mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-23 18:20:47 +08:00
Move documentation of MatrixBase methods in MatrixFunctions to module page.
I think that because MatrixFunctions is in unsupported/ and MatrixBase is not, doxygen does not include the MatrixBase methods defined and documented in the MatrixFunctions module with the other MatrixBase methods. This is a kludge, but at least the documentation is not lost.
This commit is contained in:
parent
525d6b655f
commit
307c428253
@ -40,6 +40,22 @@ namespace Eigen {
|
||||
* \brief This module aims to provide various methods for the computation of
|
||||
* matrix functions.
|
||||
*
|
||||
* To use this module, add
|
||||
* \code
|
||||
* #include <unsupported/Eigen/MatrixFunctions>
|
||||
* \endcode
|
||||
* at the start of your source file.
|
||||
*
|
||||
* This module defines the following MatrixBase methods.
|
||||
* - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine
|
||||
* - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine
|
||||
* - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential
|
||||
* - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
|
||||
* - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
|
||||
* - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
|
||||
*
|
||||
* These methods are the main entry points to this module.
|
||||
*
|
||||
* %Matrix functions are defined as follows. Suppose that \f$ f \f$
|
||||
* is an entire function (that is, a function on the complex plane
|
||||
* that is everywhere complex differentiable). Then its Taylor
|
||||
@ -49,16 +65,205 @@ namespace Eigen {
|
||||
* function by the same series:
|
||||
* \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
|
||||
*
|
||||
* \code
|
||||
* #include <unsupported/Eigen/MatrixFunctions>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/MatrixFunctions/MatrixExponential.h"
|
||||
#include "src/MatrixFunctions/MatrixFunction.h"
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\page matrixbaseextra MatrixBase methods defined in the MatrixFunctions module
|
||||
\ingroup MatrixFunctions_Module
|
||||
|
||||
The remainder of the page documents the following MatrixBase methods
|
||||
which are defined in the MatrixFunctions module.
|
||||
|
||||
|
||||
|
||||
\section matrixbase_cos MatrixBase::cos()
|
||||
|
||||
Compute the matrix cosine.
|
||||
|
||||
\code
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
|
||||
\endcode
|
||||
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \cos(M) \f$.
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
|
||||
|
||||
\sa \ref matrixbase_sin "sin()" for an example.
|
||||
|
||||
|
||||
|
||||
\section matrixbase_cosh MatrixBase::cosh()
|
||||
|
||||
Compute the matrix hyberbolic cosine.
|
||||
|
||||
\code
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
|
||||
\endcode
|
||||
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \cosh(M) \f$
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh().
|
||||
|
||||
\sa \ref matrixbase_sinh "sinh()" for an example.
|
||||
|
||||
|
||||
|
||||
\section matrixbase_exp MatrixBase::exp()
|
||||
|
||||
Compute the matrix exponential.
|
||||
|
||||
\code
|
||||
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
|
||||
\endcode
|
||||
|
||||
\param[in] M matrix whose exponential is to be computed.
|
||||
\returns expression representing the matrix exponential of \p M.
|
||||
|
||||
The matrix exponential of \f$ M \f$ is defined by
|
||||
\f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
|
||||
The matrix exponential can be used to solve linear ordinary
|
||||
differential equations: the solution of \f$ y' = My \f$ with the
|
||||
initial condition \f$ y(0) = y_0 \f$ is given by
|
||||
\f$ y(t) = \exp(M) y_0 \f$.
|
||||
|
||||
The cost of the computation is approximately \f$ 20 n^3 \f$ for
|
||||
matrices of size \f$ n \f$. The number 20 depends weakly on the
|
||||
norm of the matrix.
|
||||
|
||||
The matrix exponential is computed using the scaling-and-squaring
|
||||
method combined with Padé approximation. The matrix is first
|
||||
rescaled, then the exponential of the reduced matrix is computed
|
||||
approximant, and then the rescaling is undone by repeated
|
||||
squaring. The degree of the Padé approximant is chosen such
|
||||
that the approximation error is less than the round-off
|
||||
error. However, errors may accumulate during the squaring phase.
|
||||
|
||||
Details of the algorithm can be found in: Nicholas J. Higham, "The
|
||||
scaling and squaring method for the matrix exponential revisited,"
|
||||
<em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179–1193,
|
||||
2005.
|
||||
|
||||
Example: The following program checks that
|
||||
\f[ \exp \left[ \begin{array}{ccc}
|
||||
0 & \frac14\pi & 0 \\
|
||||
-\frac14\pi & 0 & 0 \\
|
||||
0 & 0 & 0
|
||||
\end{array} \right] = \left[ \begin{array}{ccc}
|
||||
\frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
|
||||
\frac12\sqrt2 & \frac12\sqrt2 & 0 \\
|
||||
0 & 0 & 1
|
||||
\end{array} \right]. \f]
|
||||
This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
||||
the z-axis.
|
||||
|
||||
\include MatrixExponential.cpp
|
||||
Output: \verbinclude MatrixExponential.out
|
||||
|
||||
\note \p M has to be a matrix of \c float, \c double,
|
||||
\c complex<float> or \c complex<double> .
|
||||
|
||||
|
||||
|
||||
\section matrixbase_matrixfunction MatrixBase::matrixFunction()
|
||||
|
||||
Compute a matrix function.
|
||||
|
||||
\code
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f) const
|
||||
\endcode
|
||||
|
||||
\param[in] M argument of matrix function, should be a square matrix.
|
||||
\param[in] f an entire function; \c f(x,n) should compute the n-th
|
||||
derivative of f at x.
|
||||
\returns expression representing \p f applied to \p M.
|
||||
|
||||
Suppose that \p M is a matrix whose entries have type \c Scalar.
|
||||
Then, the second argument, \p f, should be a function with prototype
|
||||
\code
|
||||
ComplexScalar f(ComplexScalar, int)
|
||||
\endcode
|
||||
where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
|
||||
real (e.g., \c float or \c double) and \c ComplexScalar =
|
||||
\c Scalar if \c Scalar is complex. The return value of \c f(x,n)
|
||||
should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
|
||||
|
||||
This routine uses the algorithm described in:
|
||||
Philip Davies and Nicholas J. Higham,
|
||||
"A Schur-Parlett algorithm for computing matrix functions",
|
||||
<em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003.
|
||||
|
||||
The actual work is done by the MatrixFunction class.
|
||||
|
||||
Example: The following program checks that
|
||||
\f[ \exp \left[ \begin{array}{ccc}
|
||||
0 & \frac14\pi & 0 \\
|
||||
-\frac14\pi & 0 & 0 \\
|
||||
0 & 0 & 0
|
||||
\end{array} \right] = \left[ \begin{array}{ccc}
|
||||
\frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
|
||||
\frac12\sqrt2 & \frac12\sqrt2 & 0 \\
|
||||
0 & 0 & 1
|
||||
\end{array} \right]. \f]
|
||||
This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
||||
the z-axis. This is the same example as used in the documentation
|
||||
of \ref matrixbase_exp "exp()".
|
||||
|
||||
\include MatrixFunction.cpp
|
||||
Output: \verbinclude MatrixFunction.out
|
||||
|
||||
Note that the function \c expfn is defined for complex numbers
|
||||
\c x, even though the matrix \c A is over the reals. Instead of
|
||||
\c expfn, we could also have used StdStemFunctions::exp:
|
||||
\code
|
||||
A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
|
||||
\endcode
|
||||
|
||||
|
||||
|
||||
\section matrixbase_sin MatrixBase::sin()
|
||||
|
||||
Compute the matrix sine.
|
||||
|
||||
\code
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
|
||||
\endcode
|
||||
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \sin(M) \f$.
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
|
||||
|
||||
Example: \include MatrixSine.cpp
|
||||
Output: \verbinclude MatrixSine.out
|
||||
|
||||
|
||||
|
||||
\section matrixbase_sinh const MatrixBase::sinh()
|
||||
|
||||
Compute the matrix hyperbolic sine.
|
||||
|
||||
\code
|
||||
MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
|
||||
\endcode
|
||||
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \sinh(M) \f$
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh().
|
||||
|
||||
Example: \include MatrixSinh.cpp
|
||||
Output: \verbinclude MatrixSinh.out
|
||||
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_MATRIX_FUNCTIONS
|
||||
|
||||
|
@ -330,56 +330,6 @@ struct ei_traits<MatrixExponentialReturnValue<Derived> >
|
||||
typedef typename Derived::PlainObject ReturnType;
|
||||
};
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
* \brief Compute the matrix exponential.
|
||||
*
|
||||
* \param[in] M matrix whose exponential is to be computed.
|
||||
* \returns expression representing the matrix exponential of \p M.
|
||||
*
|
||||
* The matrix exponential of \f$ M \f$ is defined by
|
||||
* \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
|
||||
* The matrix exponential can be used to solve linear ordinary
|
||||
* differential equations: the solution of \f$ y' = My \f$ with the
|
||||
* initial condition \f$ y(0) = y_0 \f$ is given by
|
||||
* \f$ y(t) = \exp(M) y_0 \f$.
|
||||
*
|
||||
* The cost of the computation is approximately \f$ 20 n^3 \f$ for
|
||||
* matrices of size \f$ n \f$. The number 20 depends weakly on the
|
||||
* norm of the matrix.
|
||||
*
|
||||
* The matrix exponential is computed using the scaling-and-squaring
|
||||
* method combined with Padé approximation. The matrix is first
|
||||
* rescaled, then the exponential of the reduced matrix is computed
|
||||
* approximant, and then the rescaling is undone by repeated
|
||||
* squaring. The degree of the Padé approximant is chosen such
|
||||
* that the approximation error is less than the round-off
|
||||
* error. However, errors may accumulate during the squaring phase.
|
||||
*
|
||||
* Details of the algorithm can be found in: Nicholas J. Higham, "The
|
||||
* scaling and squaring method for the matrix exponential revisited,"
|
||||
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179–1193,
|
||||
* 2005.
|
||||
*
|
||||
* Example: The following program checks that
|
||||
* \f[ \exp \left[ \begin{array}{ccc}
|
||||
* 0 & \frac14\pi & 0 \\
|
||||
* -\frac14\pi & 0 & 0 \\
|
||||
* 0 & 0 & 0
|
||||
* \end{array} \right] = \left[ \begin{array}{ccc}
|
||||
* \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
|
||||
* \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
|
||||
* 0 & 0 & 1
|
||||
* \end{array} \right]. \f]
|
||||
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
||||
* the z-axis.
|
||||
*
|
||||
* \include MatrixExponential.cpp
|
||||
* Output: \verbinclude MatrixExponential.out
|
||||
*
|
||||
* \note \p M has to be a matrix of \c float, \c double,
|
||||
* \c complex<float> or \c complex<double> .
|
||||
*/
|
||||
template <typename Derived>
|
||||
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
|
||||
{
|
||||
|
@ -536,56 +536,6 @@ struct ei_traits<MatrixFunctionReturnValue<Derived> >
|
||||
/********** MatrixBase methods **********/
|
||||
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
* \brief Compute a matrix function.
|
||||
*
|
||||
* \param[in] M argument of matrix function, should be a square matrix.
|
||||
* \param[in] f an entire function; \c f(x,n) should compute the n-th
|
||||
* derivative of f at x.
|
||||
* \returns expression representing \p f applied to \p M.
|
||||
*
|
||||
* Suppose that \p M is a matrix whose entries have type \c Scalar.
|
||||
* Then, the second argument, \p f, should be a function with prototype
|
||||
* \code
|
||||
* ComplexScalar f(ComplexScalar, int)
|
||||
* \endcode
|
||||
* where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
|
||||
* real (e.g., \c float or \c double) and \c ComplexScalar =
|
||||
* \c Scalar if \c Scalar is complex. The return value of \c f(x,n)
|
||||
* should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
|
||||
*
|
||||
* This routine uses the algorithm described in:
|
||||
* Philip Davies and Nicholas J. Higham,
|
||||
* "A Schur-Parlett algorithm for computing matrix functions",
|
||||
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003.
|
||||
*
|
||||
* The actual work is done by the MatrixFunction class.
|
||||
*
|
||||
* Example: The following program checks that
|
||||
* \f[ \exp \left[ \begin{array}{ccc}
|
||||
* 0 & \frac14\pi & 0 \\
|
||||
* -\frac14\pi & 0 & 0 \\
|
||||
* 0 & 0 & 0
|
||||
* \end{array} \right] = \left[ \begin{array}{ccc}
|
||||
* \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
|
||||
* \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
|
||||
* 0 & 0 & 1
|
||||
* \end{array} \right]. \f]
|
||||
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
||||
* the z-axis. This is the same example as used in the documentation
|
||||
* of MatrixBase::exp().
|
||||
*
|
||||
* \include MatrixFunction.cpp
|
||||
* Output: \verbinclude MatrixFunction.out
|
||||
*
|
||||
* Note that the function \c expfn is defined for complex numbers
|
||||
* \c x, even though the matrix \c A is over the reals. Instead of
|
||||
* \c expfn, we could also have used StdStemFunctions::exp:
|
||||
* \code
|
||||
* A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
|
||||
* \endcode
|
||||
*/
|
||||
template <typename Derived>
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f) const
|
||||
{
|
||||
@ -593,18 +543,6 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typ
|
||||
return MatrixFunctionReturnValue<Derived>(derived(), f);
|
||||
}
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
* \brief Compute the matrix sine.
|
||||
*
|
||||
* \param[in] M a square matrix.
|
||||
* \returns expression representing \f$ \sin(M) \f$.
|
||||
*
|
||||
* This function calls matrixFunction() with StdStemFunctions::sin().
|
||||
*
|
||||
* \include MatrixSine.cpp
|
||||
* Output: \verbinclude MatrixSine.out
|
||||
*/
|
||||
template <typename Derived>
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
|
||||
{
|
||||
@ -613,17 +551,6 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
|
||||
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
|
||||
}
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
* \brief Compute the matrix cosine.
|
||||
*
|
||||
* \param[in] M a square matrix.
|
||||
* \returns expression representing \f$ \cos(M) \f$.
|
||||
*
|
||||
* This function calls matrixFunction() with StdStemFunctions::cos().
|
||||
*
|
||||
* \sa ei_matrix_sin() for an example.
|
||||
*/
|
||||
template <typename Derived>
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
|
||||
{
|
||||
@ -632,18 +559,6 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
|
||||
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
|
||||
}
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
* \brief Compute the matrix hyperbolic sine.
|
||||
*
|
||||
* \param[in] M a square matrix.
|
||||
* \returns expression representing \f$ \sinh(M) \f$
|
||||
*
|
||||
* This function calls matrixFunction() with StdStemFunctions::sinh().
|
||||
*
|
||||
* \include MatrixSinh.cpp
|
||||
* Output: \verbinclude MatrixSinh.out
|
||||
*/
|
||||
template <typename Derived>
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
|
||||
{
|
||||
@ -652,17 +567,6 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
|
||||
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
|
||||
}
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
* \brief Compute the matrix hyberbolic cosine.
|
||||
*
|
||||
* \param[in] M a square matrix.
|
||||
* \returns expression representing \f$ \cosh(M) \f$
|
||||
*
|
||||
* This function calls matrixFunction() with StdStemFunctions::cosh().
|
||||
*
|
||||
* \sa ei_matrix_sinh() for an example.
|
||||
*/
|
||||
template <typename Derived>
|
||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user