Move the Levenberg Marquardt to the supported branch

Add support for sparse computations... need SPQR module.
This commit is contained in:
Desire NUENTSA 2012-12-07 15:47:13 +01:00
parent 71cb78e1ba
commit 2aba6645f4
5 changed files with 938 additions and 0 deletions

45
Eigen/LevenbergMarquardt Normal file
View File

@ -0,0 +1,45 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LEVENBERGMARQUARDT_MODULE
#define EIGEN_LEVENBERGMARQUARDT_MODULE
// #include <vector>
#include <Eigen/Core>
#include <Eigen/Jacobi>
#include <Eigen/QR>
#include <unsupported/Eigen/NumericalDiff>
#ifdef EIGEN_SPQR_SUPPORT
#include <Eigen/SPQRSupport>
#endif
/** \ingroup NonLinearOptimization_modules
* \defgroup LevenbergMarquardt_Module Levenberg-Marquardt optimization module
*
* \code
* #include </Eigen/LevenbergMarquardt>
* \endcode
*
*
*/
#include "Eigen/SparseCore"
#ifndef EIGEN_PARSED_BY_DOXYGEN
#include "src/LevenbergMarquardt/LMqrsolv.h"
#include "src/LevenbergMarquardt/covar.h"
#endif
#include "src/LevenbergMarquardt/LevenbergMarquardt.h"
#endif // EIGEN_LEVENBERGMARQUARDT_MODULE

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_LevenbergMarquardt_SRCS "*.h")
INSTALL(FILES
${Eigen_LevenbergMarquardt_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LevenbergMarquardt COMPONENT Devel
)

View File

@ -0,0 +1,182 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LMQRSOLV_H
#define EIGEN_LMQRSOLV_H
namespace Eigen {
namespace internal {
template <typename Scalar,int SizeAtCompileTime, typename Index>
void lmqrsolv(
Matrix<Scalar,SizeAtCompileTime,SizeAtCompileTime> &s,
const PermutationMatrix<Dynamic,Dynamic,Index> &iPerm,
const Matrix<Scalar,Dynamic,1> &diag,
const Matrix<Scalar,Dynamic,1> &qtb,
Matrix<Scalar,Dynamic,1> &x,
Matrix<Scalar,Dynamic,1> &sdiag)
{
/* Local variables */
Index i, j, k, l;
Scalar temp;
Index n = s.cols();
Matrix<Scalar,Dynamic,1> wa(n);
JacobiRotation<Scalar> givens;
/* Function Body */
// the following will only change the lower triangular part of s, including
// the diagonal, though the diagonal is restored afterward
/* copy r and (q transpose)*b to preserve input and initialize s. */
/* in particular, save the diagonal elements of r in x. */
x = s.diagonal();
wa = qtb;
s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
/* eliminate the diagonal matrix d using a givens rotation. */
for (j = 0; j < n; ++j) {
/* prepare the row of d to be eliminated, locating the */
/* diagonal element using p from the qr factorization. */
l = iPerm.indices()(j);
if (diag[l] == 0.)
break;
sdiag.tail(n-j).setZero();
sdiag[j] = diag[l];
/* the transformations to eliminate the row of d */
/* modify only a single element of (q transpose)*b */
/* beyond the first n, which is initially zero. */
Scalar qtbpj = 0.;
for (k = j; k < n; ++k) {
/* determine a givens rotation which eliminates the */
/* appropriate element in the current row of d. */
givens.makeGivens(-s(k,k), sdiag[k]);
/* compute the modified diagonal element of r and */
/* the modified element of ((q transpose)*b,0). */
s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
temp = givens.c() * wa[k] + givens.s() * qtbpj;
qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
wa[k] = temp;
/* accumulate the tranformation in the row of s. */
for (i = k+1; i<n; ++i) {
temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
s(i,k) = temp;
}
}
}
/* solve the triangular system for z. if the system is */
/* singular, then obtain a least squares solution. */
Index nsing;
for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
wa.tail(n-nsing).setZero();
s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
// restore
sdiag = s.diagonal();
s.diagonal() = x;
/* permute the components of z back to components of x. */
x = iPerm * wa;
}
template <typename Scalar, int _Options, typename Index>
void lmqrsolv(
SparseMatrix<Scalar,_Options,Index> &s,
const PermutationMatrix<Dynamic,Dynamic> &iPerm,
const Matrix<Scalar,Dynamic,1> &diag,
const Matrix<Scalar,Dynamic,1> &qtb,
Matrix<Scalar,Dynamic,1> &x,
Matrix<Scalar,Dynamic,1> &sdiag)
{
/* Local variables */
typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
Index i, j, k, l;
Scalar temp;
Index n = s.cols();
Matrix<Scalar,Dynamic,1> wa(n);
JacobiRotation<Scalar> givens;
/* Function Body */
// the following will only change the lower triangular part of s, including
// the diagonal, though the diagonal is restored afterward
/* copy r and (q transpose)*b to preserve input and initialize R. */
wa = qtb;
FactorType R(s);
// Eliminate the diagonal matrix d using a givens rotation
for (j = 0; j < n; ++j)
{
// Prepare the row of d to be eliminated, locating the
// diagonal element using p from the qr factorization
l = iPerm.indices()(j);
if (diag(l) == Scalar(0))
break;
sdiag.tail(n-j).setZero();
sdiag[j] = diag[l];
// the transformations to eliminate the row of d
// modify only a single element of (q transpose)*b
// beyond the first n, which is initially zero.
Scalar qtbpj = 0;
// Browse the nonzero elements of row j of the upper triangular s
for (k = j; k < n; ++k)
{
typename FactorType::InnerIterator itk(R,k);
for (; itk; ++itk){
if (itk.index() < k) continue;
else break;
}
//At this point, we have the diagonal element R(k,k)
// Determine a givens rotation which eliminates
// the appropriate element in the current row of d
givens.makeGivens(-itk.value(), sdiag(k));
// Compute the modified diagonal element of r and
// the modified element of ((q transpose)*b,0).
itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
temp = givens.c() * wa(k) + givens.s() * qtbpj;
qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
wa(k) = temp;
// Accumulate the transformation in the remaining k row/column of R
for (++itk; itk; ++itk)
{
i = itk.index();
temp = givens.c() * itk.value() + givens.s() * sdiag(i);
sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
itk.valueRef() = temp;
}
}
}
// Solve the triangular system for z. If the system is
// singular, then obtain a least squares solution
Index nsing;
for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
wa.tail(n-nsing).setZero();
// x = wa;
wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
sdiag = R.diagonal();
// Permute the components of z back to components of x
x = iPerm * wa;
}
} // end namespace internal
} // end namespace Eigen
#endif

View File

@ -0,0 +1,636 @@
// -*- coding: utf-8
// vim: set fileencoding=utf-8
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LEVENBERGMARQUARDT_H
#define EIGEN_LEVENBERGMARQUARDT_H
namespace Eigen {
namespace LevenbergMarquardtSpace {
enum Status {
NotStarted = -2,
Running = -1,
ImproperInputParameters = 0,
RelativeReductionTooSmall = 1,
RelativeErrorTooSmall = 2,
RelativeErrorAndReductionTooSmall = 3,
CosinusTooSmall = 4,
TooManyFunctionEvaluation = 5,
FtolTooSmall = 6,
XtolTooSmall = 7,
GtolTooSmall = 8,
UserAsked = 9
};
}
template <typename _Scalar, int NX=Dynamic, int NY=Dynamic>
struct DenseFunctor
{
typedef _Scalar Scalar;
enum {
InputsAtCompileTime = NX,
ValuesAtCompileTime = NY
};
typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
typedef ColPivHouseholderQR<JacobianType> QRSolver;
const int m_inputs, m_values;
DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
//int operator()(const InputType &x, ValueType& fvec) { }
// should be defined in derived classes
//int df(const InputType &x, JacobianType& fjac) { }
// should be defined in derived classes
};
#ifdef EIGEN_SPQR_SUPPORT
template <typename _Scalar, typename _Index>
struct SparseFunctor
{
typedef _Scalar Scalar;
typedef _Index Index;
typedef Matrix<Scalar,Dynamic,1> InputType;
typedef Matrix<Scalar,Dynamic,1> ValueType;
typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType;
typedef SPQR<JacobianType> QRSolver;
SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
const int m_inputs, m_values;
//int operator()(const InputType &x, ValueType& fvec) { }
// to be defined in the functor
//int df(const InputType &x, JacobianType& fjac) { }
// to be defined in the functor if no automatic differentiation
};
#endif
namespace internal {
template <typename QRSolver, typename VectorType>
void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb,
typename VectorType::Scalar m_delta, typename VectorType::Scalar &par,
VectorType &x);
}
/**
* \ingroup NonLinearOptimization_Module
* \brief Performs non linear optimization over a non-linear function,
* using a variant of the Levenberg Marquardt algorithm.
*
* Check wikipedia for more information.
* http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
*/
template<typename _FunctorType>
class LevenbergMarquardt
{
public:
typedef _FunctorType FunctorType;
typedef typename FunctorType::QRSolver QRSolver;
typedef typename FunctorType::JacobianType JacobianType;
typedef typename JacobianType::Scalar Scalar;
typedef typename JacobianType::RealScalar RealScalar;
typedef typename JacobianType::Index Index;
typedef typename QRSolver::Index PermIndex;
typedef Matrix<Scalar,Dynamic,1> FVectorType;
typedef PermutationMatrix<Dynamic,Dynamic> PermutationType;
public:
LevenbergMarquardt(FunctorType& functor)
: m_functor(functor),m_nfev(0),m_njev(0),m_fnorm(0.0),m_gnorm(0)
{
resetParameters();
m_useExternalScaling=false;
}
LevenbergMarquardtSpace::Status minimize(FVectorType &x);
LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
LevenbergMarquardtSpace::Status lmder1(
FVectorType &x,
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
);
static LevenbergMarquardtSpace::Status lmdif1(
FunctorType &functor,
FVectorType &x,
Index *nfev,
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
);
/** Sets the default parameters */
void resetParameters()
{
m_factor = 100.;
m_maxfev = 400;
m_ftol = std::sqrt(NumTraits<RealScalar>::epsilon());
m_xtol = std::sqrt(NumTraits<RealScalar>::epsilon());
m_gtol = 0. ;
m_epsfcn = 0. ;
}
/** Sets the tolerance for the norm of the solution vector*/
void setXtol(RealScalar xtol) { m_xtol = xtol; }
/** Sets the tolerance for the norm of the vector function*/
void setFtol(RealScalar ftol) { m_ftol = ftol; }
/** Sets the tolerance for the norm of the gradient of the error vector*/
void setGtol(RealScalar gtol) { m_gtol = gtol; }
/** Sets the step bound for the diagonal shift */
void setFactor(RealScalar factor) { m_factor = factor; }
/** Sets the error precision */
void setEpsilon (RealScalar epsfcn) { m_epsfcn = epsfcn; }
/** Sets the maximum number of function evaluation */
void setMaxfev(Index maxfev) {m_maxfev = maxfev; }
/** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */
void setExternalScaling(bool value) {m_useExternalScaling = value; }
/** Get a reference to the diagonal of the jacobian */
FVectorType& diag() {return m_diag; }
/** Number of iterations performed */
Index iterations() { return m_iter; }
/** Number of functions evaluation */
Index nfev() { return m_nfev; }
/** Number of jacobian evaluation */
Index njev() { return m_njev; }
/** Norm of current vector function */
RealScalar fnorm() {return m_fnorm; }
/** Norm of the gradient of the error */
RealScalar gnorm() {return m_gnorm; }
/** the LevenbergMarquardt parameter */
RealScalar lm_param(void) { return m_par; }
/** reference to the current vector function
*/
FVectorType& fvec() {return m_fvec; }
/** reference to the matrix where the current Jacobian matrix is stored
*/
JacobianType& fjac() {return m_fjac; }
/** the permutation used
*/
PermutationType permutation() {return m_permutation; }
private:
JacobianType m_fjac;
FunctorType &m_functor;
FVectorType m_fvec, m_qtf, m_diag;
Index n;
Index m;
Index m_nfev;
Index m_njev;
RealScalar m_fnorm; // Norm of the current vector function
RealScalar m_gnorm; //Norm of the gradient of the error
RealScalar m_factor; //
Index m_maxfev; // Maximum number of function evaluation
RealScalar m_ftol; //Tolerance in the norm of the vector function
RealScalar m_xtol; //
RealScalar m_gtol; //tolerance of the norm of the error gradient
RealScalar m_epsfcn; //
Index m_iter; // Number of iterations performed
RealScalar m_delta;
bool m_useExternalScaling;
PermutationType m_permutation;
FVectorType m_wa1, m_wa2, m_wa3, m_wa4; //Temporary vectors
RealScalar m_par;
};
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::minimize(FVectorType &x)
{
LevenbergMarquardtSpace::Status status = minimizeInit(x);
if (status==LevenbergMarquardtSpace::ImproperInputParameters)
return status;
do {
// std::cout << " uv " << x.transpose() << "\n";
status = minimizeOneStep(x);
} while (status==LevenbergMarquardtSpace::Running);
return status;
}
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
{
n = x.size();
m = m_functor.values();
m_wa1.resize(n); m_wa2.resize(n); m_wa3.resize(n);
m_wa4.resize(m);
m_fvec.resize(m);
//FIXME Sparse Case : Allocate space for the jacobian
m_fjac.resize(m, n);
// m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative
if (!m_useExternalScaling)
m_diag.resize(n);
assert( (!m_useExternalScaling || m_diag.size()==n) || "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'");
m_qtf.resize(n);
/* Function Body */
m_nfev = 0;
m_njev = 0;
/* check the input parameters for errors. */
if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
if (m_useExternalScaling)
for (Index j = 0; j < n; ++j)
if (m_diag[j] <= 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
/* evaluate the function at the starting point */
/* and calculate its norm. */
m_nfev = 1;
if ( m_functor(x, m_fvec) < 0)
return LevenbergMarquardtSpace::UserAsked;
m_fnorm = m_fvec.stableNorm();
/* initialize levenberg-marquardt parameter and iteration counter. */
m_par = 0.;
m_iter = 1;
return LevenbergMarquardtSpace::NotStarted;
}
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
{
typedef typename FunctorType::JacobianType JacobianType;
using std::abs;
using std::sqrt;
RealScalar temp, temp1,temp2;
RealScalar ratio;
RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
assert(x.size()==n); // check the caller is not cheating us
temp = 0.0; xnorm = 0.0;
/* calculate the jacobian matrix. */
Index df_ret = m_functor.df(x, m_fjac);
if (df_ret<0)
return LevenbergMarquardtSpace::UserAsked;
if (df_ret>0)
// numerical diff, we evaluated the function df_ret times
m_nfev += df_ret;
else m_njev++;
/* compute the qr factorization of the jacobian. */
for (int j = 0; j < x.size(); ++j)
m_wa2(j) = m_fjac.col(j).norm();
//FIXME Implement bluenorm for sparse vectors
// m_wa2 = m_fjac.colwise().blueNorm();
QRSolver qrfac(m_fjac); //FIXME Check if the QR decomposition succeed
// Make a copy of the first factor with the associated permutation
JacobianType rfactor;
rfactor = qrfac.matrixQR();
m_permutation = (qrfac.colsPermutation());
/* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (m_iter == 1) {
if (!m_useExternalScaling)
for (Index j = 0; j < n; ++j)
m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound m_delta. */
xnorm = m_diag.cwiseProduct(x).stableNorm();
m_delta = m_factor * xnorm;
if (m_delta == 0.)
m_delta = m_factor;
}
/* form (q transpose)*m_fvec and store the first n components in */
/* m_qtf. */
m_wa4 = m_fvec;
m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
m_qtf = m_wa4.head(n);
/* compute the norm of the scaled gradient. */
m_gnorm = 0.;
if (m_fnorm != 0.)
for (Index j = 0; j < n; ++j)
if (m_wa2[m_permutation.indices()[j]] != 0.)
m_gnorm = (std::max)(m_gnorm, abs( rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
/* test for convergence of the gradient norm. */
if (m_gnorm <= m_gtol)
return LevenbergMarquardtSpace::CosinusTooSmall;
/* rescale if necessary. */
if (!m_useExternalScaling)
m_diag = m_diag.cwiseMax(m_wa2);
do {
/* determine the levenberg-marquardt parameter. */
internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
/* store the direction p and x + p. calculate the norm of p. */
m_wa1 = -m_wa1;
m_wa2 = x + m_wa1;
pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (m_iter == 1)
m_delta = (std::min)(m_delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
if ( m_functor(m_wa2, m_wa4) < 0)
return LevenbergMarquardtSpace::UserAsked;
++m_nfev;
fnorm1 = m_wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (Scalar(.1) * fnorm1 < m_fnorm)
actred = 1. - internal::abs2(fnorm1 / m_fnorm);
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
m_wa3 = rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
temp1 = internal::abs2(m_wa3.stableNorm() / m_fnorm);
temp2 = internal::abs2(sqrt(m_par) * pnorm / m_fnorm);
prered = temp1 + temp2 / Scalar(.5);
dirder = -(temp1 + temp2);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered != 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio <= Scalar(.25)) {
if (actred >= 0.)
temp = RealScalar(.5);
if (actred < 0.)
temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
temp = Scalar(.1);
/* Computing MIN */
m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
m_par /= temp;
} else if (!(m_par != 0. && ratio < RealScalar(.75))) {
m_delta = pnorm / RealScalar(.5);
m_par = RealScalar(.5) * m_par;
}
/* test for successful iteration. */
if (ratio >= RealScalar(1e-4)) {
/* successful iteration. update x, m_fvec, and their norms. */
x = m_wa2;
m_wa2 = m_diag.cwiseProduct(x);
m_fvec = m_wa4;
xnorm = m_wa2.stableNorm();
m_fnorm = fnorm1;
++m_iter;
}
/* tests for convergence. */
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
return LevenbergMarquardtSpace::RelativeReductionTooSmall;
if (m_delta <= m_xtol * xnorm)
return LevenbergMarquardtSpace::RelativeErrorTooSmall;
/* tests for termination and stringent tolerances. */
if (m_nfev >= m_maxfev)
return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
return LevenbergMarquardtSpace::FtolTooSmall;
if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
return LevenbergMarquardtSpace::XtolTooSmall;
if (m_gnorm <= NumTraits<Scalar>::epsilon())
return LevenbergMarquardtSpace::GtolTooSmall;
} while (ratio < Scalar(1e-4));
return LevenbergMarquardtSpace::Running;
}
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::lmder1(
FVectorType &x,
const Scalar tol
)
{
n = x.size();
m = m_functor.values();
/* check the input parameters for errors. */
if (n <= 0 || m < n || tol < 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
resetParameters();
m_ftol = tol;
m_xtol = tol;
m_maxfev = 100*(n+1);
return minimize(x);
}
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::lmdif1(
FunctorType &functor,
FVectorType &x,
Index *nfev,
const Scalar tol
)
{
Index n = x.size();
Index m = functor.values();
/* check the input parameters for errors. */
if (n <= 0 || m < n || tol < 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
NumericalDiff<FunctorType> numDiff(functor);
// embedded LevenbergMarquardt
LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff);
lm.setFtol(tol);
lm.setXtol(tol);
lm.setMaxfev(200*(n+1));
LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
if (nfev)
* nfev = lm.nfev();
return info;
}
namespace internal {
template <typename QRSolver, typename VectorType>
void lmpar2(
const QRSolver &qr,
const VectorType &diag,
const VectorType &qtb,
typename VectorType::Scalar m_delta,
typename VectorType::Scalar &par,
VectorType &x)
{
using std::sqrt;
using std::abs;
typedef typename QRSolver::MatrixType MatrixType;
typedef typename QRSolver::Scalar Scalar;
typedef typename QRSolver::Index Index;
/* Local variables */
Index j;
Scalar fp;
Scalar parc, parl;
Index iter;
Scalar temp, paru;
Scalar gnorm;
Scalar dxnorm;
/* Function Body */
const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
const Index n = qr.matrixQR().cols();
assert(n==diag.size());
assert(n==qtb.size());
VectorType wa1, wa2;
/* compute and store in x the gauss-newton direction. if the */
/* jacobian is rank-deficient, obtain a least squares solution. */
// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
const Index rank = qr.rank(); // use a threshold
wa1 = qtb;
wa1.tail(n-rank).setZero();
//FIXME There is no solve in place for sparse triangularView
//qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
wa1.head(rank) = qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(qtb.head(rank));
x = qr.colsPermutation()*wa1;
/* initialize the iteration counter. */
/* evaluate the function at the origin, and test */
/* for acceptance of the gauss-newton direction. */
iter = 0;
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
fp = dxnorm - m_delta;
if (fp <= Scalar(0.1) * m_delta) {
par = 0;
return;
}
/* if the jacobian is not rank deficient, the newton */
/* step provides a lower bound, parl, for the zero of */
/* the function. otherwise set this bound to zero. */
parl = 0.;
if (rank==n) {
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
temp = wa1.blueNorm();
parl = fp / m_delta / temp / temp;
}
/* calculate an upper bound, paru, for the zero of the function. */
for (j = 0; j < n; ++j)
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
gnorm = wa1.stableNorm();
paru = gnorm / m_delta;
if (paru == 0.)
paru = dwarf / (std::min)(m_delta,Scalar(0.1));
/* if the input par lies outside of the interval (parl,paru), */
/* set par to the closer endpoint. */
par = (std::max)(par,parl);
par = (std::min)(par,paru);
if (par == 0.)
par = gnorm / dxnorm;
/* beginning of an iteration. */
MatrixType s;
s = qr.matrixQR();
while (true) {
++iter;
/* evaluate the function at the current value of par. */
if (par == 0.)
par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
wa1 = sqrt(par)* diag;
VectorType sdiag(n);
lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
temp = fp;
fp = dxnorm - m_delta;
/* if the function is small enough, accept the current value */
/* of par. also test for the exceptional cases where parl */
/* is zero or the number of iterations has reached 10. */
if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
break;
/* compute the newton correction. */
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
// we could almost use this here, but the diagonal is outside qr, in sdiag[]
// qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
for (j = 0; j < n; ++j) {
wa1[j] /= sdiag[j];
temp = wa1[j];
for (Index i = j+1; i < n; ++i)
wa1[i] -= s.coeff(i,j) * temp;
}
temp = wa1.blueNorm();
parc = fp / m_delta / temp / temp;
/* depending on the sign of the function, update parl or paru. */
if (fp > 0.)
parl = (std::max)(parl,par);
if (fp < 0.)
paru = (std::min)(paru,par);
/* compute an improved estimate for par. */
par = (std::max)(parl,par+parc);
}
if (iter == 0)
par = 0.;
return;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LEVENBERGMARQUARDT_H

View File

@ -0,0 +1,69 @@
namespace Eigen {
namespace internal {
template <typename Scalar>
void covar(
Matrix< Scalar, Dynamic, Dynamic > &r,
const VectorXi& ipvt,
Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
{
using std::abs;
typedef DenseIndex Index;
/* Local variables */
Index i, j, k, l, ii, jj;
bool sing;
Scalar temp;
/* Function Body */
const Index n = r.cols();
const Scalar tolr = tol * abs(r(0,0));
Matrix< Scalar, Dynamic, 1 > wa(n);
assert(ipvt.size()==n);
/* form the inverse of r in the full upper triangle of r. */
l = -1;
for (k = 0; k < n; ++k)
if (abs(r(k,k)) > tolr) {
r(k,k) = 1. / r(k,k);
for (j = 0; j <= k-1; ++j) {
temp = r(k,k) * r(j,k);
r(j,k) = 0.;
r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
}
l = k;
}
/* form the full upper triangle of the inverse of (r transpose)*r */
/* in the full upper triangle of r. */
for (k = 0; k <= l; ++k) {
for (j = 0; j <= k-1; ++j)
r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
r.col(k).head(k+1) *= r(k,k);
}
/* form the full lower triangle of the covariance matrix */
/* in the strict lower triangle of r and in wa. */
for (j = 0; j < n; ++j) {
jj = ipvt[j];
sing = j > l;
for (i = 0; i <= j; ++i) {
if (sing)
r(i,j) = 0.;
ii = ipvt[i];
if (ii > jj)
r(ii,jj) = r(i,j);
if (ii < jj)
r(jj,ii) = r(i,j);
}
wa[jj] = r(j,j);
}
/* symmetrize the covariance matrix in r. */
r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
r.diagonal() = wa;
}
} // end namespace internal
} // end namespace Eigen