_IS_APPROX(m, refMat); - - VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); - #ifdef EIGEN_UNORDERED_MAP_SUPPORT - VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); - #endif - #ifdef _DENSE_HASH_MAP_H_ - VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); - #endif - #ifdef _SPARSE_HASH_MAP_H_ - VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); - #endif - - // test fillrand - { - DenseMatrix m1(rows,cols); - m1.setZero(); - SparseMatrixType m2(rows,cols); - m2.startFill(); - for (int j=0; j(0,rows-1); - if (m1.coeff(i,j)==Scalar(0)) - m2.fillrand(i,j) = m1(i,j) = ei_random(); - } - } - m2.endFill(); - VERIFY_IS_APPROX(m2,m1); - } - - // test RandomSetter - /*{ - SparseMatrixType m1(rows,cols), m2(rows,cols); - DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); - initSparse(density, refM1, m1); - { - Eigen::RandomSetter setter(m2); - for (int j=0; j(density, refM1, m1); - initSparse(density, refM2, m2); - initSparse(density, refM3, m3); - initSparse(density, refM4, m4); - - VERIFY_IS_APPROX(m1+m2, refM1+refM2); - VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); - VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); - VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); - - VERIFY_IS_APPROX(m1*=s1, refM1*=s1); - VERIFY_IS_APPROX(m1/=s1, refM1/=s1); - - VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); - VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); - - VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0))); - - refM4.setRandom(); - // sparse cwise* dense - VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); -// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); - } - - // test innerVector() - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse(density, refMat2, m2); - int j0 = ei_random(0,rows-1); - int j1 = ei_random(0,rows-1); - VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); - VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); - //m2.innerVector(j0) = 2*m2.innerVector(j1); - //refMat2.col(j0) = 2*refMat2.col(j1); - //VERIFY_IS_APPROX(m2, refMat2); - } - - // test innerVectors() - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse(density, refMat2, m2); - int j0 = ei_random(0,rows-2); - int j1 = ei_random(0,rows-2); - int n0 = ei_random(1,rows-std::max(j0,j1)); - VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); - VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), - refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); - //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); - //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); - } - - // test transpose - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse(density, refMat2, m2); - VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); - VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); - } - - // test prune - { - SparseMatrixType m2(rows, rows); - DenseMatrix refM2(rows, rows); - refM2.setZero(); - int countFalseNonZero = 0; - int countTrueNonZero = 0; - m2.startFill(); - for (int j=0; j(0,1); - if (x<0.1) - { - // do nothing - } - else if (x<0.5) - { - countFalseNonZero++; - m2.fill(i,j) = Scalar(0); - } - else - { - countTrueNonZero++; - m2.fill(i,j) = refM2(i,j) = Scalar(1); - } - } - m2.endFill(); - VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); - VERIFY_IS_APPROX(m2, refM2); - m2.prune(1); - VERIFY(countTrueNonZero==m2.nonZeros()); - VERIFY_IS_APPROX(m2, refM2); - } -} - -void test_eigen2_sparse_basic() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( sparse_basic(SparseMatrix(8, 8)) ); - CALL_SUBTEST_2( sparse_basic(SparseMatrix >(16, 16)) ); - CALL_SUBTEST_1( sparse_basic(SparseMatrix(33, 33)) ); - - CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix(8, 8)) ); - } -} diff --git a/test/eigen2/eigen2_sparse_product.cpp b/test/eigen2/eigen2_sparse_product.cpp deleted file mode 100644 index d28e76dff..000000000 --- a/test/eigen2/eigen2_sparse_product.cpp +++ /dev/null @@ -1,115 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Daniel Gomez Ferro -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "sparse.h" - -template void sparse_product(const SparseMatrixType& ref) -{ - const int rows = ref.rows(); - const int cols = ref.cols(); - typedef typename SparseMatrixType::Scalar Scalar; - enum { Flags = SparseMatrixType::Flags }; - - double density = std::max(8./(rows*cols), 0.01); - typedef Matrix DenseMatrix; - typedef Matrix DenseVector; - - // test matrix-matrix product - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); - DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); - DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - SparseMatrixType m3(rows, rows); - SparseMatrixType m4(rows, rows); - initSparse(density, refMat2, m2); - initSparse(density, refMat3, m3); - initSparse(density, refMat4, m4); - VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); - VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); - VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); - VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); - - // sparse * dense - VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); - VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); - VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); - VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); - - // dense * sparse - VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); - VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); - VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); - VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); - - VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); - } - - // test matrix - diagonal product - if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch.... - { - DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); - DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); - DiagonalMatrix d1(DenseVector::Random(rows)); - SparseMatrixType m2(rows, rows); - SparseMatrixType m3(rows, rows); - initSparse(density, refM2, m2); - initSparse(density, refM3, m3); - VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); - VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1); - VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2); - VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose()); - } - - // test self adjoint products - { - DenseMatrix b = DenseMatrix::Random(rows, rows); - DenseMatrix x = DenseMatrix::Random(rows, rows); - DenseMatrix refX = DenseMatrix::Random(rows, rows); - DenseMatrix refUp = DenseMatrix::Zero(rows, rows); - DenseMatrix refLo = DenseMatrix::Zero(rows, rows); - DenseMatrix refS = DenseMatrix::Zero(rows, rows); - SparseMatrixType mUp(rows, rows); - SparseMatrixType mLo(rows, rows); - SparseMatrixType mS(rows, rows); - do { - initSparse(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); - } while (refUp.isZero()); - refLo = refUp.transpose().conjugate(); - mLo = mUp.transpose().conjugate(); - refS = refUp + refLo; - refS.diagonal() *= 0.5; - mS = mUp + mLo; - for (int k=0; k()*b, refX=refS*b); - VERIFY_IS_APPROX(x=mLo.template marked()*b, refX=refS*b); - VERIFY_IS_APPROX(x=mS.template marked()*b, refX=refS*b); - } - -} - -void test_eigen2_sparse_product() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( sparse_product(SparseMatrix(8, 8)) ); - CALL_SUBTEST_2( sparse_product(SparseMatrix >(16, 16)) ); - CALL_SUBTEST_1( sparse_product(SparseMatrix(33, 33)) ); - - CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix(8, 8)) ); - } -} diff --git a/test/eigen2/eigen2_sparse_solvers.cpp b/test/eigen2/eigen2_sparse_solvers.cpp deleted file mode 100644 index 3aef27ab4..000000000 --- a/test/eigen2/eigen2_sparse_solvers.cpp +++ /dev/null @@ -1,200 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Daniel Gomez Ferro -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "sparse.h" - -template void -initSPD(double density, - Matrix& refMat, - SparseMatrix& sparseMat) -{ - Matrix aux(refMat.rows(),refMat.cols()); - initSparse(density,refMat,sparseMat); - refMat = refMat * refMat.adjoint(); - for (int k=0; k<2; ++k) - { - initSparse(density,aux,sparseMat,ForceNonZeroDiag); - refMat += aux * aux.adjoint(); - } - sparseMat.startFill(); - for (int j=0 ; j void sparse_solvers(int rows, int cols) -{ - double density = std::max(8./(rows*cols), 0.01); - typedef Matrix DenseMatrix; - typedef Matrix DenseVector; - // Scalar eps = 1e-6; - - DenseVector vec1 = DenseVector::Random(rows); - - std::vector zeroCoords; - std::vector nonzeroCoords; - - // test triangular solver - { - DenseVector vec2 = vec1, vec3 = vec1; - SparseMatrix m2(rows, cols); - DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); - - // lower - initSparse(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); - VERIFY_IS_APPROX(refMat2.template marked().solveTriangular(vec2), - m2.template marked().solveTriangular(vec3)); - - // lower - transpose - initSparse(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); - VERIFY_IS_APPROX(refMat2.template marked().transpose().solveTriangular(vec2), - m2.template marked().transpose().solveTriangular(vec3)); - - // upper - initSparse(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); - VERIFY_IS_APPROX(refMat2.template marked().solveTriangular(vec2), - m2.template marked().solveTriangular(vec3)); - - // upper - transpose - initSparse(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); - VERIFY_IS_APPROX(refMat2.template marked().transpose().solveTriangular(vec2), - m2.template marked().transpose().solveTriangular(vec3)); - } - - // test LLT - { - // TODO fix the issue with complex (see SparseLLT::solveInPlace) - SparseMatrix m2(rows, cols); - DenseMatrix refMat2(rows, cols); - - DenseVector b = DenseVector::Random(cols); - DenseVector refX(cols), x(cols); - - initSPD(density, refMat2, m2); - - refMat2.llt().solve(b, &refX); - typedef SparseMatrix SparseSelfAdjointMatrix; - if (!NumTraits::IsComplex) - { - x = b; - SparseLLT (m2).solveInPlace(x); - VERIFY(refX.isApprox(x,test_precision()) && "LLT: default"); - } - #ifdef EIGEN_CHOLMOD_SUPPORT - x = b; - SparseLLT(m2).solveInPlace(x); - VERIFY(refX.isApprox(x,test_precision()) && "LLT: cholmod"); - #endif - if (!NumTraits::IsComplex) - { - #ifdef EIGEN_TAUCS_SUPPORT - x = b; - SparseLLT(m2,IncompleteFactorization).solveInPlace(x); - VERIFY(refX.isApprox(x,test_precision()) && "LLT: taucs (IncompleteFactorization)"); - x = b; - SparseLLT(m2,SupernodalMultifrontal).solveInPlace(x); - VERIFY(refX.isApprox(x,test_precision()) && "LLT: taucs (SupernodalMultifrontal)"); - x = b; - SparseLLT(m2,SupernodalLeftLooking).solveInPlace(x); - VERIFY(refX.isApprox(x,test_precision()) && "LLT: taucs (SupernodalLeftLooking)"); - #endif - } - } - - // test LDLT - if (!NumTraits::IsComplex) - { - // TODO fix the issue with complex (see SparseLDLT::solveInPlace) - SparseMatrix m2(rows, cols); - DenseMatrix refMat2(rows, cols); - - DenseVector b = DenseVector::Random(cols); - DenseVector refX(cols), x(cols); - - //initSPD(density, refMat2, m2); - initSparse(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0); - refMat2 += refMat2.adjoint(); - refMat2.diagonal() *= 0.5; - - refMat2.ldlt().solve(b, &refX); - typedef SparseMatrix SparseSelfAdjointMatrix; - x = b; - SparseLDLT ldlt(m2); - if (ldlt.succeeded()) - ldlt.solveInPlace(x); - VERIFY(refX.isApprox(x,test_precision()) && "LDLT: default"); - } - - // test LU - { - static int count = 0; - SparseMatrix m2(rows, cols); - DenseMatrix refMat2(rows, cols); - - DenseVector b = DenseVector::Random(cols); - DenseVector refX(cols), x(cols); - - initSparse(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords); - - LU refLu(refMat2); - refLu.solve(b, &refX); - #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT) - Scalar refDet = refLu.determinant(); - #endif - x.setZero(); - // // SparseLU > (m2).solve(b,&x); - // // VERIFY(refX.isApprox(x,test_precision()) && "LU: default"); - #ifdef EIGEN_SUPERLU_SUPPORT - { - x.setZero(); - SparseLU,SuperLU> slu(m2); - if (slu.succeeded()) - { - if (slu.solve(b,&x)) { - VERIFY(refX.isApprox(x,test_precision()) && "LU: SuperLU"); - } - // std::cerr << refDet << " == " << slu.determinant() << "\n"; - if (count==0) { - VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex - } - } - } - #endif - #ifdef EIGEN_UMFPACK_SUPPORT - { - // check solve - x.setZero(); - SparseLU,UmfPack> slu(m2); - if (slu.succeeded()) { - if (slu.solve(b,&x)) { - if (count==0) { - VERIFY(refX.isApprox(x,test_precision()) && "LU: umfpack"); // FIXME solve is not very stable for complex - } - } - VERIFY_IS_APPROX(refDet,slu.determinant()); - // TODO check the extracted data - //std::cerr << slu.matrixL() << "\n"; - } - } - #endif - count++; - } - -} - -void test_eigen2_sparse_solvers() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( sparse_solvers(8, 8) ); - CALL_SUBTEST_2( sparse_solvers >(16, 16) ); - CALL_SUBTEST_1( sparse_solvers(101, 101) ); - } -} diff --git a/test/eigen2/eigen2_sparse_vector.cpp b/test/eigen2/eigen2_sparse_vector.cpp deleted file mode 100644 index e6d2d77a1..000000000 --- a/test/eigen2/eigen2_sparse_vector.cpp +++ /dev/null @@ -1,84 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Daniel Gomez Ferro -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "sparse.h" - -template void sparse_vector(int rows, int cols) -{ - double densityMat = std::max(8./(rows*cols), 0.01); - double densityVec = std::max(8./float(rows), 0.1); - typedef Matrix DenseMatrix; - typedef Matrix DenseVector; - typedef SparseVector SparseVectorType; - typedef SparseMatrix SparseMatrixType; - Scalar eps = 1e-6; - - SparseMatrixType m1(rows,cols); - SparseVectorType v1(rows), v2(rows), v3(rows); - DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); - DenseVector refV1 = DenseVector::Random(rows), - refV2 = DenseVector::Random(rows), - refV3 = DenseVector::Random(rows); - - std::vector zerocoords, nonzerocoords; - initSparse(densityVec, refV1, v1, &zerocoords, &nonzerocoords); - initSparse(densityMat, refM1, m1); - - initSparse(densityVec, refV2, v2); - initSparse(densityVec, refV3, v3); - - Scalar s1 = ei_random(); - - // test coeff and coeffRef - for (unsigned int i=0; i(8, 8) ); - CALL_SUBTEST_2( sparse_vector >(16, 16) ); - CALL_SUBTEST_1( sparse_vector(299, 535) ); - } -} - diff --git a/test/eigen2/eigen2_stdvector.cpp b/test/eigen2/eigen2_stdvector.cpp deleted file mode 100644 index 6ab05c20a..000000000 --- a/test/eigen2/eigen2_stdvector.cpp +++ /dev/null @@ -1,148 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include -#include "main.h" -#include - -template -void check_stdvector_matrix(const MatrixType& m) -{ - int rows = m.rows(); - int cols = m.cols(); - MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); - std::vector > v(10, MatrixType(rows,cols)), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.resize(22,y); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(MatrixType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - MatrixType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; i -void check_stdvector_transform(const TransformType&) -{ - typedef typename TransformType::MatrixType MatrixType; - TransformType x(MatrixType::Random()), y(MatrixType::Random()); - std::vector > v(10), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.resize(22,y); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(TransformType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - TransformType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; i -void check_stdvector_quaternion(const QuaternionType&) -{ - typedef typename QuaternionType::Coefficients Coefficients; - QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); - std::vector > v(10), w(20, y); - v[5] = x; - w[6] = v[5]; - VERIFY_IS_APPROX(w[6], v[5]); - v = w; - for(int i = 0; i < 20; i++) - { - VERIFY_IS_APPROX(w[i], v[i]); - } - - v.resize(21); - v[20] = x; - VERIFY_IS_APPROX(v[20], x); - v.resize(22,y); - VERIFY_IS_APPROX(v[21], y); - v.push_back(x); - VERIFY_IS_APPROX(v[22], x); - VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(QuaternionType)); - - // do a lot of push_back such that the vector gets internally resized - // (with memory reallocation) - QuaternionType* ref = &w[0]; - for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) - v.push_back(w[i%w.size()]); - for(unsigned int i=23; i -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -// check minor separately in order to avoid the possible creation of a zero-sized -// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic. -// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage -// but this is probably not bad to raise such an error at compile time... -template struct CheckMinor -{ - typedef Matrix MatrixType; - CheckMinor(MatrixType& m1, int r1, int c1) - { - int rows = m1.rows(); - int cols = m1.cols(); - - Matrix mi = m1.minor(0,0).eval(); - VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1)); - mi = m1.minor(r1,c1); - VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1)); - //check operator(), both constant and non-constant, on minor() - m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0); - } -}; - -template struct CheckMinor -{ - typedef Matrix MatrixType; - CheckMinor(MatrixType&, int, int) {} -}; - -template void submatrices(const MatrixType& m) -{ - /* this test covers the following files: - Row.h Column.h Block.h Minor.h DiagonalCoeffs.h - */ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef Matrix VectorType; - typedef Matrix RowVectorType; - int rows = m.rows(); - int cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - mzero = MatrixType::Zero(rows, cols), - ones = MatrixType::Ones(rows, cols), - identity = Matrix - ::Identity(rows, rows), - square = Matrix - ::Random(rows, rows); - VectorType v1 = VectorType::Random(rows), - v2 = VectorType::Random(rows), - v3 = VectorType::Random(rows), - vzero = VectorType::Zero(rows); - - Scalar s1 = ei_random(); - - int r1 = ei_random(0,rows-1); - int r2 = ei_random(r1,rows-1); - int c1 = ei_random(0,cols-1); - int c2 = ei_random(c1,cols-1); - - //check row() and col() - VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1)); - VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1)); - //check operator(), both constant and non-constant, on row() and col() - m1.row(r1) += s1 * m1.row(r2); - m1.col(c1) += s1 * m1.col(c2); - - //check block() - Matrix b1(1,1); b1(0,0) = m1(r1,c1); - RowVectorType br1(m1.block(r1,0,1,cols)); - VectorType bc1(m1.block(0,c1,rows,1)); - VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1)); - VERIFY_IS_APPROX(m1.row(r1), br1); - VERIFY_IS_APPROX(m1.col(c1), bc1); - //check operator(), both constant and non-constant, on block() - m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1); - m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0); - - //check minor() - CheckMinor checkminor(m1,r1,c1); - - //check diagonal() - VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); - m2.diagonal() = 2 * m1.diagonal(); - m2.diagonal()[0] *= 3; - VERIFY_IS_APPROX(m2.diagonal()[0], static_cast(6) * m1.diagonal()[0]); - - enum { - BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2), - BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5) - }; - if (rows>=5 && cols>=8) - { - // test fixed block() as lvalue - m1.template block(1,1) *= s1; - // test operator() on fixed block() both as constant and non-constant - m1.template block(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2); - // check that fixed block() and block() agree - Matrix b = m1.template block(3,3); - VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols)); - } - - if (rows>2) - { - // test sub vectors - VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1)); - VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2)); - VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2)); - VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0)); - int i = rows-2; - VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1)); - VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2)); - VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2)); - VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i)); - i = ei_random(0,rows-2); - VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i)); - } - - // stress some basic stuffs with block matrices - VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows)); - VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols)); - - VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows)); - VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols)); -} - -void test_eigen2_submatrices() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( submatrices(Matrix()) ); - CALL_SUBTEST_2( submatrices(Matrix4d()) ); - CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) ); - CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) ); - CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) ); - CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) ); - } -} diff --git a/test/eigen2/eigen2_sum.cpp b/test/eigen2/eigen2_sum.cpp deleted file mode 100644 index b47057caa..000000000 --- a/test/eigen2/eigen2_sum.cpp +++ /dev/null @@ -1,71 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void matrixSum(const MatrixType& m) -{ - typedef typename MatrixType::Scalar Scalar; - - int rows = m.rows(); - int cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols); - - VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); - VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy - Scalar x = Scalar(0); - for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j); - VERIFY_IS_APPROX(m1.sum(), x); -} - -template void vectorSum(const VectorType& w) -{ - typedef typename VectorType::Scalar Scalar; - int size = w.size(); - - VectorType v = VectorType::Random(size); - for(int i = 1; i < size; i++) - { - Scalar s = Scalar(0); - for(int j = 0; j < i; j++) s += v[j]; - VERIFY_IS_APPROX(s, v.start(i).sum()); - } - - for(int i = 0; i < size-1; i++) - { - Scalar s = Scalar(0); - for(int j = i; j < size; j++) s += v[j]; - VERIFY_IS_APPROX(s, v.end(size-i).sum()); - } - - for(int i = 0; i < size/2; i++) - { - Scalar s = Scalar(0); - for(int j = i; j < size-i; j++) s += v[j]; - VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum()); - } -} - -void test_eigen2_sum() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( matrixSum(Matrix()) ); - CALL_SUBTEST_2( matrixSum(Matrix2f()) ); - CALL_SUBTEST_3( matrixSum(Matrix4d()) ); - CALL_SUBTEST_4( matrixSum(MatrixXcf(3, 3)) ); - CALL_SUBTEST_5( matrixSum(MatrixXf(8, 12)) ); - CALL_SUBTEST_6( matrixSum(MatrixXi(8, 12)) ); - } - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_5( vectorSum(VectorXf(5)) ); - CALL_SUBTEST_7( vectorSum(VectorXd(10)) ); - CALL_SUBTEST_5( vectorSum(VectorXf(33)) ); - } -} diff --git a/test/eigen2/eigen2_svd.cpp b/test/eigen2/eigen2_svd.cpp deleted file mode 100644 index d4689a56f..000000000 --- a/test/eigen2/eigen2_svd.cpp +++ /dev/null @@ -1,87 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include - -template void svd(const MatrixType& m) -{ - /* this test covers the following files: - SVD.h - */ - int rows = m.rows(); - int cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - MatrixType a = MatrixType::Random(rows,cols); - Matrix b = - Matrix::Random(rows,1); - Matrix x(cols,1), x2(cols,1); - - RealScalar largerEps = test_precision(); - if (ei_is_same_type::ret) - largerEps = 1e-3f; - - { - SVD svd(a); - MatrixType sigma = MatrixType::Zero(rows,cols); - MatrixType matU = MatrixType::Zero(rows,rows); - sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal(); - matU.block(0,0,rows,cols) = svd.matrixU(); - VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose()); - } - - - if (rows==cols) - { - if (ei_is_same_type::ret) - { - MatrixType a1 = MatrixType::Random(rows,cols); - a += a * a.adjoint() + a1 * a1.adjoint(); - } - SVD svd(a); - svd.solve(b, &x); - VERIFY_IS_APPROX(a * x,b); - } - - - if(rows==cols) - { - SVD svd(a); - MatrixType unitary, positive; - svd.computeUnitaryPositive(&unitary, &positive); - VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); - VERIFY_IS_APPROX(positive, positive.adjoint()); - for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity - VERIFY_IS_APPROX(unitary*positive, a); - - svd.computePositiveUnitary(&positive, &unitary); - VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); - VERIFY_IS_APPROX(positive, positive.adjoint()); - for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity - VERIFY_IS_APPROX(positive*unitary, a); - } -} - -void test_eigen2_svd() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( svd(Matrix3f()) ); - CALL_SUBTEST_2( svd(Matrix4d()) ); - CALL_SUBTEST_3( svd(MatrixXf(7,7)) ); - CALL_SUBTEST_4( svd(MatrixXd(14,7)) ); - // complex are not implemented yet -// CALL_SUBTEST( svd(MatrixXcd(6,6)) ); -// CALL_SUBTEST( svd(MatrixXcf(3,3)) ); - SVD s; - MatrixXf m = MatrixXf::Random(10,1); - s.compute(m); - } -} diff --git a/test/eigen2/eigen2_swap.cpp b/test/eigen2/eigen2_swap.cpp deleted file mode 100644 index f3a8846d9..000000000 --- a/test/eigen2/eigen2_swap.cpp +++ /dev/null @@ -1,83 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_NO_STATIC_ASSERT -#include "main.h" - -template -struct other_matrix_type -{ - typedef int type; -}; - -template -struct other_matrix_type > -{ - typedef Matrix<_Scalar, _Rows, _Cols, _Options^RowMajor, _MaxRows, _MaxCols> type; -}; - -template void swap(const MatrixType& m) -{ - typedef typename other_matrix_type::type OtherMatrixType; - typedef typename MatrixType::Scalar Scalar; - - ei_assert((!ei_is_same_type::ret)); - int rows = m.rows(); - int cols = m.cols(); - - // construct 3 matrix guaranteed to be distinct - MatrixType m1 = MatrixType::Random(rows,cols); - MatrixType m2 = MatrixType::Random(rows,cols) + Scalar(100) * MatrixType::Identity(rows,cols); - OtherMatrixType m3 = OtherMatrixType::Random(rows,cols) + Scalar(200) * OtherMatrixType::Identity(rows,cols); - - MatrixType m1_copy = m1; - MatrixType m2_copy = m2; - OtherMatrixType m3_copy = m3; - - // test swapping 2 matrices of same type - m1.swap(m2); - VERIFY_IS_APPROX(m1,m2_copy); - VERIFY_IS_APPROX(m2,m1_copy); - m1 = m1_copy; - m2 = m2_copy; - - // test swapping 2 matrices of different types - m1.swap(m3); - VERIFY_IS_APPROX(m1,m3_copy); - VERIFY_IS_APPROX(m3,m1_copy); - m1 = m1_copy; - m3 = m3_copy; - - // test swapping matrix with expression - m1.swap(m2.block(0,0,rows,cols)); - VERIFY_IS_APPROX(m1,m2_copy); - VERIFY_IS_APPROX(m2,m1_copy); - m1 = m1_copy; - m2 = m2_copy; - - // test swapping two expressions of different types - m1.transpose().swap(m3.transpose()); - VERIFY_IS_APPROX(m1,m3_copy); - VERIFY_IS_APPROX(m3,m1_copy); - m1 = m1_copy; - m3 = m3_copy; - - // test assertion on mismatching size -- matrix case - VERIFY_RAISES_ASSERT(m1.swap(m1.row(0))); - // test assertion on mismatching size -- xpr case - VERIFY_RAISES_ASSERT(m1.row(0).swap(m1)); -} - -void test_eigen2_swap() -{ - CALL_SUBTEST_1( swap(Matrix3f()) ); // fixed size, no vectorization - CALL_SUBTEST_1( swap(Matrix4d()) ); // fixed size, possible vectorization - CALL_SUBTEST_1( swap(MatrixXd(3,3)) ); // dyn size, no vectorization - CALL_SUBTEST_1( swap(MatrixXf(30,30)) ); // dyn size, possible vectorization -} diff --git a/test/eigen2/eigen2_triangular.cpp b/test/eigen2/eigen2_triangular.cpp deleted file mode 100644 index 3748c7d71..000000000 --- a/test/eigen2/eigen2_triangular.cpp +++ /dev/null @@ -1,158 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void triangular(const MatrixType& m) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - - RealScalar largerEps = 10*test_precision(); - - int rows = m.rows(); - int cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - m4(rows, cols), - r1(rows, cols), - r2(rows, cols), - mzero = MatrixType::Zero(rows, cols), - mones = MatrixType::Ones(rows, cols), - identity = Matrix - ::Identity(rows, rows), - square = Matrix - ::Random(rows, rows); - VectorType v1 = VectorType::Random(rows), - v2 = VectorType::Random(rows), - vzero = VectorType::Zero(rows); - - MatrixType m1up = m1.template part(); - MatrixType m2up = m2.template part(); - - if (rows*cols>1) - { - VERIFY(m1up.isUpperTriangular()); - VERIFY(m2up.transpose().isLowerTriangular()); - VERIFY(!m2.isLowerTriangular()); - } - -// VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); - - // test overloaded operator+= - r1.setZero(); - r2.setZero(); - r1.template part() += m1; - r2 += m1up; - VERIFY_IS_APPROX(r1,r2); - - // test overloaded operator= - m1.setZero(); - m1.template part() = (m2.transpose() * m2).lazy(); - m3 = m2.transpose() * m2; - VERIFY_IS_APPROX(m3.template part().transpose(), m1); - - // test overloaded operator= - m1.setZero(); - m1.template part() = (m2.transpose() * m2).lazy(); - VERIFY_IS_APPROX(m3.template part(), m1); - - VERIFY_IS_APPROX(m3.template part(), m3.diagonal().asDiagonal()); - - m1 = MatrixType::Random(rows, cols); - for (int i=0; i(); - - Transpose trm4(m4); - // test back and forward subsitution - m3 = m1.template part(); - VERIFY(m3.template marked().solveTriangular(m3).cwise().abs().isIdentity(test_precision())); - VERIFY(m3.transpose().template marked() - .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision())); - // check M * inv(L) using in place API - m4 = m3; - m3.transpose().template marked().solveTriangularInPlace(trm4); - VERIFY(m4.cwise().abs().isIdentity(test_precision())); - - m3 = m1.template part(); - VERIFY(m3.template marked().solveTriangular(m3).cwise().abs().isIdentity(test_precision())); - VERIFY(m3.transpose().template marked() - .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision())); - // check M * inv(U) using in place API - m4 = m3; - m3.transpose().template marked().solveTriangularInPlace(trm4); - VERIFY(m4.cwise().abs().isIdentity(test_precision())); - - m3 = m1.template part(); - VERIFY(m2.isApprox(m3 * (m3.template marked().solveTriangular(m2)), largerEps)); - m3 = m1.template part(); - VERIFY(m2.isApprox(m3 * (m3.template marked().solveTriangular(m2)), largerEps)); - - VERIFY((m1.template part() * m2.template part()).isUpperTriangular()); - - // test swap - m1.setOnes(); - m2.setZero(); - m2.template part().swap(m1); - m3.setZero(); - m3.template part().setOnes(); - VERIFY_IS_APPROX(m2,m3); - -} - -void selfadjoint() -{ - Matrix2i m; - m << 1, 2, - 3, 4; - - Matrix2i m1 = Matrix2i::Zero(); - m1.part() = m; - Matrix2i ref1; - ref1 << 1, 2, - 2, 4; - VERIFY(m1 == ref1); - - Matrix2i m2 = Matrix2i::Zero(); - m2.part() = m.part(); - Matrix2i ref2; - ref2 << 1, 2, - 2, 4; - VERIFY(m2 == ref2); - - Matrix2i m3 = Matrix2i::Zero(); - m3.part() = m.part(); - Matrix2i ref3; - ref3 << 1, 0, - 0, 4; - VERIFY(m3 == ref3); - - // example inspired from bug 159 - int array[] = {1, 2, 3, 4}; - Matrix2i::Map(array).part() = Matrix2i::Random().part(); - - std::cout << "hello\n" << array << std::endl; -} - -void test_eigen2_triangular() -{ - CALL_SUBTEST_8( selfadjoint() ); - for(int i = 0; i < g_repeat ; i++) { - CALL_SUBTEST_1( triangular(Matrix()) ); - CALL_SUBTEST_2( triangular(Matrix()) ); - CALL_SUBTEST_3( triangular(Matrix3d()) ); - CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) ); - CALL_SUBTEST_5( triangular(Matrix,8, 8>()) ); - CALL_SUBTEST_6( triangular(MatrixXd(17,17)) ); - CALL_SUBTEST_7( triangular(Matrix(5, 5)) ); - } -} diff --git a/test/eigen2/eigen2_unalignedassert.cpp b/test/eigen2/eigen2_unalignedassert.cpp deleted file mode 100644 index d10b6f538..000000000 --- a/test/eigen2/eigen2_unalignedassert.cpp +++ /dev/null @@ -1,116 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -struct Good1 -{ - MatrixXd m; // good: m will allocate its own array, taking care of alignment. - Good1() : m(20,20) {} -}; - -struct Good2 -{ - Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be aligned -}; - -struct Good3 -{ - Vector2f m; // good: same reason -}; - -struct Bad4 -{ - Vector2d m; // bad: sizeof(m)%16==0 so alignment is required -}; - -struct Bad5 -{ - Matrix m; // bad: same reason -}; - -struct Bad6 -{ - Matrix m; // bad: same reason -}; - -struct Good7 -{ - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - Vector2d m; - float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects -}; - -struct Good8 -{ - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - float f; // try the f at first -- the EIGEN_ALIGN_128 attribute of m should make that still work - Matrix4f m; -}; - -struct Good9 -{ - Matrix m; // good: no alignment requested - float f; -}; - -template struct Depends -{ - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(Align) - Vector2d m; - float f; -}; - -template -void check_unalignedassert_good() -{ - T *x, *y; - x = new T; - delete x; - y = new T[2]; - delete[] y; -} - -#if EIGEN_ARCH_WANTS_ALIGNMENT -template -void check_unalignedassert_bad() -{ - float buf[sizeof(T)+16]; - float *unaligned = buf; - while((reinterpret_cast(unaligned)&0xf)==0) ++unaligned; // make sure unaligned is really unaligned - T *x = ::new(static_cast(unaligned)) T; - x->~T(); -} -#endif - -void unalignedassert() -{ - check_unalignedassert_good(); - check_unalignedassert_good(); - check_unalignedassert_good(); -#if EIGEN_ARCH_WANTS_ALIGNMENT - VERIFY_RAISES_ASSERT(check_unalignedassert_bad()); - VERIFY_RAISES_ASSERT(check_unalignedassert_bad()); - VERIFY_RAISES_ASSERT(check_unalignedassert_bad()); -#endif - - check_unalignedassert_good(); - check_unalignedassert_good(); - check_unalignedassert_good(); - check_unalignedassert_good >(); - -#if EIGEN_ARCH_WANTS_ALIGNMENT - VERIFY_RAISES_ASSERT(check_unalignedassert_bad >()); -#endif -} - -void test_eigen2_unalignedassert() -{ - CALL_SUBTEST(unalignedassert()); -} diff --git a/test/eigen2/eigen2_visitor.cpp b/test/eigen2/eigen2_visitor.cpp deleted file mode 100644 index 4781991de..000000000 --- a/test/eigen2/eigen2_visitor.cpp +++ /dev/null @@ -1,116 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template void matrixVisitor(const MatrixType& p) -{ - typedef typename MatrixType::Scalar Scalar; - - int rows = p.rows(); - int cols = p.cols(); - - // construct a random matrix where all coefficients are different - MatrixType m; - m = MatrixType::Random(rows, cols); - for(int i = 0; i < m.size(); i++) - for(int i2 = 0; i2 < i; i2++) - while(m(i) == m(i2)) // yes, == - m(i) = ei_random(); - - Scalar minc = Scalar(1000), maxc = Scalar(-1000); - int minrow=0,mincol=0,maxrow=0,maxcol=0; - for(int j = 0; j < cols; j++) - for(int i = 0; i < rows; i++) - { - if(m(i,j) < minc) - { - minc = m(i,j); - minrow = i; - mincol = j; - } - if(m(i,j) > maxc) - { - maxc = m(i,j); - maxrow = i; - maxcol = j; - } - } - int eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; - Scalar eigen_minc, eigen_maxc; - eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol); - eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol); - VERIFY(minrow == eigen_minrow); - VERIFY(maxrow == eigen_maxrow); - VERIFY(mincol == eigen_mincol); - VERIFY(maxcol == eigen_maxcol); - VERIFY_IS_APPROX(minc, eigen_minc); - VERIFY_IS_APPROX(maxc, eigen_maxc); - VERIFY_IS_APPROX(minc, m.minCoeff()); - VERIFY_IS_APPROX(maxc, m.maxCoeff()); -} - -template void vectorVisitor(const VectorType& w) -{ - typedef typename VectorType::Scalar Scalar; - - int size = w.size(); - - // construct a random vector where all coefficients are different - VectorType v; - v = VectorType::Random(size); - for(int i = 0; i < size; i++) - for(int i2 = 0; i2 < i; i2++) - while(v(i) == v(i2)) // yes, == - v(i) = ei_random(); - - Scalar minc = Scalar(1000), maxc = Scalar(-1000); - int minidx=0,maxidx=0; - for(int i = 0; i < size; i++) - { - if(v(i) < minc) - { - minc = v(i); - minidx = i; - } - if(v(i) > maxc) - { - maxc = v(i); - maxidx = i; - } - } - int eigen_minidx, eigen_maxidx; - Scalar eigen_minc, eigen_maxc; - eigen_minc = v.minCoeff(&eigen_minidx); - eigen_maxc = v.maxCoeff(&eigen_maxidx); - VERIFY(minidx == eigen_minidx); - VERIFY(maxidx == eigen_maxidx); - VERIFY_IS_APPROX(minc, eigen_minc); - VERIFY_IS_APPROX(maxc, eigen_maxc); - VERIFY_IS_APPROX(minc, v.minCoeff()); - VERIFY_IS_APPROX(maxc, v.maxCoeff()); -} - -void test_eigen2_visitor() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( matrixVisitor(Matrix()) ); - CALL_SUBTEST_2( matrixVisitor(Matrix2f()) ); - CALL_SUBTEST_3( matrixVisitor(Matrix4d()) ); - CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) ); - CALL_SUBTEST_5( matrixVisitor(Matrix(20, 20)) ); - CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) ); - } - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_7( vectorVisitor(Vector4f()) ); - CALL_SUBTEST_4( vectorVisitor(VectorXd(10)) ); - CALL_SUBTEST_4( vectorVisitor(RowVectorXd(10)) ); - CALL_SUBTEST_8( vectorVisitor(VectorXf(33)) ); - } -} diff --git a/test/eigen2/gsl_helper.h b/test/eigen2/gsl_helper.h deleted file mode 100644 index d1d854533..000000000 --- a/test/eigen2/gsl_helper.h +++ /dev/null @@ -1,175 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GSL_HELPER -#define EIGEN_GSL_HELPER - -#include - -#include -#include -#include -#include -#include -#include - -namespace Eigen { - -template::IsComplex> struct GslTraits -{ - typedef gsl_matrix* Matrix; - typedef gsl_vector* Vector; - static Matrix createMatrix(int rows, int cols) { return gsl_matrix_alloc(rows,cols); } - static Vector createVector(int size) { return gsl_vector_alloc(size); } - static void free(Matrix& m) { gsl_matrix_free(m); m=0; } - static void free(Vector& m) { gsl_vector_free(m); m=0; } - static void prod(const Matrix& m, const Vector& v, Vector& x) { gsl_blas_dgemv(CblasNoTrans,1,m,v,0,x); } - static void cholesky(Matrix& m) { gsl_linalg_cholesky_decomp(m); } - static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_cholesky_solve(m,b,x); } - static void eigen_symm(const Matrix& m, Vector& eval, Matrix& evec) - { - gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc(m->size1); - Matrix a = createMatrix(m->size1, m->size2); - gsl_matrix_memcpy(a, m); - gsl_eigen_symmv(a,eval,evec,w); - gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); - gsl_eigen_symmv_free(w); - free(a); - } - static void eigen_symm_gen(const Matrix& m, const Matrix& _b, Vector& eval, Matrix& evec) - { - gsl_eigen_gensymmv_workspace * w = gsl_eigen_gensymmv_alloc(m->size1); - Matrix a = createMatrix(m->size1, m->size2); - Matrix b = createMatrix(_b->size1, _b->size2); - gsl_matrix_memcpy(a, m); - gsl_matrix_memcpy(b, _b); - gsl_eigen_gensymmv(a,b,eval,evec,w); - gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); - gsl_eigen_gensymmv_free(w); - free(a); - } -}; - -template struct GslTraits -{ - typedef gsl_matrix_complex* Matrix; - typedef gsl_vector_complex* Vector; - static Matrix createMatrix(int rows, int cols) { return gsl_matrix_complex_alloc(rows,cols); } - static Vector createVector(int size) { return gsl_vector_complex_alloc(size); } - static void free(Matrix& m) { gsl_matrix_complex_free(m); m=0; } - static void free(Vector& m) { gsl_vector_complex_free(m); m=0; } - static void cholesky(Matrix& m) { gsl_linalg_complex_cholesky_decomp(m); } - static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_complex_cholesky_solve(m,b,x); } - static void prod(const Matrix& m, const Vector& v, Vector& x) - { gsl_blas_zgemv(CblasNoTrans,gsl_complex_rect(1,0),m,v,gsl_complex_rect(0,0),x); } - static void eigen_symm(const Matrix& m, gsl_vector* &eval, Matrix& evec) - { - gsl_eigen_hermv_workspace * w = gsl_eigen_hermv_alloc(m->size1); - Matrix a = createMatrix(m->size1, m->size2); - gsl_matrix_complex_memcpy(a, m); - gsl_eigen_hermv(a,eval,evec,w); - gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); - gsl_eigen_hermv_free(w); - free(a); - } - static void eigen_symm_gen(const Matrix& m, const Matrix& _b, gsl_vector* &eval, Matrix& evec) - { - gsl_eigen_genhermv_workspace * w = gsl_eigen_genhermv_alloc(m->size1); - Matrix a = createMatrix(m->size1, m->size2); - Matrix b = createMatrix(_b->size1, _b->size2); - gsl_matrix_complex_memcpy(a, m); - gsl_matrix_complex_memcpy(b, _b); - gsl_eigen_genhermv(a,b,eval,evec,w); - gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); - gsl_eigen_genhermv_free(w); - free(a); - } -}; - -template -void convert(const MatrixType& m, gsl_matrix* &res) -{ -// if (res) -// gsl_matrix_free(res); - res = gsl_matrix_alloc(m.rows(), m.cols()); - for (int i=0 ; i -void convert(const gsl_matrix* m, MatrixType& res) -{ - res.resize(int(m->size1), int(m->size2)); - for (int i=0 ; i -void convert(const VectorType& m, gsl_vector* &res) -{ - if (res) gsl_vector_free(res); - res = gsl_vector_alloc(m.size()); - for (int i=0 ; i -void convert(const gsl_vector* m, VectorType& res) -{ - res.resize (m->size); - for (int i=0 ; i -void convert(const MatrixType& m, gsl_matrix_complex* &res) -{ - res = gsl_matrix_complex_alloc(m.rows(), m.cols()); - for (int i=0 ; i -void convert(const gsl_matrix_complex* m, MatrixType& res) -{ - res.resize(int(m->size1), int(m->size2)); - for (int i=0 ; i -void convert(const VectorType& m, gsl_vector_complex* &res) -{ - res = gsl_vector_complex_alloc(m.size()); - for (int i=0 ; i -void convert(const gsl_vector_complex* m, VectorType& res) -{ - res.resize(m->size); - for (int i=0 ; i -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include -#include -#include -#include -#include - -#ifndef EIGEN_TEST_FUNC -#error EIGEN_TEST_FUNC must be defined -#endif - -#define DEFAULT_REPEAT 10 - -namespace Eigen -{ - static std::vector g_test_stack; - static int g_repeat; -} - -#define EI_PP_MAKE_STRING2(S) #S -#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S) - -#define EI_PP_CAT2(a,b) a ## b -#define EI_PP_CAT(a,b) EI_PP_CAT2(a,b) - -#ifndef EIGEN_NO_ASSERTION_CHECKING - - namespace Eigen - { - static const bool should_raise_an_assert = false; - - // Used to avoid to raise two exceptions at a time in which - // case the exception is not properly caught. - // This may happen when a second exceptions is raise in a destructor. - static bool no_more_assert = false; - - struct eigen_assert_exception - { - eigen_assert_exception(void) {} - ~eigen_assert_exception() { Eigen::no_more_assert = false; } - }; - } - - // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is raised while - // one should have been, then the list of excecuted assertions is printed out. - // - // EIGEN_DEBUG_ASSERTS is not enabled by default as it - // significantly increases the compilation time - // and might even introduce side effects that would hide - // some memory errors. - #ifdef EIGEN_DEBUG_ASSERTS - - namespace Eigen - { - static bool ei_push_assert = false; - static std::vector eigen_assert_list; - } - - #define eigen_assert(a) \ - if( (!(a)) && (!no_more_assert) ) \ - { \ - Eigen::no_more_assert = true; \ - throw Eigen::eigen_assert_exception(); \ - } \ - else if (Eigen::ei_push_assert) \ - { \ - eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__)" ("EI_PP_MAKE_STRING(__LINE__)") : "#a) ); \ - } - - #define VERIFY_RAISES_ASSERT(a) \ - { \ - Eigen::no_more_assert = false; \ - try { \ - Eigen::eigen_assert_list.clear(); \ - Eigen::ei_push_assert = true; \ - a; \ - Eigen::ei_push_assert = false; \ - std::cerr << "One of the following asserts should have been raised:\n"; \ - for (uint ai=0 ; ai - - -#define VERIFY(a) do { if (!(a)) { \ - std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" \ - << std::endl << " " << EI_PP_MAKE_STRING(a) << std::endl << std::endl; \ - abort(); \ - } } while (0) - -#define VERIFY_IS_APPROX(a, b) VERIFY(test_ei_isApprox(a, b)) -#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_ei_isApprox(a, b)) -#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_ei_isMuchSmallerThan(a, b)) -#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_ei_isMuchSmallerThan(a, b)) -#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_ei_isApproxOrLessThan(a, b)) -#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_ei_isApproxOrLessThan(a, b)) - -#define CALL_SUBTEST(FUNC) do { \ - g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \ - FUNC; \ - g_test_stack.pop_back(); \ - } while (0) - -namespace Eigen { - -template inline typename NumTraits::Real test_precision(); -template<> inline int test_precision() { return 0; } -template<> inline float test_precision() { return 1e-3f; } -template<> inline double test_precision() { return 1e-6; } -template<> inline float test_precision >() { return test_precision(); } -template<> inline double test_precision >() { return test_precision(); } -template<> inline long double test_precision() { return 1e-6; } - -inline bool test_ei_isApprox(const int& a, const int& b) -{ return ei_isApprox(a, b, test_precision()); } -inline bool test_ei_isMuchSmallerThan(const int& a, const int& b) -{ return ei_isMuchSmallerThan(a, b, test_precision()); } -inline bool test_ei_isApproxOrLessThan(const int& a, const int& b) -{ return ei_isApproxOrLessThan(a, b, test_precision()); } - -inline bool test_ei_isApprox(const float& a, const float& b) -{ return ei_isApprox(a, b, test_precision()); } -inline bool test_ei_isMuchSmallerThan(const float& a, const float& b) -{ return ei_isMuchSmallerThan(a, b, test_precision()); } -inline bool test_ei_isApproxOrLessThan(const float& a, const float& b) -{ return ei_isApproxOrLessThan(a, b, test_precision()); } - -inline bool test_ei_isApprox(const double& a, const double& b) -{ return ei_isApprox(a, b, test_precision()); } -inline bool test_ei_isMuchSmallerThan(const double& a, const double& b) -{ return ei_isMuchSmallerThan(a, b, test_precision()); } -inline bool test_ei_isApproxOrLessThan(const double& a, const double& b) -{ return ei_isApproxOrLessThan(a, b, test_precision()); } - -inline bool test_ei_isApprox(const std::complex& a, const std::complex& b) -{ return ei_isApprox(a, b, test_precision >()); } -inline bool test_ei_isMuchSmallerThan(const std::complex& a, const std::complex& b) -{ return ei_isMuchSmallerThan(a, b, test_precision >()); } - -inline bool test_ei_isApprox(const std::complex& a, const std::complex& b) -{ return ei_isApprox(a, b, test_precision >()); } -inline bool test_ei_isMuchSmallerThan(const std::complex& a, const std::complex& b) -{ return ei_isMuchSmallerThan(a, b, test_precision >()); } - -inline bool test_ei_isApprox(const long double& a, const long double& b) -{ return ei_isApprox(a, b, test_precision()); } -inline bool test_ei_isMuchSmallerThan(const long double& a, const long double& b) -{ return ei_isMuchSmallerThan(a, b, test_precision()); } -inline bool test_ei_isApproxOrLessThan(const long double& a, const long double& b) -{ return ei_isApproxOrLessThan(a, b, test_precision()); } - -template -inline bool test_ei_isApprox(const Type1& a, const Type2& b) -{ - return a.isApprox(b, test_precision()); -} - -template -inline bool test_ei_isMuchSmallerThan(const MatrixBase& m1, - const MatrixBase& m2) -{ - return m1.isMuchSmallerThan(m2, test_precision::Scalar>()); -} - -template -inline bool test_ei_isMuchSmallerThan(const MatrixBase& m, - const typename NumTraits::Scalar>::Real& s) -{ - return m.isMuchSmallerThan(s, test_precision::Scalar>()); -} - -} // end namespace Eigen - -template struct GetDifferentType; - -template<> struct GetDifferentType { typedef double type; }; -template<> struct GetDifferentType { typedef float type; }; -template struct GetDifferentType > -{ typedef std::complex::type> type; }; - -// forward declaration of the main test function -void EI_PP_CAT(test_,EIGEN_TEST_FUNC)(); - -using namespace Eigen; - -#ifdef EIGEN_TEST_PART_1 -#define CALL_SUBTEST_1(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_1(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_2 -#define CALL_SUBTEST_2(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_2(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_3 -#define CALL_SUBTEST_3(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_3(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_4 -#define CALL_SUBTEST_4(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_4(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_5 -#define CALL_SUBTEST_5(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_5(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_6 -#define CALL_SUBTEST_6(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_6(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_7 -#define CALL_SUBTEST_7(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_7(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_8 -#define CALL_SUBTEST_8(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_8(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_9 -#define CALL_SUBTEST_9(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_9(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_10 -#define CALL_SUBTEST_10(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_10(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_11 -#define CALL_SUBTEST_11(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_11(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_12 -#define CALL_SUBTEST_12(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_12(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_13 -#define CALL_SUBTEST_13(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_13(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_14 -#define CALL_SUBTEST_14(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_14(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_15 -#define CALL_SUBTEST_15(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_15(FUNC) -#endif - -#ifdef EIGEN_TEST_PART_16 -#define CALL_SUBTEST_16(FUNC) CALL_SUBTEST(FUNC) -#else -#define CALL_SUBTEST_16(FUNC) -#endif - - - -int main(int argc, char *argv[]) -{ - bool has_set_repeat = false; - bool has_set_seed = false; - bool need_help = false; - unsigned int seed = 0; - int repeat = DEFAULT_REPEAT; - - for(int i = 1; i < argc; i++) - { - if(argv[i][0] == 'r') - { - if(has_set_repeat) - { - std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; - return 1; - } - repeat = std::atoi(argv[i]+1); - has_set_repeat = true; - if(repeat <= 0) - { - std::cout << "Invalid \'repeat\' value " << argv[i]+1 << std::endl; - return 1; - } - } - else if(argv[i][0] == 's') - { - if(has_set_seed) - { - std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; - return 1; - } - seed = int(std::strtoul(argv[i]+1, 0, 10)); - has_set_seed = true; - bool ok = seed!=0; - if(!ok) - { - std::cout << "Invalid \'seed\' value " << argv[i]+1 << std::endl; - return 1; - } - } - else - { - need_help = true; - } - } - - if(need_help) - { - std::cout << "This test application takes the following optional arguments:" << std::endl; - std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; - std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; - return 1; - } - - if(!has_set_seed) seed = (unsigned int) std::time(NULL); - if(!has_set_repeat) repeat = DEFAULT_REPEAT; - - std::cout << "Initializing random number generator with seed " << seed << std::endl; - std::srand(seed); - std::cout << "Repeating each test " << repeat << " times" << std::endl; - - Eigen::g_repeat = repeat; - Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)); - - EI_PP_CAT(test_,EIGEN_TEST_FUNC)(); - return 0; -} - - - diff --git a/test/eigen2/product.h b/test/eigen2/product.h deleted file mode 100644 index 2c9604d9a..000000000 --- a/test/eigen2/product.h +++ /dev/null @@ -1,132 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include -#include - -template -bool areNotApprox(const MatrixBase& m1, const MatrixBase& m2, typename Derived1::RealScalar epsilon = precision()) -{ - return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon - * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff())); -} - -template void product(const MatrixType& m) -{ - /* this test covers the following files: - Identity.h Product.h - */ - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::FloatingPoint FloatingPoint; - typedef Matrix RowVectorType; - typedef Matrix ColVectorType; - typedef Matrix RowSquareMatrixType; - typedef Matrix ColSquareMatrixType; - typedef Matrix OtherMajorMatrixType; - - int rows = m.rows(); - int cols = m.cols(); - - // this test relies a lot on Random.h, and there's not much more that we can do - // to test it, hence I consider that we will have tested Random.h - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - mzero = MatrixType::Zero(rows, cols); - RowSquareMatrixType - identity = RowSquareMatrixType::Identity(rows, rows), - square = RowSquareMatrixType::Random(rows, rows), - res = RowSquareMatrixType::Random(rows, rows); - ColSquareMatrixType - square2 = ColSquareMatrixType::Random(cols, cols), - res2 = ColSquareMatrixType::Random(cols, cols); - RowVectorType v1 = RowVectorType::Random(rows), - v2 = RowVectorType::Random(rows), - vzero = RowVectorType::Zero(rows); - ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); - OtherMajorMatrixType tm1 = m1; - - Scalar s1 = ei_random(); - - int r = ei_random(0, rows-1), - c = ei_random(0, cols-1); - - // begin testing Product.h: only associativity for now - // (we use Transpose.h but this doesn't count as a test for it) - - VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); - m3 = m1; - m3 *= m1.transpose() * m2; - VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2)); - VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2)); - - // continue testing Product.h: distributivity - VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2); - VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2); - - // continue testing Product.h: compatibility with ScalarMultiple.h - VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1); - VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1)); - - // again, test operator() to check const-qualification - s1 += (square.lazy() * m1)(r,c); - - // test Product.h together with Identity.h - VERIFY_IS_APPROX(v1, identity*v1); - VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity); - // again, test operator() to check const-qualification - VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast(r==c)); - - if (rows!=cols) - VERIFY_RAISES_ASSERT(m3 = m1*m1); - - // test the previous tests were not screwed up because operator* returns 0 - // (we use the more accurate default epsilon) - if (NumTraits::HasFloatingPoint && std::min(rows,cols)>1) - { - VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); - } - - // test optimized operator+= path - res = square; - res += (m1 * m2.transpose()).lazy(); - VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); - if (NumTraits::HasFloatingPoint && std::min(rows,cols)>1) - { - VERIFY(areNotApprox(res,square + m2 * m1.transpose())); - } - vcres = vc2; - vcres += (m1.transpose() * v1).lazy(); - VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); - tm1 = m1; - VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); - VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); - - // test submatrix and matrix/vector product - for (int i=0; i::HasFloatingPoint && std::min(rows,cols)>1) - { - VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); - } -} - diff --git a/test/eigen2/sparse.h b/test/eigen2/sparse.h deleted file mode 100644 index e12f89990..000000000 --- a/test/eigen2/sparse.h +++ /dev/null @@ -1,154 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Daniel Gomez Ferro -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TESTSPARSE_H - -#include "main.h" - -#if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC -#include -#define EIGEN_UNORDERED_MAP_SUPPORT -namespace std { - using std::tr1::unordered_map; -} -#endif - -#ifdef EIGEN_GOOGLEHASH_SUPPORT - #include -#endif - -#include -#include -#include - -enum { - ForceNonZeroDiag = 1, - MakeLowerTriangular = 2, - MakeUpperTriangular = 4, - ForceRealDiag = 8 -}; - -/* Initializes both a sparse and dense matrix with same random values, - * and a ratio of \a density non zero entries. - * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular - * allowing to control the shape of the matrix. - * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, - * and zero coefficients respectively. - */ -template void -initSparse(double density, - Matrix& refMat, - SparseMatrix& sparseMat, - int flags = 0, - std::vector* zeroCoords = 0, - std::vector* nonzeroCoords = 0) -{ - sparseMat.startFill(int(refMat.rows()*refMat.cols()*density)); - for(int j=0; j(0,1) < density) ? ei_random() : Scalar(0); - if ((flags&ForceNonZeroDiag) && (i==j)) - { - v = ei_random()*Scalar(3.); - v = v*v + Scalar(5.); - } - if ((flags & MakeLowerTriangular) && j>i) - v = Scalar(0); - else if ((flags & MakeUpperTriangular) && jpush_back(Vector2i(i,j)); - } - else if (zeroCoords) - { - zeroCoords->push_back(Vector2i(i,j)); - } - refMat(i,j) = v; - } - } - sparseMat.endFill(); -} - -template void -initSparse(double density, - Matrix& refMat, - DynamicSparseMatrix& sparseMat, - int flags = 0, - std::vector* zeroCoords = 0, - std::vector* nonzeroCoords = 0) -{ - sparseMat.startFill(int(refMat.rows()*refMat.cols()*density)); - for(int j=0; j(0,1) < density) ? ei_random() : Scalar(0); - if ((flags&ForceNonZeroDiag) && (i==j)) - { - v = ei_random()*Scalar(3.); - v = v*v + Scalar(5.); - } - if ((flags & MakeLowerTriangular) && j>i) - v = Scalar(0); - else if ((flags & MakeUpperTriangular) && jpush_back(Vector2i(i,j)); - } - else if (zeroCoords) - { - zeroCoords->push_back(Vector2i(i,j)); - } - refMat(i,j) = v; - } - } - sparseMat.endFill(); -} - -template void -initSparse(double density, - Matrix& refVec, - SparseVector& sparseVec, - std::vector* zeroCoords = 0, - std::vector* nonzeroCoords = 0) -{ - sparseVec.reserve(int(refVec.size()*density)); - sparseVec.setZero(); - for(int i=0; i(0,1) < density) ? ei_random() : Scalar(0); - if (v!=Scalar(0)) - { - sparseVec.fill(i) = v; - if (nonzeroCoords) - nonzeroCoords->push_back(i); - } - else if (zeroCoords) - zeroCoords->push_back(i); - refVec[i] = v; - } -} - -#endif // EIGEN_TESTSPARSE_H diff --git a/unsupported/Eigen/SVD b/unsupported/Eigen/SVD index 7cc059280..900a8aa60 100644 --- a/unsupported/Eigen/SVD +++ b/unsupported/Eigen/SVD @@ -29,10 +29,6 @@ #include "../../Eigen/src/SVD/JacobiSVD_MKL.h" #endif -#ifdef EIGEN2_SUPPORT -#include "../../Eigen/src/Eigen2Support/SVD.h" -#endif - #include "../../Eigen/src/Core/util/ReenableStupidWarnings.h" #endif // EIGEN_SVD_MODULE_H