* add VERIFY_IS_EQUAL, should compile faster and it's natural when no arithmetic is involved.

* rename 'submatrices' test to 'block'
* add block-inside-of-block tests
* remove old cruft
* split diagonal() tests into separate file
This commit is contained in:
Benoit Jacob 2010-02-26 09:03:13 -05:00
parent f56ac04c34
commit 32115bff1e
7 changed files with 199 additions and 67 deletions

View File

@ -2,7 +2,7 @@
// for linear algebra. // for linear algebra.
// //
// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net> // Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// //
// Eigen is free software; you can redistribute it and/or // Eigen is free software; you can redistribute it and/or

View File

@ -2,7 +2,7 @@
// for linear algebra. // for linear algebra.
// //
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// //
// Eigen is free software; you can redistribute it and/or // Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public // modify it under the terms of the GNU Lesser General Public

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library // This file is part of Eigen, a lightweight C++ template library
// for linear algebra. // for linear algebra.
// //
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// //
// Eigen is free software; you can redistribute it and/or // Eigen is free software; you can redistribute it and/or

View File

@ -104,12 +104,13 @@ ei_add_test(cwiseop)
ei_add_test(unalignedcount) ei_add_test(unalignedcount)
ei_add_test(redux) ei_add_test(redux)
ei_add_test(visitor) ei_add_test(visitor)
ei_add_test(block)
ei_add_test(product_small) ei_add_test(product_small)
ei_add_test(product_large) ei_add_test(product_large)
ei_add_test(product_extra) ei_add_test(product_extra)
ei_add_test(diagonalmatrices) ei_add_test(diagonalmatrices)
ei_add_test(adjoint) ei_add_test(adjoint)
ei_add_test(submatrices) ei_add_test(diagonal)
ei_add_test(miscmatrices) ei_add_test(miscmatrices)
ei_add_test(commainitializer) ei_add_test(commainitializer)
ei_add_test(smallvectors) ei_add_test(smallvectors)

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library // This file is part of Eigen, a lightweight C++ template library
// for linear algebra. // for linear algebra.
// //
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// //
// Eigen is free software; you can redistribute it and/or // Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public // modify it under the terms of the GNU Lesser General Public
@ -51,16 +51,18 @@ template<typename Scalar> struct CheckMinor<Scalar,1,1>
CheckMinor(MatrixType&, int, int) {} CheckMinor(MatrixType&, int, int) {}
}; };
template<typename MatrixType> void submatrices(const MatrixType& m) template<typename MatrixType> void block(const MatrixType& m)
{ {
/* this test covers the following files: /* this test covers the following files:
Row.h Column.h Block.h Minor.h DiagonalCoeffs.h Row.h Column.h Block.h Minor.h
*/ */
typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; typedef Matrix<Scalar, Dynamic, Dynamic> DynamicMatrixType;
typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
int rows = m.rows(); int rows = m.rows();
int cols = m.cols(); int cols = m.cols();
@ -69,8 +71,6 @@ template<typename MatrixType> void submatrices(const MatrixType& m)
m3(rows, cols), m3(rows, cols),
mzero = MatrixType::Zero(rows, cols), mzero = MatrixType::Zero(rows, cols),
ones = MatrixType::Ones(rows, cols); ones = MatrixType::Ones(rows, cols);
SquareMatrixType identity = SquareMatrixType::Identity(rows, rows),
square = SquareMatrixType::Random(rows, rows);
VectorType v1 = VectorType::Random(rows), VectorType v1 = VectorType::Random(rows),
v2 = VectorType::Random(rows), v2 = VectorType::Random(rows),
v3 = VectorType::Random(rows), v3 = VectorType::Random(rows),
@ -84,9 +84,7 @@ template<typename MatrixType> void submatrices(const MatrixType& m)
int c2 = ei_random<int>(c1,cols-1); int c2 = ei_random<int>(c1,cols-1);
//check row() and col() //check row() and col()
VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1)); VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
// FIXME perhaps we should re-enable that without the .eval()
VERIFY_IS_APPROX(m1.col(c1).dot(square.row(r1)), (square * m1.conjugate()).eval()(r1,c1));
//check operator(), both constant and non-constant, on row() and col() //check operator(), both constant and non-constant, on row() and col()
m1.row(r1) += s1 * m1.row(r2); m1.row(r1) += s1 * m1.row(r2);
m1.col(c1) += s1 * m1.col(c2); m1.col(c1) += s1 * m1.col(c2);
@ -96,9 +94,9 @@ template<typename MatrixType> void submatrices(const MatrixType& m)
RowVectorType br1(m1.block(r1,0,1,cols)); RowVectorType br1(m1.block(r1,0,1,cols));
VectorType bc1(m1.block(0,c1,rows,1)); VectorType bc1(m1.block(0,c1,rows,1));
VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1)); VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1));
VERIFY_IS_APPROX(m1.row(r1), br1); VERIFY_IS_EQUAL(m1.row(r1), br1);
VERIFY_IS_APPROX(m1.col(c1), bc1); VERIFY_IS_EQUAL(m1.col(c1), bc1);
//check operator(), both constant and non-constant, on block() //check operator(), both constant and non-constant, on block()
m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1); m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0); m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
@ -106,11 +104,6 @@ template<typename MatrixType> void submatrices(const MatrixType& m)
//check minor() //check minor()
CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1); CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
//check diagonal()
VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
m2.diagonal() = 2 * m1.diagonal();
m2.diagonal()[0] *= 3;
const int BlockRows = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime,2); const int BlockRows = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime,2);
const int BlockCols = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,5); const int BlockCols = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,5);
if (rows>=5 && cols>=8) if (rows>=5 && cols>=8)
@ -121,45 +114,23 @@ template<typename MatrixType> void submatrices(const MatrixType& m)
m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2); m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
// check that fixed block() and block() agree // check that fixed block() and block() agree
Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3); Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols)); VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols));
} }
if (rows>2) if (rows>2)
{ {
// test sub vectors // test sub vectors
VERIFY_IS_APPROX(v1.template head<2>(), v1.block(0,0,2,1)); VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1));
VERIFY_IS_APPROX(v1.template head<2>(), v1.head(2)); VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
VERIFY_IS_APPROX(v1.template head<2>(), v1.segment(0,2)); VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2));
VERIFY_IS_APPROX(v1.template head<2>(), v1.template segment<2>(0)); VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
int i = rows-2; int i = rows-2;
VERIFY_IS_APPROX(v1.template tail<2>(), v1.block(i,0,2,1)); VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1));
VERIFY_IS_APPROX(v1.template tail<2>(), v1.tail(2)); VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
VERIFY_IS_APPROX(v1.template tail<2>(), v1.segment(i,2)); VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2));
VERIFY_IS_APPROX(v1.template tail<2>(), v1.template segment<2>(i)); VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
i = ei_random(0,rows-2); i = ei_random(0,rows-2);
VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i)); VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i));
enum {
N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0,
N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0
};
// check sub/super diagonal
m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>();
m2.template diagonal<N1>()[0] *= 3;
VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>();
m2.template diagonal<N2>()[0] *= 3;
VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
m2.diagonal(N1) = 2 * m1.diagonal(N1);
m2.diagonal(N1)[0] *= 3;
VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
m2.diagonal(N2) = 2 * m1.diagonal(N2);
m2.diagonal(N2)[0] *= 3;
VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]);
} }
// stress some basic stuffs with block matrices // stress some basic stuffs with block matrices
@ -168,6 +139,49 @@ template<typename MatrixType> void submatrices(const MatrixType& m)
VERIFY(ei_real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows)); VERIFY(ei_real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
VERIFY(ei_real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols)); VERIFY(ei_real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
// now test some block-inside-of-block.
// expressions with direct access
VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) );
VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) );
VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
// expressions without direct access
VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) );
VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) );
VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
VERIFY_IS_EQUAL( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
// evaluation into plain matrices from expressions with direct access (stress MapBase)
DynamicMatrixType dm;
DynamicVectorType dv;
dm.setZero();
dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2);
VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2)));
dm.setZero();
dv.setZero();
dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose();
dv = m1.row(r1).segment(c1,c2-c1+1);
VERIFY_IS_EQUAL(dv, dm);
dm.setZero();
dv.setZero();
dm = m1.col(c1).segment(r1,r2-r1+1);
dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0);
VERIFY_IS_EQUAL(dv, dm);
dm.setZero();
dv.setZero();
dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0);
dv = m1.row(r1).segment(c1,c2-c1+1);
VERIFY_IS_EQUAL(dv, dm);
dm.setZero();
dv.setZero();
dm = m1.row(r1).segment(c1,c2-c1+1).transpose();
dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0);
VERIFY_IS_EQUAL(dv, dm);
} }
@ -185,22 +199,22 @@ void compare_using_data_and_stride(const MatrixType& m)
for(int j=0;j<cols;++j) for(int j=0;j<cols;++j)
for(int i=0;i<rows;++i) for(int i=0;i<rows;++i)
VERIFY_IS_APPROX(m.coeff(i,j), data[i*rowStride + j*colStride]); VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]);
if(!MatrixType::IsVectorAtCompileTime) if(!MatrixType::IsVectorAtCompileTime)
{ {
for(int j=0;j<cols;++j) for(int j=0;j<cols;++j)
for(int i=0;i<rows;++i) for(int i=0;i<rows;++i)
VERIFY_IS_APPROX(m.coeff(i,j), data[(MatrixType::Flags&RowMajorBit) VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit)
? i*outerStride + j*innerStride ? i*outerStride + j*innerStride
: j*outerStride + i*innerStride]); : j*outerStride + i*innerStride]);
} }
if(MatrixType::IsVectorAtCompileTime) if(MatrixType::IsVectorAtCompileTime)
{ {
VERIFY_IS_APPROX(innerStride, int((&m.coeff(1))-(&m.coeff(0)))); VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0))));
for (int i=0;i<size;++i) for (int i=0;i<size;++i)
VERIFY_IS_APPROX(m.coeff(i), data[i*innerStride]); VERIFY(m.coeff(i) == data[i*innerStride]);
} }
} }
@ -224,17 +238,17 @@ void data_and_stride(const MatrixType& m)
compare_using_data_and_stride(m1.col(c1).transpose()); compare_using_data_and_stride(m1.col(c1).transpose());
} }
void test_submatrices() void test_block()
{ {
for(int i = 0; i < g_repeat; i++) { for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( submatrices(Matrix4d()) ); CALL_SUBTEST_2( block(Matrix4d()) );
CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) ); CALL_SUBTEST_3( block(MatrixXcf(3, 3)) );
CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) ); CALL_SUBTEST_4( block(MatrixXi(8, 12)) );
CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) ); CALL_SUBTEST_5( block(MatrixXcd(20, 20)) );
CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) ); CALL_SUBTEST_6( block(MatrixXf(20, 20)) );
CALL_SUBTEST_8( submatrices(Matrix<float,Dynamic,4>(3, 4)) ); CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) );
#ifndef EIGEN_DEFAULT_TO_ROW_MAJOR #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
CALL_SUBTEST_6( data_and_stride(MatrixXf(ei_random(5,50), ei_random(5,50))) ); CALL_SUBTEST_6( data_and_stride(MatrixXf(ei_random(5,50), ei_random(5,50))) );

81
test/diagonal.cpp Normal file
View File

@ -0,0 +1,81 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename MatrixType> void diagonal(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
int rows = m.rows();
int cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols);
//check diagonal()
VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
m2.diagonal() = 2 * m1.diagonal();
m2.diagonal()[0] *= 3;
if (rows>2)
{
enum {
N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0,
N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0
};
// check sub/super diagonal
m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>();
m2.template diagonal<N1>()[0] *= 3;
VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>();
m2.template diagonal<N2>()[0] *= 3;
VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
m2.diagonal(N1) = 2 * m1.diagonal(N1);
m2.diagonal(N1)[0] *= 3;
VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
m2.diagonal(N2) = 2 * m1.diagonal(N2);
m2.diagonal(N2)[0] *= 3;
VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]);
}
}
void test_diagonal()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( diagonal(Matrix4d()) );
CALL_SUBTEST_2( diagonal(MatrixXcf(3, 3)) );
CALL_SUBTEST_2( diagonal(MatrixXi(8, 12)) );
CALL_SUBTEST_2( diagonal(MatrixXcd(20, 20)) );
CALL_SUBTEST_1( diagonal(MatrixXf(21, 19)) );
CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) );
}
}

View File

@ -157,6 +157,7 @@ namespace Eigen
exit(2); \ exit(2); \
} } while (0) } } while (0)
#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
#define VERIFY_IS_APPROX(a, b) VERIFY(test_ei_isApprox(a, b)) #define VERIFY_IS_APPROX(a, b) VERIFY(test_ei_isApprox(a, b))
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_ei_isApprox(a, b)) #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_ei_isApprox(a, b))
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_ei_isMuchSmallerThan(a, b)) #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_ei_isMuchSmallerThan(a, b))
@ -342,6 +343,41 @@ inline bool test_isUnitary(const MatrixBase<Derived>& m)
return m.isUnitary(test_precision<typename ei_traits<Derived>::Scalar>()); return m.isUnitary(test_precision<typename ei_traits<Derived>::Scalar>());
} }
template<typename Derived1, typename Derived2,
bool IsVector = bool(Derived1::IsVectorAtCompileTime) && bool(Derived2::IsVectorAtCompileTime) >
struct test_is_equal_impl
{
static bool run(const Derived1& a1, const Derived2& a2)
{
if(a1.size() != a2.size()) return false;
// we evaluate a2 into a temporary of the shape of a1. this allows to let Assign.h handle the transposing if needed.
typename Derived1::PlainObject a2_evaluated(a2);
for(int i = 0; i < a1.size(); ++i)
if(a1.coeff(i) != a2_evaluated.coeff(i)) return false;
return true;
}
};
template<typename Derived1, typename Derived2>
struct test_is_equal_impl<Derived1, Derived2, false>
{
static bool run(const Derived1& a1, const Derived2& a2)
{
if(a1.rows() != a2.rows()) return false;
if(a1.cols() != a2.cols()) return false;
for(int j = 0; j < a1.cols(); ++j)
for(int i = 0; i < a1.rows(); ++i)
if(a1.coeff(i,j) != a2.coeff(i,j)) return false;
return true;
}
};
template<typename Derived1, typename Derived2>
bool test_is_equal(const Derived1& a1, const Derived2& a2)
{
return test_is_equal_impl<Derived1, Derived2>::run(a1, a2);
}
/** Creates a random Partial Isometry matrix of given rank. /** Creates a random Partial Isometry matrix of given rank.
* *
* A partial isometry is a matrix all of whose singular values are either 0 or 1. * A partial isometry is a matrix all of whose singular values are either 0 or 1.