Fix various asan errors.

This commit is contained in:
Antonio Sánchez 2024-01-08 00:13:17 +00:00
parent a2cf99ec6f
commit 3026f1f296
4 changed files with 55 additions and 42 deletions

View File

@ -275,7 +275,7 @@ inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) {
template <typename MatrixType>
typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) {
using std::abs;
if (iter == 10 || iter == 20) {
if ((iter == 10 || iter == 20) && iu > 1) {
// exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
return abs(numext::real(m_matT.coeff(iu, iu - 1))) + abs(numext::real(m_matT.coeff(iu - 1, iu - 2)));
}

View File

@ -112,53 +112,56 @@ static void test_cancel() {
static void test_pool_partitions() {
const int kThreads = 2;
ThreadPool tp(kThreads);
// Assign each thread to its own partition, so that stealing other work only
// occurs globally when a thread is idle.
std::vector<std::pair<unsigned, unsigned>> steal_partitions(kThreads);
for (int i = 0; i < kThreads; ++i) {
steal_partitions[i] = std::make_pair(i, i + 1);
}
tp.SetStealPartitions(steal_partitions);
std::atomic<int> running(0);
std::atomic<int> done(0);
std::atomic<int> phase(0);
// Schedule kThreads tasks and ensure that they all are running.
for (int i = 0; i < kThreads; ++i) {
tp.Schedule([&]() {
const int thread_id = tp.CurrentThreadId();
VERIFY_GE(thread_id, 0);
VERIFY_LE(thread_id, kThreads - 1);
++running;
while (phase < 1) {
}
++done;
});
{
ThreadPool tp(kThreads);
// Assign each thread to its own partition, so that stealing other work only
// occurs globally when a thread is idle.
std::vector<std::pair<unsigned, unsigned>> steal_partitions(kThreads);
for (int i = 0; i < kThreads; ++i) {
steal_partitions[i] = std::make_pair(i, i + 1);
}
tp.SetStealPartitions(steal_partitions);
// Schedule kThreads tasks and ensure that they all are running.
for (int i = 0; i < kThreads; ++i) {
tp.Schedule([&]() {
const int thread_id = tp.CurrentThreadId();
VERIFY_GE(thread_id, 0);
VERIFY_LE(thread_id, kThreads - 1);
++running;
while (phase < 1) {
}
++done;
});
}
while (running != kThreads) {
}
// Schedule each closure to only run on thread 'i' and verify that it does.
for (int i = 0; i < kThreads; ++i) {
tp.ScheduleWithHint(
[&, i]() {
++running;
const int thread_id = tp.CurrentThreadId();
VERIFY_IS_EQUAL(thread_id, i);
while (phase < 2) {
}
++done;
},
i, i + 1);
}
running = 0;
phase = 1;
while (running != kThreads) {
}
running = 0;
phase = 2;
}
while (running != kThreads) {
}
// Schedule each closure to only run on thread 'i' and verify that it does.
for (int i = 0; i < kThreads; ++i) {
tp.ScheduleWithHint(
[&, i]() {
++running;
const int thread_id = tp.CurrentThreadId();
VERIFY_IS_EQUAL(thread_id, i);
while (phase < 2) {
}
++done;
},
i, i + 1);
}
running = 0;
phase = 1;
while (running != kThreads) {
}
running = 0;
phase = 2;
}
EIGEN_DECLARE_TEST(cxx11_non_blocking_thread_pool) {

View File

@ -126,10 +126,16 @@ struct TensorEvaluator<const TensorForcedEvalOp<ArgType_>, Device> {
TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_op(op.expression()), m_device(device), m_buffer(NULL) {}
~TensorEvaluator() { cleanup(); }
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
const Index numValues = internal::array_prod(m_impl.dimensions());
if (m_buffer != nullptr) {
m_device.deallocate_temp(m_buffer);
}
m_buffer = m_device.get((CoeffReturnType*)m_device.allocate_temp(numValues * sizeof(CoeffReturnType)));
internal::non_integral_type_placement_new<Device, CoeffReturnType>()(numValues, m_buffer);
@ -148,6 +154,9 @@ struct TensorEvaluator<const TensorForcedEvalOp<ArgType_>, Device> {
template <typename EvalSubExprsCallback>
EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType, EvalSubExprsCallback done) {
const Index numValues = internal::array_prod(m_impl.dimensions());
if (m_buffer != nullptr) {
m_device.deallocate_temp(m_buffer);
}
m_buffer = m_device.get((CoeffReturnType*)m_device.allocate_temp(numValues * sizeof(CoeffReturnType)));
typedef TensorEvalToOp<const std::remove_const_t<ArgType>> EvalTo;
EvalTo evalToTmp(m_device.get(m_buffer), m_op);

View File

@ -309,6 +309,7 @@ bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sy
out << header << std::endl;
out << mat.rows() << " " << mat.cols() << " " << mat.nonZeros() << "\n";
int count = 0;
EIGEN_UNUSED_VARIABLE(count);
for (int j = 0; j < mat.outerSize(); ++j)
for (typename SparseMatrixType::InnerIterator it(mat, j); it; ++it) {
++count;