mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
Revert part of changeset 5b3a6f51d3
to keep accuracy of smallest eigenvalues.
This commit is contained in:
parent
7e029d1d6e
commit
2915e1fc5d
@ -236,7 +236,7 @@ template<typename _MatrixType> class RealSchur
|
|||||||
typedef Matrix<Scalar,3,1> Vector3s;
|
typedef Matrix<Scalar,3,1> Vector3s;
|
||||||
|
|
||||||
Scalar computeNormOfT();
|
Scalar computeNormOfT();
|
||||||
Index findSmallSubdiagEntry(Index iu, const Scalar& maxDiagEntry);
|
Index findSmallSubdiagEntry(Index iu);
|
||||||
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
||||||
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
||||||
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
||||||
@ -293,18 +293,14 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
|||||||
|
|
||||||
if(norm!=0)
|
if(norm!=0)
|
||||||
{
|
{
|
||||||
Scalar maxDiagEntry = m_matT.cwiseAbs().diagonal().maxCoeff();
|
|
||||||
|
|
||||||
while (iu >= 0)
|
while (iu >= 0)
|
||||||
{
|
{
|
||||||
Index il = findSmallSubdiagEntry(iu,maxDiagEntry);
|
Index il = findSmallSubdiagEntry(iu);
|
||||||
|
|
||||||
// Check for convergence
|
// Check for convergence
|
||||||
if (il == iu) // One root found
|
if (il == iu) // One root found
|
||||||
{
|
{
|
||||||
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
||||||
// keep track of the largest diagonal coefficient
|
|
||||||
maxDiagEntry = numext::maxi<Scalar>(maxDiagEntry,abs(m_matT.coeffRef(iu,iu)));
|
|
||||||
if (iu > 0)
|
if (iu > 0)
|
||||||
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
||||||
iu--;
|
iu--;
|
||||||
@ -313,8 +309,6 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
|||||||
else if (il == iu-1) // Two roots found
|
else if (il == iu-1) // Two roots found
|
||||||
{
|
{
|
||||||
splitOffTwoRows(iu, computeU, exshift);
|
splitOffTwoRows(iu, computeU, exshift);
|
||||||
// keep track of the largest diagonal coefficient
|
|
||||||
maxDiagEntry = numext::maxi<Scalar>(maxDiagEntry,numext::maxi(abs(m_matT.coeff(iu,iu)), abs(m_matT.coeff(iu-1,iu-1))));
|
|
||||||
iu -= 2;
|
iu -= 2;
|
||||||
iter = 0;
|
iter = 0;
|
||||||
}
|
}
|
||||||
@ -329,8 +323,6 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
|||||||
Index im;
|
Index im;
|
||||||
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
||||||
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
||||||
// keep track of the largest diagonal coefficient
|
|
||||||
maxDiagEntry = numext::maxi(maxDiagEntry,m_matT.cwiseAbs().diagonal().segment(im,iu-im).maxCoeff());
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -360,13 +352,14 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
|||||||
|
|
||||||
/** \internal Look for single small sub-diagonal element and returns its index */
|
/** \internal Look for single small sub-diagonal element and returns its index */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& maxDiagEntry)
|
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
||||||
{
|
{
|
||||||
using std::abs;
|
using std::abs;
|
||||||
Index res = iu;
|
Index res = iu;
|
||||||
while (res > 0)
|
while (res > 0)
|
||||||
{
|
{
|
||||||
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * maxDiagEntry)
|
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
||||||
|
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
|
||||||
break;
|
break;
|
||||||
res--;
|
res--;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user