mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
More Cholesky fixes.
* Cholesky decs are NOT rank revealing so remove all the rank/isPositiveDefinite etc stuff. * fix bug in LLT: s/return/continue/ * introduce machine_epsilon constants, they are actually needed for Higman's formula determining the cutoff in Cholesky. Btw fix the page reference to his book (chat with Keir). * solve methods always return true, since this isn't a rank revealing dec. Actually... they already did always return true!! Now it's explicit. * updated dox and unit-test
This commit is contained in:
parent
8e2b191acf
commit
2f45eeb0c6
@ -43,6 +43,9 @@
|
||||
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
|
||||
* on D also stabilizes the computation.
|
||||
*
|
||||
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine
|
||||
* whether a system of equations has a solution.
|
||||
*
|
||||
* \sa MatrixBase::ldlt(), class LLT
|
||||
*/
|
||||
/* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE
|
||||
@ -88,25 +91,6 @@ template<typename MatrixType> class LDLT
|
||||
/** \returns true if the matrix is negative (semidefinite) */
|
||||
inline bool isNegative(void) const { return m_sign == -1; }
|
||||
|
||||
/** \returns true if the matrix is invertible */
|
||||
inline bool isInvertible(void) const { return m_rank == m_matrix.rows(); }
|
||||
|
||||
/** \returns true if the matrix is positive definite */
|
||||
inline bool isPositiveDefinite(void) const { return isPositive() && isInvertible(); }
|
||||
|
||||
/** \returns true if the matrix is negative definite */
|
||||
inline bool isNegativeDefinite(void) const { return isNegative() && isInvertible(); }
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the LDLT decomposition.
|
||||
*
|
||||
* \note This is computed at the time of the construction of the LDLT decomposition. This
|
||||
* method does not perform any further computation.
|
||||
*/
|
||||
inline int rank() const
|
||||
{
|
||||
return m_rank;
|
||||
}
|
||||
|
||||
template<typename RhsDerived, typename ResDerived>
|
||||
bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const;
|
||||
|
||||
@ -125,7 +109,7 @@ template<typename MatrixType> class LDLT
|
||||
MatrixType m_matrix;
|
||||
IntColVectorType m_p;
|
||||
IntColVectorType m_transpositions;
|
||||
int m_rank, m_sign;
|
||||
int m_sign;
|
||||
};
|
||||
|
||||
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
|
||||
@ -135,7 +119,6 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
|
||||
{
|
||||
ei_assert(a.rows()==a.cols());
|
||||
const int size = a.rows();
|
||||
m_rank = size;
|
||||
|
||||
m_matrix = a;
|
||||
|
||||
@ -168,8 +151,8 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
|
||||
// to the largest overall, the algorithm bails. This cutoff is suggested
|
||||
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
|
||||
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
|
||||
// Algorithms" page 208, also by Higham.
|
||||
cutoff = ei_abs(precision<RealScalar>() * size * biggest_in_corner);
|
||||
// Algorithms" page 217, also by Higham.
|
||||
cutoff = ei_abs(machine_epsilon<Scalar>() * size * biggest_in_corner);
|
||||
|
||||
m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
|
||||
}
|
||||
@ -178,7 +161,6 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
|
||||
if(biggest_in_corner < cutoff)
|
||||
{
|
||||
for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
|
||||
m_rank = j;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -200,11 +182,9 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
|
||||
m_matrix.coeffRef(j,j) = Djj;
|
||||
|
||||
// Finish early if the matrix is not full rank.
|
||||
if(ei_abs(Djj) < cutoff) // i made experiments, this is better than isMuchSmallerThan(biggest_in_corner), and of course
|
||||
// much better than plain sign comparison as used to be done before.
|
||||
if(ei_abs(Djj) < cutoff)
|
||||
{
|
||||
for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
|
||||
m_rank = j;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -230,7 +210,7 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
|
||||
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
* The result is stored in \a result
|
||||
*
|
||||
* \returns true in case of success, false otherwise.
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* In other words, it computes \f$ b = A^{-1} b \f$ with
|
||||
* \f$ P^T{L^{*}}^{-1} D^{-1} L^{-1} P b \f$ from right to left.
|
||||
@ -252,6 +232,8 @@ bool LDLT<MatrixType>
|
||||
*
|
||||
* \param bAndX represents both the right-hand side matrix b and result x.
|
||||
*
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* This version avoids a copy when the right hand side matrix b is not
|
||||
* needed anymore.
|
||||
*
|
||||
@ -264,8 +246,6 @@ bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size == bAndX.rows());
|
||||
|
||||
if (m_rank != size) return false;
|
||||
|
||||
// z = P b
|
||||
for(int i = 0; i < size; ++i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
|
||||
|
||||
|
@ -41,6 +41,10 @@
|
||||
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
|
||||
* situations like generalised eigen problems with hermitian matrices.
|
||||
*
|
||||
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
|
||||
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
|
||||
* has a solution.
|
||||
*
|
||||
* \sa MatrixBase::llt(), class LDLT
|
||||
*/
|
||||
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
|
||||
@ -70,12 +74,6 @@ template<typename MatrixType> class LLT
|
||||
/** \returns the lower triangular matrix L */
|
||||
inline Part<MatrixType, LowerTriangular> matrixL(void) const { return m_matrix; }
|
||||
|
||||
/** \returns true if the matrix is positive definite */
|
||||
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
|
||||
|
||||
/** \returns true if the matrix is invertible, which in this context is equivalent to positive definite */
|
||||
inline bool isInvertible(void) const { return m_isPositiveDefinite; }
|
||||
|
||||
template<typename RhsDerived, typename ResDerived>
|
||||
bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const;
|
||||
|
||||
@ -90,7 +88,6 @@ template<typename MatrixType> class LLT
|
||||
* The strict upper part is not used and even not initialized.
|
||||
*/
|
||||
MatrixType m_matrix;
|
||||
bool m_isPositiveDefinite;
|
||||
};
|
||||
|
||||
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
|
||||
@ -101,23 +98,24 @@ void LLT<MatrixType>::compute(const MatrixType& a)
|
||||
assert(a.rows()==a.cols());
|
||||
const int size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
const RealScalar reference = size * a.diagonal().cwise().abs().maxCoeff();
|
||||
// The biggest overall is the point of reference to which further diagonals
|
||||
// are compared; if any diagonal is negligible compared
|
||||
// to the largest overall, the algorithm bails. This cutoff is suggested
|
||||
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
|
||||
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
|
||||
// Algorithms" page 217, also by Higham.
|
||||
const RealScalar cutoff = machine_epsilon<Scalar>() * size * a.diagonal().cwise().abs().maxCoeff();
|
||||
RealScalar x;
|
||||
x = ei_real(a.coeff(0,0));
|
||||
m_isPositiveDefinite = !ei_isMuchSmallerThan(x, reference) && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), reference);
|
||||
m_matrix.coeffRef(0,0) = ei_sqrt(x);
|
||||
if(size==1)
|
||||
return;
|
||||
m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
|
||||
for (int j = 1; j < size; ++j)
|
||||
{
|
||||
Scalar tmp = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm();
|
||||
x = ei_real(tmp);
|
||||
if (ei_isMuchSmallerThan(x, reference) || (!ei_isMuchSmallerThan(ei_imag(tmp), reference)))
|
||||
{
|
||||
m_isPositiveDefinite = false;
|
||||
return;
|
||||
}
|
||||
x = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm();
|
||||
if (ei_abs(x) < cutoff) continue;
|
||||
|
||||
m_matrix.coeffRef(j,j) = x = ei_sqrt(x);
|
||||
|
||||
int endSize = size-j-1;
|
||||
@ -137,7 +135,7 @@ void LLT<MatrixType>::compute(const MatrixType& a)
|
||||
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
* The result is stored in \a result
|
||||
*
|
||||
* \returns true in case of success, false otherwise.
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* In other words, it computes \f$ b = A^{-1} b \f$ with
|
||||
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
|
||||
@ -160,6 +158,8 @@ bool LLT<MatrixType>::solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDeriv
|
||||
*
|
||||
* \param bAndX represents both the right-hand side matrix b and result x.
|
||||
*
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* This version avoids a copy when the right hand side matrix b is not
|
||||
* needed anymore.
|
||||
*
|
||||
@ -171,8 +171,6 @@ bool LLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==bAndX.rows());
|
||||
if (!m_isPositiveDefinite)
|
||||
return false;
|
||||
matrixL().solveTriangularInPlace(bAndX);
|
||||
m_matrix.adjoint().template part<UpperTriangular>().solveTriangularInPlace(bAndX);
|
||||
return true;
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_MATHFUNCTIONS_H
|
||||
|
||||
template<typename T> inline typename NumTraits<T>::Real precision();
|
||||
template<typename T> inline typename NumTraits<T>::Real machine_epsilon();
|
||||
template<typename T> inline T ei_random(T a, T b);
|
||||
template<typename T> inline T ei_random();
|
||||
template<typename T> inline T ei_random_amplitude()
|
||||
@ -50,6 +51,7 @@ template<typename T> inline typename NumTraits<T>::Real ei_hypot(T x, T y)
|
||||
**************/
|
||||
|
||||
template<> inline int precision<int>() { return 0; }
|
||||
template<> inline int machine_epsilon<int>() { return 0; }
|
||||
inline int ei_real(int x) { return x; }
|
||||
inline int ei_imag(int) { return 0; }
|
||||
inline int ei_conj(int x) { return x; }
|
||||
@ -102,6 +104,7 @@ inline bool ei_isApproxOrLessThan(int a, int b, int = precision<int>())
|
||||
**************/
|
||||
|
||||
template<> inline float precision<float>() { return 1e-5f; }
|
||||
template<> inline float machine_epsilon<float>() { return 1.192e-07f; }
|
||||
inline float ei_real(float x) { return x; }
|
||||
inline float ei_imag(float) { return 0.f; }
|
||||
inline float ei_conj(float x) { return x; }
|
||||
@ -147,6 +150,8 @@ inline bool ei_isApproxOrLessThan(float a, float b, float prec = precision<float
|
||||
**************/
|
||||
|
||||
template<> inline double precision<double>() { return 1e-11; }
|
||||
template<> inline double machine_epsilon<double>() { return 2.220e-16; }
|
||||
|
||||
inline double ei_real(double x) { return x; }
|
||||
inline double ei_imag(double) { return 0.; }
|
||||
inline double ei_conj(double x) { return x; }
|
||||
@ -192,6 +197,7 @@ inline bool ei_isApproxOrLessThan(double a, double b, double prec = precision<do
|
||||
*********************/
|
||||
|
||||
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
|
||||
template<> inline float machine_epsilon<std::complex<float> >() { return machine_epsilon<float>(); }
|
||||
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
|
||||
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
|
||||
inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
|
||||
@ -225,6 +231,7 @@ inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>&
|
||||
**********************/
|
||||
|
||||
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
|
||||
template<> inline double machine_epsilon<std::complex<double> >() { return machine_epsilon<double>(); }
|
||||
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
|
||||
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
|
||||
inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
|
||||
@ -259,6 +266,7 @@ inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double
|
||||
******************/
|
||||
|
||||
template<> inline long double precision<long double>() { return precision<double>(); }
|
||||
template<> inline long double machine_epsilon<long double>() { return 1.084e-19l; }
|
||||
inline long double ei_real(long double x) { return x; }
|
||||
inline long double ei_imag(long double) { return 0.; }
|
||||
inline long double ei_conj(long double x) { return x; }
|
||||
|
@ -86,7 +86,6 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
|
||||
{
|
||||
LLT<SquareMatrixType> chol(symm);
|
||||
VERIFY(chol.isPositiveDefinite());
|
||||
VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint());
|
||||
chol.solve(vecB, &vecX);
|
||||
VERIFY_IS_APPROX(symm * vecX, vecB);
|
||||
@ -103,18 +102,6 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
|
||||
{
|
||||
LDLT<SquareMatrixType> ldlt(symm);
|
||||
VERIFY(ldlt.isInvertible());
|
||||
if(sign == 1)
|
||||
{
|
||||
VERIFY(ldlt.isPositive());
|
||||
VERIFY(ldlt.isPositiveDefinite());
|
||||
}
|
||||
if(sign == -1)
|
||||
{
|
||||
VERIFY(ldlt.isNegative());
|
||||
VERIFY(ldlt.isNegativeDefinite());
|
||||
}
|
||||
|
||||
// TODO(keir): This doesn't make sense now that LDLT pivots.
|
||||
//VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
|
||||
ldlt.solve(vecB, &vecX);
|
||||
@ -123,15 +110,6 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(symm * matX, matB);
|
||||
}
|
||||
|
||||
// test isPositiveDefinite on non definite matrix
|
||||
if (rows>4)
|
||||
{
|
||||
SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint();
|
||||
LLT<SquareMatrixType> chol(symm);
|
||||
VERIFY(!chol.isPositiveDefinite());
|
||||
LDLT<SquareMatrixType> cholnosqrt(symm);
|
||||
VERIFY(!cholnosqrt.isPositiveDefinite());
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
@ -156,29 +134,6 @@ void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void ldlt_rank()
|
||||
{
|
||||
// NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
|
||||
int rows = ei_random<int>(50,200);
|
||||
int rank = ei_random<int>(40, rows-1);
|
||||
|
||||
|
||||
// generate a random positive matrix a of given rank
|
||||
MatrixType m = MatrixType::Random(rows,rows);
|
||||
QR<MatrixType> qr(m);
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> DiagVectorType;
|
||||
DiagVectorType d(rows);
|
||||
d.setZero();
|
||||
for(int i = 0; i < rank; i++) d(i)=RealScalar(1);
|
||||
MatrixType a = qr.matrixQ() * d.asDiagonal() * qr.matrixQ().adjoint();
|
||||
|
||||
LDLT<MatrixType> ldlt(a);
|
||||
|
||||
VERIFY( ei_abs(ldlt.rank() - rank) <= rank / 20 ); // yes, LDLT::rank is a bit inaccurate...
|
||||
}
|
||||
|
||||
|
||||
void test_cholesky()
|
||||
{
|
||||
@ -191,9 +146,4 @@ void test_cholesky()
|
||||
CALL_SUBTEST( cholesky(MatrixXd(17,17)) );
|
||||
CALL_SUBTEST( cholesky(MatrixXf(200,200)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat/3; i++) {
|
||||
CALL_SUBTEST( ldlt_rank<MatrixXd>() );
|
||||
CALL_SUBTEST( ldlt_rank<MatrixXf>() );
|
||||
CALL_SUBTEST( ldlt_rank<MatrixXcd>() );
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user