Added special_packetmath test and tweaked bounds on tests.

Refactor shared packetmath code to header file.
(Squashed from PR !38)
This commit is contained in:
Srinivas Vasudevan 2020-01-11 10:31:21 +00:00 committed by Christoph Hertzberg
parent e1ecfc162d
commit 2e099e8d8f
4 changed files with 425 additions and 313 deletions

View File

@ -8,177 +8,7 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include "unsupported/Eigen/SpecialFunctions"
#include <typeinfo>
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
// using namespace Eigen;
#ifdef EIGEN_VECTORIZE_SSE
const bool g_vectorize_sse = true;
#else
const bool g_vectorize_sse = false;
#endif
bool g_first_pass = true;
namespace Eigen {
namespace internal {
template<typename T> T negate(const T& x) { return -x; }
template<typename T>
Map<const Array<unsigned char,sizeof(T),1> >
bits(const T& x) {
return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x));
}
// The following implement bitwise operations on floating point types
template<typename T,typename Bits,typename Func>
T apply_bit_op(Bits a, Bits b, Func f) {
Array<unsigned char,sizeof(T),1> data;
T res;
for(Index i = 0; i < data.size(); ++i)
data[i] = f(a[i], b[i]);
// Note: The reinterpret_cast works around GCC's class-memaccess warnings:
std::memcpy(reinterpret_cast<unsigned char*>(&res), data.data(), sizeof(T));
return res;
}
#define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \
template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \
return apply_bit_op<T>(bits(a),bits(b),FUNC); \
}
#define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>)
EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>())
EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>())
EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>())
struct bit_andnot{
template<typename T> T
operator()(T a, T b) const { return a & (~b); }
};
EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot())
template<typename T>
bool biteq(T a, T b) {
return (bits(a) == bits(b)).all();
}
}
}
// NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU.
template<typename Scalar> EIGEN_DONT_INLINE
bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue)
{
return internal::isMuchSmallerThan(a-b, refvalue);
}
template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue)
{
for (int i=0; i<size; ++i)
{
if (!isApproxAbs(a[i],b[i],refvalue))
{
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
return false;
}
}
return true;
}
template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
{
for (int i=0; i<size; ++i)
{
if ((!internal::biteq(a[i],b[i])) && a[i]!=b[i] && !internal::isApprox(a[i],b[i]))
{
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
return false;
}
}
return true;
}
#define CHECK_CWISE1(REFOP, POP) { \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
internal::pstore(data2, POP(internal::pload<Packet>(data1))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
template<bool Cond,typename Packet>
struct packet_helper
{
template<typename T>
inline Packet load(const T* from) const { return internal::pload<Packet>(from); }
template<typename T>
inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); }
template<typename T>
inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); }
template<typename T>
inline void store(T* to, const Packet& x) const { internal::pstore(to,x); }
template<typename T>
inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); }
};
template<typename Packet>
struct packet_helper<false,Packet>
{
template<typename T>
inline T load(const T* from) const { return *from; }
template<typename T>
inline T loadu(const T* from) const { return *from; }
template<typename T>
inline T load(const T* from, unsigned long long) const { return *from; }
template<typename T>
inline void store(T* to, const T& x) const { *to = x; }
template<typename T>
inline void store(T* to, const T& x, unsigned long long) const { *to = x; }
};
#define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
h.store(data2, POP(h.load(data1))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i], data1[i+PacketSize]); \
h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) { \
packet_helper<COND, Packet> h; \
for (int i = 0; i < PacketSize; ++i) \
ref[i] = \
REFOP(data1[i], data1[i + PacketSize], data1[i + 2 * PacketSize]); \
h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), \
h.load(data1 + 2 * PacketSize))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
#include "packetmath_test_shared.h"
#define REF_ADD(a,b) ((a)+(b))
#define REF_SUB(a,b) ((a)-(b))
@ -213,23 +43,23 @@ template<typename Scalar,typename Packet> void packetmath()
}
internal::pstore(data2, internal::pload<Packet>(data1));
VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store");
VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store");
for (int offset=0; offset<PacketSize; ++offset)
{
internal::pstore(data2, internal::ploadu<Packet>(data1+offset));
VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu");
VERIFY(test::areApprox(data1+offset, data2, PacketSize) && "internal::ploadu");
}
for (int offset=0; offset<PacketSize; ++offset)
{
internal::pstoreu(data2+offset, internal::pload<Packet>(data1));
VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu");
VERIFY(test::areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu");
}
if (internal::unpacket_traits<Packet>::masked_load_available)
{
packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h;
test::packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h;
unsigned long long max_umask = (0x1ull << PacketSize);
for (int offset=0; offset<PacketSize; ++offset)
@ -239,14 +69,14 @@ template<typename Scalar,typename Packet> void packetmath()
h.store(data2, h.load(data1+offset, umask));
for (int k=0; k<PacketSize; ++k)
data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0);
VERIFY(areApprox(data3, data2, PacketSize) && "internal::ploadu masked");
VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked");
}
}
}
if (internal::unpacket_traits<Packet>::masked_store_available)
{
packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h;
test::packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h;
unsigned long long max_umask = (0x1ull << PacketSize);
for (int offset=0; offset<PacketSize; ++offset)
@ -257,7 +87,7 @@ template<typename Scalar,typename Packet> void packetmath()
h.store(data2, h.loadu(data1+offset), umask);
for (int k=0; k<PacketSize; ++k)
data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0);
VERIFY(areApprox(data3, data2, PacketSize) && "internal::pstoreu masked");
VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked");
}
}
}
@ -290,7 +120,7 @@ template<typename Scalar,typename Packet> void packetmath()
// palign is not used anymore, so let's just put a warning if it fails
++g_test_level;
VERIFY(areApprox(ref, data2, PacketSize) && "internal::palign");
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::palign");
--g_test_level;
}
@ -317,7 +147,7 @@ template<typename Scalar,typename Packet> void packetmath()
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[offset];
internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1");
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1");
}
{
@ -329,7 +159,7 @@ template<typename Scalar,typename Packet> void packetmath()
internal::pstore(data2+1*PacketSize, A1);
internal::pstore(data2+2*PacketSize, A2);
internal::pstore(data2+3*PacketSize, A3);
VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4");
VERIFY(test::areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4");
}
{
@ -339,7 +169,7 @@ template<typename Scalar,typename Packet> void packetmath()
internal::pbroadcast2<Packet>(data1, A0, A1);
internal::pstore(data2+0*PacketSize, A0);
internal::pstore(data2+1*PacketSize, A1);
VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2");
VERIFY(test::areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2");
}
VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
@ -352,7 +182,7 @@ template<typename Scalar,typename Packet> void packetmath()
for(int i=0;i<PacketSize/2;++i)
ref[2*i+0] = ref[2*i+1] = data1[offset+i];
internal::pstore(data2,internal::ploaddup<Packet>(data1+offset));
VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup");
VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup");
}
}
@ -364,14 +194,14 @@ template<typename Scalar,typename Packet> void packetmath()
for(int i=0;i<PacketSize/4;++i)
ref[4*i+0] = ref[4*i+1] = ref[4*i+2] = ref[4*i+3] = data1[offset+i];
internal::pstore(data2,internal::ploadquad<Packet>(data1+offset));
VERIFY(areApprox(ref, data2, PacketSize) && "ploadquad");
VERIFY(test::areApprox(ref, data2, PacketSize) && "ploadquad");
}
}
ref[0] = Scalar(0);
for (int i=0; i<PacketSize; ++i)
ref[0] += data1[i];
VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
if(PacketSize==8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==4) // so far, predux_half_downto4 is only required in such a case
{
@ -381,7 +211,7 @@ template<typename Scalar,typename Packet> void packetmath()
for (int i=0; i<PacketSize; ++i)
ref[i%HalfPacketSize] += data1[i];
internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1)));
VERIFY(areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4");
VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4");
}
ref[0] = Scalar(1);
@ -399,13 +229,13 @@ template<typename Scalar,typename Packet> void packetmath()
packets[j] = internal::pload<Packet>(data1+j*PacketSize);
}
internal::pstore(data2, internal::preduxp(packets));
VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp");
VERIFY(test::areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp");
}
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[PacketSize-i-1];
internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1)));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse");
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse");
internal::PacketBlock<Packet> kernel;
for (int i=0; i<PacketSize; ++i) {
@ -415,7 +245,7 @@ template<typename Scalar,typename Packet> void packetmath()
for (int i=0; i<PacketSize; ++i) {
internal::pstore(data2, kernel.packet[i]);
for (int j = 0; j < PacketSize; ++j) {
VERIFY(isApproxAbs(data2[j], data1[i+j*PacketSize], refvalue) && "ptranspose");
VERIFY(test::isApproxAbs(data2[j], data1[i+j*PacketSize], refvalue) && "ptranspose");
}
}
@ -431,7 +261,7 @@ template<typename Scalar,typename Packet> void packetmath()
EIGEN_ALIGN_MAX Scalar result[size];
internal::pstore(result, blend);
for (int i = 0; i < PacketSize; ++i) {
VERIFY(isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue));
VERIFY(test::isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue));
}
}
@ -442,7 +272,7 @@ template<typename Scalar,typename Packet> void packetmath()
Scalar s = internal::random<Scalar>();
ref[0] = s;
internal::pstore(data2, internal::pinsertfirst(internal::pload<Packet>(data1),s));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertfirst");
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pinsertfirst");
}
if (PacketTraits::HasBlend || g_vectorize_sse) {
@ -452,7 +282,7 @@ template<typename Scalar,typename Packet> void packetmath()
Scalar s = internal::random<Scalar>();
ref[PacketSize-1] = s;
internal::pstore(data2, internal::pinsertlast(internal::pload<Packet>(data1),s));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertlast");
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pinsertlast");
}
{
@ -506,6 +336,19 @@ template<typename Scalar,typename Packet> void packetmath_real()
EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
data2[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
}
if(internal::random<float>(0,1)<0.1f)
data1[internal::random<int>(0, PacketSize)] = 0;
CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt);
CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
CHECK_CWISE1_IF(PacketTraits::HasRsqrt, Scalar(1)/std::sqrt, internal::prsqrt);
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3));
@ -554,7 +397,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = std::numeric_limits<Scalar>::epsilon();
packet_helper<PacketTraits::HasExp,Packet> h;
test::packet_helper<PacketTraits::HasExp,Packet> h;
h.store(data2, internal::pexp(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::epsilon()), data2[1]);
@ -581,77 +424,12 @@ template<typename Scalar,typename Packet> void packetmath_real()
if (PacketTraits::HasTanh) {
// NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details.
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasTanh,Packet> h;
test::packet_helper<internal::packet_traits<Scalar>::HasTanh,Packet> h;
h.store(data2, internal::ptanh(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
#if EIGEN_HAS_C99_MATH
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h;
h.store(data2, internal::plgamma(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
if (internal::packet_traits<Scalar>::HasErf) {
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h;
h.store(data2, internal::perf(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h;
h.store(data2, internal::perfc(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
{
for (int i=0; i<size; ++i) {
data1[i] = internal::random<Scalar>(0,1);
}
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasNdtri, numext::ndtri, internal::pndtri);
}
#endif // EIGEN_HAS_C99_MATH
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
data2[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
}
if(internal::random<float>(0,1)<0.1f)
data1[internal::random<int>(0, PacketSize)] = 0;
CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt);
CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0e, internal::pbessel_i0e);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1e, internal::pbessel_i1e);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j0, internal::pbessel_j0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j1, internal::pbessel_j1);
data1[0] = std::numeric_limits<Scalar>::infinity();
CHECK_CWISE1_IF(PacketTraits::HasRsqrt, Scalar(1)/std::sqrt, internal::prsqrt);
// Use a smaller data range for the positive bessel operations as these
// can have much more error at very small and very large values.
for (int i=0; i<size; ++i) {
data1[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(10), internal::random<Scalar>(-1,2));
data2[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(10), internal::random<Scalar>(-1,2));
}
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y0, internal::pbessel_y0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y1, internal::pbessel_y1);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0, internal::pbessel_k0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0e, internal::pbessel_k0e);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1, internal::pbessel_k1);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1e, internal::pbessel_k1e);
#if EIGEN_HAS_C99_MATH && (__cplusplus > 199711L)
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma);
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf);
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc);
data1[0] = std::numeric_limits<Scalar>::infinity();
data1[1] = Scalar(-1);
CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p);
@ -666,7 +444,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
data1[1] = std::numeric_limits<Scalar>::epsilon();
if(PacketTraits::HasLog)
{
packet_helper<PacketTraits::HasLog,Packet> h;
test::packet_helper<PacketTraits::HasLog,Packet> h;
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::epsilon()), data2[1]);
@ -698,7 +476,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
VERIFY((numext::isinf)(data2[0]));
}
if(PacketTraits::HasLog1p) {
packet_helper<PacketTraits::HasLog1p,Packet> h;
test::packet_helper<PacketTraits::HasLog1p,Packet> h;
data1[0] = Scalar(-2);
data1[1] = -std::numeric_limits<Scalar>::infinity();
h.store(data2, internal::plog1p(h.load(data1)));
@ -707,7 +485,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
}
if(PacketTraits::HasSqrt)
{
packet_helper<PacketTraits::HasSqrt,Packet> h;
test::packet_helper<PacketTraits::HasSqrt,Packet> h;
data1[0] = Scalar(-1.0f);
data1[1] = -std::numeric_limits<Scalar>::denorm_min();
h.store(data2, internal::psqrt(h.load(data1)));
@ -716,7 +494,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
}
if(PacketTraits::HasCos)
{
packet_helper<PacketTraits::HasCos,Packet> h;
test::packet_helper<PacketTraits::HasCos,Packet> h;
for(Scalar k = 1; k<Scalar(10000)/std::numeric_limits<Scalar>::epsilon(); k*=2)
{
for(int k1=0;k1<=1; ++k1)
@ -792,7 +570,7 @@ template<typename Scalar,typename Packet> void packetmath_notcomplex()
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[0]+Scalar(i);
internal::pstore(data2, internal::plset<Packet>(data1[0]));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset");
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset");
{
unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1);
@ -833,7 +611,7 @@ template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_co
VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper pmul");
}
internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2)));
VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul");
VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul");
for(int i=0;i<PacketSize;++i)
{
@ -842,7 +620,7 @@ template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_co
VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd");
}
internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval)));
VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
}
template<typename Scalar,typename Packet> void packetmath_complex()
@ -870,7 +648,7 @@ template<typename Scalar,typename Packet> void packetmath_complex()
for(int i=0;i<PacketSize;++i)
ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i]));
internal::pstore(pval,internal::pcplxflip(internal::pload<Packet>(data1)));
VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip");
VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip");
}
}
@ -893,9 +671,11 @@ template<typename Scalar,typename Packet> void packetmath_scatter_gather()
for (int i = 0; i < PacketSize*20; ++i) {
if ((i%stride) == 0 && i<stride*PacketSize) {
VERIFY(isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter");
VERIFY(
test::isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter");
} else {
VERIFY(isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
VERIFY(
test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
}
}
@ -905,17 +685,12 @@ template<typename Scalar,typename Packet> void packetmath_scatter_gather()
packet = internal::pgather<Scalar, Packet>(buffer, 7);
internal::pstore(data1, packet);
for (int i = 0; i < PacketSize; ++i) {
VERIFY(isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather");
VERIFY(test::isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather");
}
}
template<
typename Scalar,
typename PacketType,
bool IsComplex = NumTraits<Scalar>::IsComplex,
bool IsInteger = NumTraits<Scalar>::IsInteger>
struct runall;
namespace Eigen {
namespace test {
template<typename Scalar,typename PacketType>
struct runall<Scalar,PacketType,false,false> { // i.e. float or double
@ -945,49 +720,20 @@ struct runall<Scalar,PacketType,true,false> { // i.e. complex
}
};
template<
typename Scalar,
typename PacketType = typename internal::packet_traits<Scalar>::type,
bool Vectorized = internal::packet_traits<Scalar>::Vectorizable,
bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value >
struct runner;
}
}
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,true>
{
static void run() {
runall<Scalar,PacketType>::run();
runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,false>
{
static void run() {
runall<Scalar,PacketType>::run();
runall<Scalar,Scalar>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,false,false>
{
static void run() {
runall<Scalar,PacketType>::run();
}
};
EIGEN_DECLARE_TEST(packetmath)
{
g_first_pass = true;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( runner<float>::run() );
CALL_SUBTEST_2( runner<double>::run() );
CALL_SUBTEST_3( runner<int>::run() );
CALL_SUBTEST_4( runner<std::complex<float> >::run() );
CALL_SUBTEST_5( runner<std::complex<double> >::run() );
CALL_SUBTEST_1( test::runner<float>::run() );
CALL_SUBTEST_2( test::runner<double>::run() );
CALL_SUBTEST_3( test::runner<int>::run() );
CALL_SUBTEST_4( test::runner<std::complex<float> >::run() );
CALL_SUBTEST_5( test::runner<std::complex<double> >::run() );
CALL_SUBTEST_6(( packetmath<half,internal::packet_traits<half>::type>() ));
g_first_pass = false;
}

View File

@ -0,0 +1,225 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <typeinfo>
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
// using namespace Eigen;
#ifdef EIGEN_VECTORIZE_SSE
const bool g_vectorize_sse = true;
#else
const bool g_vectorize_sse = false;
#endif
bool g_first_pass = true;
namespace Eigen {
namespace internal {
template<typename T> T negate(const T& x) { return -x; }
template<typename T>
Map<const Array<unsigned char,sizeof(T),1> >
bits(const T& x) {
return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x));
}
// The following implement bitwise operations on floating point types
template<typename T,typename Bits,typename Func>
T apply_bit_op(Bits a, Bits b, Func f) {
Array<unsigned char,sizeof(T),1> data;
T res;
for(Index i = 0; i < data.size(); ++i)
data[i] = f(a[i], b[i]);
// Note: The reinterpret_cast works around GCC's class-memaccess warnings:
std::memcpy(reinterpret_cast<unsigned char*>(&res), data.data(), sizeof(T));
return res;
}
#define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \
template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \
return apply_bit_op<T>(bits(a),bits(b),FUNC); \
}
#define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>) \
EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>)
EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>())
EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>())
EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>())
struct bit_andnot{
template<typename T> T
operator()(T a, T b) const { return a & (~b); }
};
EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot())
template<typename T>
bool biteq(T a, T b) {
return (bits(a) == bits(b)).all();
}
}
namespace test {
// NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU.
template<typename Scalar> EIGEN_DONT_INLINE
bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue)
{
return internal::isMuchSmallerThan(a-b, refvalue);
}
template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue)
{
for (int i=0; i<size; ++i)
{
if (!isApproxAbs(a[i],b[i],refvalue))
{
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
return false;
}
}
return true;
}
template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
{
for (int i=0; i<size; ++i)
{
if ((!internal::biteq(a[i],b[i])) && a[i]!=b[i] && !internal::isApprox(a[i],b[i]))
{
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
return false;
}
}
return true;
}
#define CHECK_CWISE1(REFOP, POP) { \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
internal::pstore(data2, POP(internal::pload<Packet>(data1))); \
VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
}
template<bool Cond,typename Packet>
struct packet_helper
{
template<typename T>
inline Packet load(const T* from) const { return internal::pload<Packet>(from); }
template<typename T>
inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); }
template<typename T>
inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); }
template<typename T>
inline void store(T* to, const Packet& x) const { internal::pstore(to,x); }
template<typename T>
inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); }
};
template<typename Packet>
struct packet_helper<false,Packet>
{
template<typename T>
inline T load(const T* from) const { return *from; }
template<typename T>
inline T loadu(const T* from) const { return *from; }
template<typename T>
inline T load(const T* from, unsigned long long) const { return *from; }
template<typename T>
inline void store(T* to, const T& x) const { *to = x; }
template<typename T>
inline void store(T* to, const T& x, unsigned long long) const { *to = x; }
};
#define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
test::packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
h.store(data2, POP(h.load(data1))); \
VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
test::packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i], data1[i+PacketSize]); \
h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \
VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) { \
test::packet_helper<COND, Packet> h; \
for (int i = 0; i < PacketSize; ++i) \
ref[i] = \
REFOP(data1[i], data1[i + PacketSize], data1[i + 2 * PacketSize]); \
h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), \
h.load(data1 + 2 * PacketSize))); \
VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
}
// Specialize the runall struct in your test file by defining run().
template<
typename Scalar,
typename PacketType,
bool IsComplex = NumTraits<Scalar>::IsComplex,
bool IsInteger = NumTraits<Scalar>::IsInteger>
struct runall;
template<
typename Scalar,
typename PacketType = typename internal::packet_traits<Scalar>::type,
bool Vectorized = internal::packet_traits<Scalar>::Vectorizable,
bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value >
struct runner;
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,true>
{
static void run() {
runall<Scalar,PacketType>::run();
runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,false>
{
static void run() {
runall<Scalar,PacketType>::run();
runall<Scalar,Scalar>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,false,false>
{
static void run() {
runall<Scalar,PacketType>::run();
}
};
}
}

View File

@ -108,6 +108,7 @@ ei_add_test(levenberg_marquardt)
ei_add_test(kronecker_product)
ei_add_test(bessel_functions)
ei_add_test(special_functions)
ei_add_test(special_packetmath "-DEIGEN_FAST_MATH=1")
if(EIGEN_TEST_CXX11)
if(EIGEN_TEST_SYCL)

View File

@ -0,0 +1,140 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "packetmath_test_shared.h"
#include "../Eigen/SpecialFunctions"
template<typename Scalar,typename Packet> void packetmath_real()
{
using std::abs;
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = PacketSize*4;
EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
#if EIGEN_HAS_C99_MATH
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
test::packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h;
h.store(data2, internal::plgamma(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
if (internal::packet_traits<Scalar>::HasErf) {
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
test::packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h;
h.store(data2, internal::perf(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
{
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
test::packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h;
h.store(data2, internal::perfc(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
{
for (int i=0; i<size; ++i) {
data1[i] = internal::random<Scalar>(0,1);
}
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasNdtri, numext::ndtri, internal::pndtri);
}
#endif // EIGEN_HAS_C99_MATH
// For bessel_i*e and bessel_j*, the valid range is negative reals.
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
}
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0e, internal::pbessel_i0e);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1e, internal::pbessel_i1e);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j0, internal::pbessel_j0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j1, internal::pbessel_j1);
// Use a smaller data range for the bessel_i* as these can become very large.
// Following #1693, we also restrict this range further to avoid inf's due to
// differences in pexp and exp.
for (int i=0; i<size; ++i) {
data1[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(9), internal::random<Scalar>(-1,2));
data2[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(9), internal::random<Scalar>(-1,2));
}
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1);
// y_i, and k_i are valid for x > 0.
for (int i=0; i<size; ++i)
{
data1[i] = internal::random<Scalar>(0.01,1) * std::pow(Scalar(10), internal::random<Scalar>(-2,5));
data2[i] = internal::random<Scalar>(0.01,1) * std::pow(Scalar(10), internal::random<Scalar>(-2,5));
}
// TODO(srvasude): Re-enable this test once properly investigated why the
// scalar and vector paths differ.
// CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y0, internal::pbessel_y0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y1, internal::pbessel_y1);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0e, internal::pbessel_k0e);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1e, internal::pbessel_k1e);
// Following #1693, we restrict the range for exp to avoid zeroing out too
// fast.
for (int i=0; i<size; ++i) {
data1[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(9), internal::random<Scalar>(-1,2));
data2[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(9), internal::random<Scalar>(-1,2));
}
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0, internal::pbessel_k0);
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1, internal::pbessel_k1);
for (int i=0; i<size; ++i) {
data1[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(10), internal::random<Scalar>(-1,2));
data2[i] = internal::random<Scalar>(0.01,1) * std::pow(
Scalar(10), internal::random<Scalar>(-1,2));
}
#if EIGEN_HAS_C99_MATH && (__cplusplus > 199711L)
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma);
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf);
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc);
#endif
}
namespace Eigen {
namespace test {
template<typename Scalar,typename PacketType, bool IsComplex, bool IsInteger>
struct runall {
static void run() {
packetmath_real<Scalar,PacketType>();
}
};
}
}
EIGEN_DECLARE_TEST(special_packetmath)
{
g_first_pass = true;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( test::runner<float>::run() );
CALL_SUBTEST_2( test::runner<double>::run() );
g_first_pass = false;
}
}