moved purely "array" related stuff to a new module Array.

This include:
 - cwise Pow,Sin,Cos,Exp...
 - cwise Greater and other comparison operators
 - .any(), .all() and partial reduction
 - random
This commit is contained in:
Gael Guennebaud 2008-05-31 18:11:48 +00:00
parent a2f71f9d7e
commit 310f7aa096
18 changed files with 803 additions and 632 deletions

17
Eigen/Array Normal file
View File

@ -0,0 +1,17 @@
#ifndef EIGEN_ARRAY_MODULE_H
#define EIGEN_ARRAY_MODULE_H
#include "Core"
namespace Eigen {
#include "src/Array/ArrayBase.h"
#include "src/Array/CwiseOperators.h"
#include "src/Array/Functors.h"
#include "src/Array/AllAndAny.h"
#include "src/Array/PartialRedux.h"
#include "src/Array/Random.h"
} // namespace Eigen
#endif // EIGEN_ARRAY_MODULE_H

View File

@ -27,7 +27,6 @@ namespace Eigen {
#include "src/Core/Functors.h"
#include "src/Core/MatrixBase.h"
#include "src/Core/ArrayBase.h"
#include "src/Core/Coeffs.h"
#include "src/Core/Assign.h"
#include "src/Core/MatrixStorage.h"

124
Eigen/src/Array/AllAndAny.h Normal file
View File

@ -0,0 +1,124 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ALLANDANY_H
#define EIGEN_ALLANDANY_H
template<typename Derived, int UnrollCount>
struct ei_all_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
inline static bool run(const Derived &mat)
{
return ei_all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
}
};
template<typename Derived>
struct ei_all_unroller<Derived, 1>
{
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
};
template<typename Derived>
struct ei_all_unroller<Derived, Dynamic>
{
inline static bool run(const Derived &) { return false; }
};
template<typename Derived, int UnrollCount>
struct ei_any_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
inline static bool run(const Derived &mat)
{
return ei_any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
}
};
template<typename Derived>
struct ei_any_unroller<Derived, 1>
{
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
};
template<typename Derived>
struct ei_any_unroller<Derived, Dynamic>
{
inline static bool run(const Derived &) { return false; }
};
/** \returns true if all coefficients are true
*
* \sa MatrixBase::any()
*/
template<typename Derived>
bool MatrixBase<Derived>::all(void) const
{
const bool unroll = SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost)
<= EIGEN_UNROLLING_LIMIT;
if(unroll)
return ei_all_unroller<Derived,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived());
else
{
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
if (!coeff(i, j)) return false;
return true;
}
}
/** \returns true if at least one coefficient is true
*
* \sa MatrixBase::any()
*/
template<typename Derived>
bool MatrixBase<Derived>::any(void) const
{
const bool unroll = SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost)
<= EIGEN_UNROLLING_LIMIT;
if(unroll)
return ei_any_unroller<Derived,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived());
else
{
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
if (coeff(i, j)) return true;
return false;
}
}
#endif // EIGEN_ALLANDANY_H

View File

@ -25,8 +25,6 @@
#ifndef EIGEN_ARRAYBASE_H
#define EIGEN_ARRAYBASE_H
template<typename Derived> class ArrayBase<Derived,false> {};
template<typename Derived> class ArrayBase<Derived,true>
{
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_ARRAY_SRCS "*.h")
INSTALL(FILES
${Eigen_ARRAY_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/ARRAY
)

View File

@ -0,0 +1,153 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAY_CWISE_OPERATORS_H
#define EIGEN_ARRAY_CWISE_OPERATORS_H
// -- unary operators --
/** \returns an expression of the coefficient-wise square root of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_sqrt_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseSqrt() const
{
return derived();
}
/** \returns an expression of the coefficient-wise exponential of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_exp_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseExp() const
{
return derived();
}
/** \returns an expression of the coefficient-wise logarithm of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_log_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseLog() const
{
return derived();
}
/** \returns an expression of the coefficient-wise cosine of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_cos_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseCos() const
{
return derived();
}
/** \returns an expression of the coefficient-wise sine of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_sin_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseSin() const
{
return derived();
}
/** \returns an expression of the coefficient-wise power of *this to the given exponent. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_pow_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwisePow(const Scalar& exponent) const
{
return CwiseUnaryOp<ei_scalar_pow_op<Scalar>, Derived>
(derived(), ei_scalar_pow_op<Scalar>(exponent));
}
// -- binary operators --
/** \returns an expression of the coefficient-wise \< operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::less<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseLessThan(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::less<Scalar>());
}
/** \returns an expression of the coefficient-wise \<= operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::less_equal<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseLessEqual(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::less_equal<Scalar>());
}
/** \returns an expression of the coefficient-wise \> operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::greater<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseGreaterThan(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::greater<Scalar>());
}
/** \returns an expression of the coefficient-wise \>= operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::greater_equal<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseGreaterEqual(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::greater_equal<Scalar>());
}
/** \returns an expression of the coefficient-wise == operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::equal_to<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseEqualTo(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::equal_to<Scalar>());
}
/** \returns an expression of the coefficient-wise != operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::not_equal_to<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseNotEqualTo(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::not_equal_to<Scalar>());
}
#endif // EIGEN_ARRAY_CWISE_OPERATORS_H

205
Eigen/src/Array/Functors.h Normal file
View File

@ -0,0 +1,205 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAY_FUNCTORS_H
#define EIGEN_ARRAY_FUNCTORS_H
/** \internal
* \brief Template functor to compute the square root of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseSqrt()
*/
template<typename Scalar> struct ei_scalar_sqrt_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseExp()
*/
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseLog()
*/
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the cosine of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseCos()
*/
template<typename Scalar> struct ei_scalar_cos_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_cos(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cos_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the sine of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseSin()
*/
template<typename Scalar> struct ei_scalar_sin_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_sin(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sin_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to raise a scalar to a power
*
* \sa class CwiseUnaryOp, MatrixBase::cwisePow
*/
template<typename Scalar>
struct ei_scalar_pow_op {
inline ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
inline Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); }
const Scalar m_exponent;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_pow_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
// default ei_functor_traits for STL functors:
template<typename T>
struct ei_functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::logical_or<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::logical_and<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::logical_not<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::greater<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::less<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::less_equal<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::equal_to<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::binder2nd<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::binder1st<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, IsVectorizable = false }; };
#ifdef EIGEN_STDEXT_SUPPORT
template<typename T0,typename T1>
struct ei_functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost, IsVectorizable = false }; };
template<typename T0,typename T1,typename T2>
struct ei_functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost + ei_functor_traits<T2>::Cost, IsVectorizable = false }; };
#endif // EIGEN_STDEXT_SUPPORT
#endif // EIGEN_ARRAY_FUNCTORS_H

View File

@ -0,0 +1,126 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PARTIAL_REDUX_H
#define EIGEN_PARTIAL_REDUX_H
/** \class PartialRedux
*
* \brief Generic expression of a partially reduxed matrix
*
* \param Direction indicates the direction of the redux (Vertical or Horizontal)
* \param BinaryOp type of the binary functor implementing the operator (must be associative)
* \param MatrixType the type of the matrix we are applying the redux operation
*
* This class represents an expression of a partial redux operator of a matrix.
* It is the return type of MatrixBase::verticalRedux(), MatrixBase::horizontalRedux(),
* and most of the time this is the only way it is used.
*
* \sa class CwiseBinaryOp
*/
template<int Direction, typename BinaryOp, typename MatrixType>
struct ei_traits<PartialRedux<Direction, BinaryOp, MatrixType> >
{
typedef typename ei_result_of<
BinaryOp(typename MatrixType::Scalar)
>::type Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
Flags = ((int(RowsAtCompileTime) == Dynamic || int(ColsAtCompileTime) == Dynamic)
? (unsigned int)_MatrixTypeNested::Flags
: (unsigned int)_MatrixTypeNested::Flags & ~LargeBit) & HereditaryBits,
TraversalSize = Direction==Vertical ? RowsAtCompileTime : ColsAtCompileTime,
CoeffReadCost = TraversalSize * _MatrixTypeNested::CoeffReadCost
+ (TraversalSize - 1) * ei_functor_traits<BinaryOp>::Cost
};
};
template<int Direction, typename BinaryOp, typename MatrixType>
class PartialRedux : ei_no_assignment_operator,
public MatrixBase<PartialRedux<Direction, BinaryOp, MatrixType> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialRedux)
typedef typename ei_traits<PartialRedux>::MatrixTypeNested MatrixTypeNested;
typedef typename ei_traits<PartialRedux>::_MatrixTypeNested _MatrixTypeNested;
PartialRedux(const MatrixType& mat, const BinaryOp& func = BinaryOp())
: m_matrix(mat), m_functor(func) {}
private:
int _rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
int _cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
const Scalar _coeff(int i, int j) const
{
if (Direction==Vertical)
return m_matrix.col(j).redux(m_functor);
else
return m_matrix.row(i).redux(m_functor);
}
protected:
const MatrixTypeNested m_matrix;
const BinaryOp m_functor;
};
/** \returns a row vector expression of *this vertically reduxed by \a func
*
* The template parameter \a BinaryOp is the type of the functor
* of the custom redux operator. Note that func must be an associative operator.
*
* \sa class PartialRedux, MatrixBase::horizontalRedux()
*/
template<typename Derived>
template<typename BinaryOp>
const PartialRedux<Vertical, BinaryOp, Derived>
MatrixBase<Derived>::verticalRedux(const BinaryOp& func) const
{
return PartialRedux<Vertical, BinaryOp, Derived>(derived(), func);
}
/** \returns a row vector expression of *this horizontally reduxed by \a func
*
* The template parameter \a BinaryOp is the type of the functor
* of the custom redux operator. Note that func must be an associative operator.
*
* \sa class PartialRedux, MatrixBase::verticalRedux()
*/
template<typename Derived>
template<typename BinaryOp>
const PartialRedux<Horizontal, BinaryOp, Derived>
MatrixBase<Derived>::horizontalRedux(const BinaryOp& func) const
{
return PartialRedux<Horizontal, BinaryOp, Derived>(derived(), func);
}
#endif // EIGEN_PARTIAL_REDUX_H

111
Eigen/src/Array/Random.h Normal file
View File

@ -0,0 +1,111 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_RANDOM_H
#define EIGEN_RANDOM_H
template<typename Scalar> struct ei_scalar_random_op EIGEN_EMPTY_STRUCT {
inline ei_scalar_random_op(void) {}
inline const Scalar operator() (int, int) const { return ei_random<Scalar>(); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_random_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false, IsRepeatable = false }; };
/** \returns a random matrix (not an expression, the matrix is immediately evaluated).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so ei_random() should be used
* instead.
*
* Example: \include MatrixBase_random_int_int.cpp
* Output: \verbinclude MatrixBase_random_int_int.out
*
* \sa ei_random(), ei_random(int)
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::random(int rows, int cols)
{
return create(rows, cols, ei_scalar_random_op<Scalar>());
}
/** \returns a random vector (not an expression, the vector is immediately evaluated).
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so ei_random() should be used
* instead.
*
* Example: \include MatrixBase_random_int.cpp
* Output: \verbinclude MatrixBase_random_int.out
*
* \sa ei_random(), ei_random(int,int)
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::random(int size)
{
return create(size, ei_scalar_random_op<Scalar>());
}
/** \returns a fixed-size random matrix or vector
* (not an expression, the matrix is immediately evaluated).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_random.cpp
* Output: \verbinclude MatrixBase_random.out
*
* \sa ei_random(int), ei_random(int,int)
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::random()
{
return create(RowsAtCompileTime, ColsAtCompileTime, ei_scalar_random_op<Scalar>());
}
/** Sets all coefficients in this expression to random values.
*
* Example: \include MatrixBase_setRandom.cpp
* Output: \verbinclude MatrixBase_setRandom.out
*
* \sa class CwiseNullaryOp, ei_random()
*/
template<typename Derived>
inline Derived& MatrixBase<Derived>::setRandom()
{
return *this = random(rows(), cols());
}
#endif // EIGEN_RANDOM_H

View File

@ -231,76 +231,4 @@ MatrixBase<Derived>::cwise(const MatrixBase<OtherDerived> &other, const CustomBi
return CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>(derived(), other.derived(), func);
}
/** \returns an expression of the coefficient-wise \< operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::less<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseLessThan(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::less<Scalar>());
}
/** \returns an expression of the coefficient-wise \<= operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::less_equal<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseLessEqual(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::less_equal<Scalar>());
}
/** \returns an expression of the coefficient-wise \> operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::greater<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseGreaterThan(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::greater<Scalar>());
}
/** \returns an expression of the coefficient-wise \>= operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::greater_equal<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseGreaterEqual(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::greater_equal<Scalar>());
}
/** \returns an expression of the coefficient-wise == operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::equal_to<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseEqualTo(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::equal_to<Scalar>());
}
/** \returns an expression of the coefficient-wise != operator of *this and \a other
*
* \sa class CwiseBinaryOp
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<std::not_equal_to<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::cwiseNotEqualTo(const MatrixBase<OtherDerived> &other) const
{
return cwise(other, std::not_equal_to<Scalar>());
}
#endif // EIGEN_CWISE_BINARY_OP_H

View File

@ -424,83 +424,6 @@ Derived& MatrixBase<Derived>::setOnes()
return setConstant(Scalar(1));
}
// random:
/** \returns a random matrix (not an expression, the matrix is immediately evaluated).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so ei_random() should be used
* instead.
*
* Example: \include MatrixBase_random_int_int.cpp
* Output: \verbinclude MatrixBase_random_int_int.out
*
* \sa ei_random(), ei_random(int)
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::random(int rows, int cols)
{
return create(rows, cols, ei_scalar_random_op<Scalar>());
}
/** \returns a random vector (not an expression, the vector is immediately evaluated).
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so ei_random() should be used
* instead.
*
* Example: \include MatrixBase_random_int.cpp
* Output: \verbinclude MatrixBase_random_int.out
*
* \sa ei_random(), ei_random(int,int)
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::random(int size)
{
return create(size, ei_scalar_random_op<Scalar>());
}
/** \returns a fixed-size random matrix or vector
* (not an expression, the matrix is immediately evaluated).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_random.cpp
* Output: \verbinclude MatrixBase_random.out
*
* \sa ei_random(int), ei_random(int,int)
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::random()
{
return create(RowsAtCompileTime, ColsAtCompileTime, ei_scalar_random_op<Scalar>());
}
/** Sets all coefficients in this expression to random values.
*
* Example: \include MatrixBase_setRandom.cpp
* Output: \verbinclude MatrixBase_setRandom.out
*
* \sa class CwiseNullaryOp, ei_random()
*/
template<typename Derived>
inline Derived& MatrixBase<Derived>::setRandom()
{
return *this = random(rows(), cols());
}
// Identity:
/** \returns an expression of the identity matrix (not necessarily square).

View File

@ -196,53 +196,4 @@ MatrixBase<Derived>::operator/=(const Scalar& other)
return *this = *this / other;
}
/** \returns an expression of the coefficient-wise square root of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_sqrt_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseSqrt() const
{
return derived();
}
/** \returns an expression of the coefficient-wise exponential of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_exp_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseExp() const
{
return derived();
}
/** \returns an expression of the coefficient-wise logarithm of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_log_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseLog() const
{
return derived();
}
/** \returns an expression of the coefficient-wise cosine of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_cos_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseCos() const
{
return derived();
}
/** \returns an expression of the coefficient-wise sine of *this. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_sin_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwiseSin() const
{
return derived();
}
/** \returns an expression of the coefficient-wise power of *this to the given exponent. */
template<typename Derived>
inline const CwiseUnaryOp<ei_scalar_pow_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwisePow(const Scalar& exponent) const
{
return CwiseUnaryOp<ei_scalar_pow_op<Scalar>, Derived>
(derived(), ei_scalar_pow_op<Scalar>(exponent));
}
#endif // EIGEN_CWISE_UNARY_OP_H

View File

@ -266,81 +266,6 @@ struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl<Scalar, NumTraits<Scala
: ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint >(other) {}
};
/** \internal
* \brief Template functor to compute the square root of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseSqrt()
*/
template<typename Scalar> struct ei_scalar_sqrt_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseExp()
*/
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseLog()
*/
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the cosine of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseCos()
*/
template<typename Scalar> struct ei_scalar_cos_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_cos(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cos_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to compute the sine of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseSin()
*/
template<typename Scalar> struct ei_scalar_sin_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_sin(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sin_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to raise a scalar to a power
*
* \sa class CwiseUnaryOp, MatrixBase::cwisePow
*/
template<typename Scalar>
struct ei_scalar_pow_op {
inline ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
inline Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); }
const Scalar m_exponent;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_pow_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false }; };
// nullary functors
template<typename Scalar, bool IsVectorizable = (int(ei_packet_traits<Scalar>::size)>1?true:false) > struct ei_scalar_constant_op;
@ -364,16 +289,6 @@ template<typename Scalar>
struct ei_functor_traits<ei_scalar_constant_op<Scalar> >
{ enum { Cost = 1, IsVectorizable = ei_packet_traits<Scalar>::size>1, IsRepeatable = true }; };
template<typename Scalar> struct ei_scalar_random_op EIGEN_EMPTY_STRUCT {
inline ei_scalar_random_op(void) {}
inline const Scalar operator() (int, int) const { return ei_random<Scalar>(); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_random_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, IsVectorizable = false, IsRepeatable = false }; };
template<typename Scalar> struct ei_scalar_identity_op EIGEN_EMPTY_STRUCT {
inline ei_scalar_identity_op(void) {}
inline const Scalar operator() (int row, int col) const { return row==col ? Scalar(1) : Scalar(0); }
@ -382,106 +297,4 @@ template<typename Scalar>
struct ei_functor_traits<ei_scalar_identity_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, IsVectorizable = false, IsRepeatable = true }; };
// default ei_functor_traits for STL functors:
template<typename T>
struct ei_functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::logical_or<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::logical_and<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::logical_not<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::greater<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::less<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::less_equal<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::equal_to<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::binder2nd<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::binder1st<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, IsVectorizable = false }; };
template<typename T>
struct ei_functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, IsVectorizable = false }; };
#ifdef EIGEN_STDEXT_SUPPORT
template<typename T0,typename T1>
struct ei_functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, IsVectorizable = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost, IsVectorizable = false }; };
template<typename T0,typename T1,typename T2>
struct ei_functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost + ei_functor_traits<T2>::Cost, IsVectorizable = false }; };
#endif // EIGEN_STDEXT_SUPPORT
#endif // EIGEN_FUNCTORS_H

View File

@ -395,9 +395,6 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
create(const CustomNullaryOp& func);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> random(int rows, int cols);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> random(int size);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> random();
static const ConstantReturnType zero(int rows, int cols);
static const ConstantReturnType zero(int size);
static const ConstantReturnType zero();
@ -497,6 +494,57 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
const CwiseBinaryOp<ei_scalar_max_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
cwiseMax(const MatrixBase<OtherDerived> &other) const;
const CwiseUnaryOp<ei_scalar_abs_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseAbs() const;
const CwiseUnaryOp<ei_scalar_abs2_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseAbs2() const;
template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, Derived> cwise(const CustomUnaryOp& func = CustomUnaryOp()) const;
template<typename CustomBinaryOp, typename OtherDerived>
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
cwise(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
//@}
/// \name Redux and visitor
//@{
Scalar sum() const;
Scalar trace() const;
typename ei_traits<Derived>::Scalar minCoeff() const;
typename ei_traits<Derived>::Scalar maxCoeff() const;
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col = 0) const;
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col = 0) const;
template<typename BinaryOp>
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
redux(const BinaryOp& func) const;
template<typename Visitor>
void visit(Visitor& func) const;
//@}
/// \name Casting to the derived type
//@{
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<MatrixBase*>(this)); }
//@}
/** \name Array module
*
* \code #include <Eigen/Array> \endcode
*/
//@{
const CwiseUnaryOp<ei_scalar_sqrt_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseSqrt() const;
const CwiseUnaryOp<ei_scalar_exp_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseExp() const;
const CwiseUnaryOp<ei_scalar_log_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseLog() const;
const CwiseUnaryOp<ei_scalar_cos_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseCos() const;
const CwiseUnaryOp<ei_scalar_sin_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseSin() const;
const CwiseUnaryOp<ei_scalar_pow_op<typename ei_traits<Derived>::Scalar>, Derived>
cwisePow(const Scalar& exponent) const;
template<typename OtherDerived>
const CwiseBinaryOp<std::less<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
cwiseLessThan(const MatrixBase<OtherDerived> &other) const;
@ -521,35 +569,6 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
const CwiseBinaryOp<std::not_equal_to<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
cwiseNotEqualTo(const MatrixBase<OtherDerived> &other) const;
const CwiseUnaryOp<ei_scalar_abs_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseAbs() const;
const CwiseUnaryOp<ei_scalar_abs2_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseAbs2() const;
const CwiseUnaryOp<ei_scalar_sqrt_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseSqrt() const;
const CwiseUnaryOp<ei_scalar_exp_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseExp() const;
const CwiseUnaryOp<ei_scalar_log_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseLog() const;
const CwiseUnaryOp<ei_scalar_cos_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseCos() const;
const CwiseUnaryOp<ei_scalar_sin_op<typename ei_traits<Derived>::Scalar>, Derived> cwiseSin() const;
const CwiseUnaryOp<ei_scalar_pow_op<typename ei_traits<Derived>::Scalar>, Derived>
cwisePow(const Scalar& exponent) const;
template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, Derived> cwise(const CustomUnaryOp& func = CustomUnaryOp()) const;
template<typename CustomBinaryOp, typename OtherDerived>
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
cwise(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
//@}
/// \name Redux and visitor
//@{
Scalar sum() const;
Scalar trace() const;
typename ei_traits<Derived>::Scalar minCoeff() const;
typename ei_traits<Derived>::Scalar maxCoeff() const;
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col = 0) const;
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col = 0) const;
bool all(void) const;
bool any(void) const;
@ -561,20 +580,9 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
const PartialRedux<Horizontal, BinaryOp, Derived>
horizontalRedux(const BinaryOp& func) const;
template<typename BinaryOp>
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
redux(const BinaryOp& func) const;
template<typename Visitor>
void visit(Visitor& func) const;
//@}
/// \name Casting to the derived type
//@{
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<MatrixBase*>(this)); }
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> random(int rows, int cols);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> random(int size);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> random();
//@}
/** \name LU module

View File

@ -66,105 +66,6 @@ struct ei_redux_unroller<BinaryOp, Derived, Start, Dynamic>
static Scalar run(const Derived&, const BinaryOp&) { return Scalar(); }
};
/** \class PartialRedux
*
* \brief Generic expression of a partially reduxed matrix
*
* \param Direction indicates the direction of the redux (Vertical or Horizontal)
* \param BinaryOp type of the binary functor implementing the operator (must be associative)
* \param MatrixType the type of the matrix we are applying the redux operation
*
* This class represents an expression of a partial redux operator of a matrix.
* It is the return type of MatrixBase::verticalRedux(), MatrixBase::horizontalRedux(),
* and most of the time this is the only way it is used.
*
* \sa class CwiseBinaryOp
*/
template<int Direction, typename BinaryOp, typename MatrixType>
struct ei_traits<PartialRedux<Direction, BinaryOp, MatrixType> >
{
typedef typename ei_result_of<
BinaryOp(typename MatrixType::Scalar)
>::type Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
Flags = ((int(RowsAtCompileTime) == Dynamic || int(ColsAtCompileTime) == Dynamic)
? (unsigned int)_MatrixTypeNested::Flags
: (unsigned int)_MatrixTypeNested::Flags & ~LargeBit) & HereditaryBits,
TraversalSize = Direction==Vertical ? RowsAtCompileTime : ColsAtCompileTime,
CoeffReadCost = TraversalSize * _MatrixTypeNested::CoeffReadCost
+ (TraversalSize - 1) * ei_functor_traits<BinaryOp>::Cost
};
};
template<int Direction, typename BinaryOp, typename MatrixType>
class PartialRedux : ei_no_assignment_operator,
public MatrixBase<PartialRedux<Direction, BinaryOp, MatrixType> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialRedux)
typedef typename ei_traits<PartialRedux>::MatrixTypeNested MatrixTypeNested;
typedef typename ei_traits<PartialRedux>::_MatrixTypeNested _MatrixTypeNested;
PartialRedux(const MatrixType& mat, const BinaryOp& func = BinaryOp())
: m_matrix(mat), m_functor(func) {}
private:
int _rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
int _cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
const Scalar _coeff(int i, int j) const
{
if (Direction==Vertical)
return m_matrix.col(j).redux(m_functor);
else
return m_matrix.row(i).redux(m_functor);
}
protected:
const MatrixTypeNested m_matrix;
const BinaryOp m_functor;
};
/** \returns a row vector expression of *this vertically reduxed by \a func
*
* The template parameter \a BinaryOp is the type of the functor
* of the custom redux operator. Note that func must be an associative operator.
*
* \sa class PartialRedux, MatrixBase::horizontalRedux()
*/
template<typename Derived>
template<typename BinaryOp>
const PartialRedux<Vertical, BinaryOp, Derived>
MatrixBase<Derived>::verticalRedux(const BinaryOp& func) const
{
return PartialRedux<Vertical, BinaryOp, Derived>(derived(), func);
}
/** \returns a row vector expression of *this horizontally reduxed by \a func
*
* The template parameter \a BinaryOp is the type of the functor
* of the custom redux operator. Note that func must be an associative operator.
*
* \sa class PartialRedux, MatrixBase::verticalRedux()
*/
template<typename Derived>
template<typename BinaryOp>
const PartialRedux<Horizontal, BinaryOp, Derived>
MatrixBase<Derived>::horizontalRedux(const BinaryOp& func) const
{
return PartialRedux<Horizontal, BinaryOp, Derived>(derived(), func);
}
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
*
* The template parameter \a BinaryOp is the type of the functor \a func which must be
@ -239,102 +140,4 @@ inline MatrixBase<Derived>::maxCoeff() const
return this->redux(Eigen::ei_scalar_max_op<Scalar>());
}
template<typename Derived, int UnrollCount>
struct ei_all_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
inline static bool run(const Derived &mat)
{
return ei_all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
}
};
template<typename Derived>
struct ei_all_unroller<Derived, 1>
{
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
};
template<typename Derived>
struct ei_all_unroller<Derived, Dynamic>
{
inline static bool run(const Derived &) { return false; }
};
template<typename Derived, int UnrollCount>
struct ei_any_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
inline static bool run(const Derived &mat)
{
return ei_any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
}
};
template<typename Derived>
struct ei_any_unroller<Derived, 1>
{
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
};
template<typename Derived>
struct ei_any_unroller<Derived, Dynamic>
{
inline static bool run(const Derived &) { return false; }
};
/** \returns true if all coefficients are true
*
* \sa MatrixBase::any()
*/
template<typename Derived>
bool MatrixBase<Derived>::all(void) const
{
const bool unroll = SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost)
<= EIGEN_UNROLLING_LIMIT;
if(unroll)
return ei_all_unroller<Derived,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived());
else
{
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
if (!coeff(i, j)) return false;
return true;
}
}
/** \returns true if at least one coefficient is true
*
* \sa MatrixBase::any()
*/
template<typename Derived>
bool MatrixBase<Derived>::any(void) const
{
const bool unroll = SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost)
<= EIGEN_UNROLLING_LIMIT;
if(unroll)
return ei_any_unroller<Derived,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived());
else
{
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
if (coeff(i, j)) return true;
return false;
}
}
#endif // EIGEN_REDUX_H

View File

@ -50,7 +50,7 @@ template<typename MatrixType> class Map;
template<int Direction, typename UnaryOp, typename MatrixType> class PartialRedux;
template<typename MatrixType, unsigned int Mode> class Part;
template<typename MatrixType, unsigned int Mode> class Extract;
template<typename Derived, bool HasArrayFlag = int(ei_traits<Derived>::Flags) & ArrayBit> class ArrayBase;
template<typename Derived, bool HasArrayFlag = int(ei_traits<Derived>::Flags) & ArrayBit> class ArrayBase {};
template<typename Scalar> struct ei_scalar_sum_op;
@ -72,6 +72,7 @@ template<typename Scalar, bool IsVectorizable> struct ei_scalar_multiple_op;
template<typename Scalar> struct ei_scalar_quotient1_op;
template<typename Scalar> struct ei_scalar_min_op;
template<typename Scalar> struct ei_scalar_max_op;
template<typename Scalar> struct ei_scalar_random_op;
template<typename ExpressionType, bool CheckExistence = true> class Inverse;
template<typename MatrixType> class QR;

View File

@ -25,6 +25,7 @@
#include "main.h"
#include <functional>
#include <Eigen/Array>
using namespace std;

View File

@ -137,6 +137,10 @@ namespace Eigen
#define EIGEN_INTERNAL_DEBUGGING
#include <Eigen/Core>
namespace Eigen {
#include <Eigen/src/Array/Random.h>
}
#define VERIFY(a) do { if (!(a)) { \
std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" \
<< std::endl << " " << EI_PP_MAKE_STRING(a) << std::endl << std::endl; \